Reinforcement Learning

* Control learning

Control polices that choose optimal actions

Q learning

« Convergence
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Control Learning

Consider learning to choose actions, €.g.,
* Robot learning to dock on battery charger

* Learning to choose actions to optimize factory
output

* Learning to play Backgammon

Note several problem characteristics

* Delayed reward

* Opportunity for active exploration

* Possibility that state only partially observable

» Possible need to learn multiple tasks with same
sensors/effectors
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One Example: TD-Gammon
Tesauro, 1995

Learn to play Backgammon
Immediate reward

* +100 1f win

» -100 1f lose

e ( for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player
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Reinforcement Learning Problem

Environment

A

action
state reward

Agent

Goal: learn to choose actions that maximize
rotyr,+vyr,+ ...,where 0 <y <1
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Markov Decision Process

Assume

finite set of states S
set of actions A4

at each discrete time, agent observes state s, € S
and choose action a, € A

then receives immediate reward 7,
and state changes to s, ;

Markov assumption: s, ; = o(s,, a,) and r, = r(s,, a,)
— 1.e,, r,and s, ; depend only on current state and action
— functions 0 and » may be nondeterministic
— functions 0 and 7 no necessarily known to agent
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Agent’s Learning Task

Execute action 1n environment, observe results, and
 learn action policy © : § — A that maximizes
E[I”t‘|‘ M, T .ert+2_|_ . ]
from any starting state in S
 here 0 <y <1 is the discount factor for future
rewards
Note something new:
e target functionismt: S —> A4
* but we have no training examples of form <s,a>

* training examples are of form <<s,a>r>
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Value Function

To begin, consider deterministic worlds ...

For each possible policy t the agent might adopt, we
can define an evaluation function over states

VW(S)E’/;‘ t+1+y t+2

= Zyi’?ﬂ‘
i=0
where 7,,r,,,,... are generated by following policy =
starting at state s
Restated, the task 1s to learn the optimal policy ©*
n* =argmax V" (s),(Vs)
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What to Learn

We might try to have agent learn the evaluation
function J™* (which we write as V'*)

We could then do a lookahead search to choose best
action from any state s because

n* (s) = argmax|r(s,a) +y V¥ (s,.a))]

A problem:

* This works well if agent knowsao : Sx A4 — S,
andr.:SxA4—>R

 But when it doesn’t, we can’t choose actions this

way
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(O Function

Define new function very similar to V*

O(s,a) =r(s,a)+y V*(0o (s,a))

If agent learns Q, 1t can choose optimal action even
without knowing d!

n* (s) = argmax|r(s,a)+y V¥ (s,a))]
n* (s)=argmax QO(s,a)

Q 1s the evaluation function the agent will learn
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Training Rule to Learn QO

Note O and V'* closely related:
V*(s)= max O(s,a’)

Which allows us to write O recursively as
O(s,a,)=r(s,a,)+y V¥0 (s,.a,))

= r(s,a,)+y maxQ(s,,,.a)
Let Q denote learner’s current approx1mat10n to Q.
Consider training rule

O(s,a) < r+y maxQ(s',a’)
where s' 1s the state resulting from applying action a
In state s
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QO Learning for Deterministic Worlds

For each s,a 1nitialize table entry Q(S,a) 0
Observe current state s

Do forever:

» Select an action a and execute 1t

e Receive immediate reward r

Observe the new state s’

N

Q(S,a) < r+y max Q(S’,a’)

e §& ¢
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Updating

JIE JIE
R 1 100, R 1 100,
v > v
aright
initial state: s, next state: s,

Q(Sl > aright ) «r +y maE’lX Q(SZ’ a’)
« 0+0.9max{63,81,100} =90

notice if rewards non - negative, then

(‘v’s,a,n) Qn+1 (S,Cl) 2 Qn (Saa)

and

(Vs,a,n)0< Qn (s,a) <0(s,a)
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Convergence

N

O converges to Q. Consider case of deterministic world

where each <s,a> visited infinitely often.

Proof: define a full interval to be an interval during which

cach <s,a> 1s visited. During each full interval the largest

error in () table is reduced by factor of y

Let O, be table after n updates, and A, be the maximum error

N

in ¢/, ; thatis
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Convergence (cont)

For any table entry O, (s,a) updated on iteration n+1, the
error in the revised estimate U, (5,a) is

0,.1(5,@) = O(s,a@)| =|(r +y max 0,(s',a)) — (r +y max 0(s'.a’)
=y [max 0, (5",.a’) ~ max O(s',.a)
<y max0,(s',a) ~ 0(s'.a')
<y max QAn(S",a') —Q(s",a’'

/4 !
s',a

Qn+1 (S9 a) o Q(S9 a)‘ Sy An
Note we used general fact that

max f,(a)-max f,(a) < max|fy(@- f(a)
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Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, 0 by taking expected values

V’t (S) = Ert +V rt+1 +V 2rt+2 +]

=E|p 7 irt+i ]

O(s,a) =E[r(s,a)+y V' *(0 (s.a))]
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Nondeterministic Case

QO learning generalizes to nondeterministic worlds

Alter training rule to

0,(s,a) < (1-0a,)0, ,(s,a)+a [r+maxQ, ,(s',a")]

where
1

" 1+visits (s, a)

o

Can still prove converge of Q to O [Watkins and
Dayan, 1992]
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Temporal Difference Learning

O learning: reduce discrepancy between successive
0 estimates

One step time difference:
0" (s, a,)=r,+y max O(s,...a)
Why not two steps?
0% (s,.a,) =1, +y 1, +y > max (s, ,, a)
Or n? “
O (s,,a) =1, +Y Ty +oty ", Y maXQ(SHn, a)
Blend all of these:
O (s,,a,) = (1-M)|0"(s,.a,) +1 02 (s5,,a,) +1 0 (s,,a,) +...
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Temporal Difference Learning

O (s,.a,) = (1-M)|0" (s,.a,) +) 0P (5,,a,) +1. 20 (5,,a,) + ..

Equivalent expression:

0" (s,.a,) =, +y [(1-0 )y max O(s,. ) +1 O (5,,1,,,,)

TD(A) algorithm uses above training rule
« Sometimes converges faster than O learning

* converges for learning J* for any 0 < A <1
(Dayan, 1992)
* Tesauro’s TD-Gammon uses this algorithm
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Subtleties and Ongoing Research
* Replace Q table with neural network or other
generalizer
« Handle case where state only partially observable
* Design optimal exploration strategies
« Extend to continuous action, state
* Learnandused: S x4 — S, d approximation to o

» Relationship to dynamic programming
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RL Summary

* Reinforcement learning (RL)
— control learning
— delayed reward
— possible that the state 1s only partially observable

— possible that the relationship between states/actions
unknown

* Temporal Difference Learning
— learn discrepancies between successive estimates

— used in TD-Gammon

* V(s) - state value function

— needs known reward/state transition functions
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RL Summary

* ((s,a) - state/action value function
— related to V
— does not need reward/state trans functions
— training rule
— related to dynamic programming

— measure actual reward received for action and future
value using current Q function

— deterministic - replace existing estimate

— nondeterministic - move table estimate towards
measure estimate

— convergence - can be shown 1n both cases
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