Reinforcement Learning

* Control learning

Control polices that choose optimal actions

Q learning

« Convergence

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Control Learning

Consider learning to choose actions, €.g.,
* Robot learning to dock on battery charger

* Learning to choose actions to optimize factory
output

* Learning to play Backgammon

Note several problem characteristics

* Delayed reward

* Opportunity for active exploration

* Possibility that state only partially observable

» Possible need to learn multiple tasks with same
sensors/effectors

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

One Example: TD-Gammon
Tesauro, 1995

Learn to play Backgammon
Immediate reward

* +100 1f win

» -100 1f lose

e (for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Reinforcement Learning Problem

Environment

A

action
state reward

Agent

Goal: learn to choose actions that maximize
rotyr,+vyr,+ ...,where 0 <y <1

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Markov Decision Process

Assume

finite set of states S
set of actions A4

at each discrete time, agent observes state s, € S
and choose action a, € A

then receives immediate reward 7,
and state changes to s, ;

Markov assumption: s, ; = o(s,, a,) and r, = r(s,, a,)
— 1.e,, r,and s, ; depend only on current state and action
— functions 0 and » may be nondeterministic
— functions 0 and 7 no necessarily known to agent

CS 5751 Machine Chapter 13 Reinforcement Learning 5
Learning

Agent’s Learning Task

Execute action 1n environment, observe results, and
 learn action policy © : § — A that maximizes
E[I”t‘|‘ M, T .ert+2_|_ .]
from any starting state in S
 here 0 <y <1 is the discount factor for future
rewards
Note something new:
e target functionismt: S —> A4
* but we have no training examples of form <s,a>

* training examples are of form <<s,a>r>

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Value Function

To begin, consider deterministic worlds ...

For each possible policy t the agent might adopt, we
can define an evaluation function over states

VW(S)E’/;‘ t+1+y t+2

= Zyi’?ﬂ‘
i=0
where 7,,r,,,,... are generated by following policy =
starting at state s
Restated, the task 1s to learn the optimal policy ©*
n* =argmax V" (s),(Vs)

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

<& /3”
0] 4000] 1402* GA
VIOV 105 Tig
6" 6"

T Ia
100, G
72 00 A
et
s 1981 Tie
g™ 90 [~
QO(s,a) values
» G
A
|
>

V*(s) values

CS 5751 Machine
Learning

One optimal policy

Chapter 13 Reinforcement Learning

What to Learn

We might try to have agent learn the evaluation
function J™* (which we write as V'*)

We could then do a lookahead search to choose best
action from any state s because

n* (s) = argmax|r(s,a) +y V¥ (s,.a))]

A problem:

* This works well if agent knowsao : Sx A4 — S,
andr.:SxA4—>R

 But when it doesn’t, we can’t choose actions this

way
CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

(O Function

Define new function very similar to V*

O(s,a) =r(s,a)+y V*(0o (s,a))

If agent learns Q, 1t can choose optimal action even
without knowing d!

n* (s) = argmax|r(s,a)+y V¥ (s,a))]
n* (s)=argmax QO(s,a)

Q 1s the evaluation function the agent will learn

CS 5751 Machine Chapter 13 Reinforcement Learning 10
Learning

Training Rule to Learn QO

Note O and V'* closely related:
V*(s)= max O(s,a’)

Which allows us to write O recursively as
O(s,a,)=r(s,a,)+y V¥0 (s,.a,))

= r(s,a,)+y maxQ(s,,,.a)
Let Q denote learner’s current approx1mat10n to Q.
Consider training rule

O(s,a) < r+y maxQ(s',a’)
where s' 1s the state resulting from applying action a
In state s

CS 5751 Machine Chapter 13 Reinforcement Learning 11
Learning

QO Learning for Deterministic Worlds

For each s,a 1nitialize table entry Q(S,a) 0
Observe current state s

Do forever:

» Select an action a and execute 1t

e Receive immediate reward r

Observe the new state s’

N

Q(S,a) < r+y max Q(S’,a’)

e §& ¢

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Update the table entry for Q(5.a) as follows:

12

Updating

JIE JIE
R 1 100, R 1 100,
v > v
aright
initial state: s, next state: s,

Q(Sl > aright) «r +y maE’lX Q(SZ’ a’)
« 0+0.9max{63,81,100} =90

notice if rewards non - negative, then

(‘v’s,a,n) Qn+1 (S,Cl) 2 Qn (Saa)

and

(Vs,a,n)0< Qn (s,a) <0(s,a)

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

13

Convergence

N

O converges to Q. Consider case of deterministic world

where each <s,a> visited infinitely often.

Proof: define a full interval to be an interval during which

cach <s,a> 1s visited. During each full interval the largest

error in () table is reduced by factor of y

Let O, be table after n updates, and A, be the maximum error

N

in ¢/, ; thatis

CS 5751 Machine Chapter 13 Reinforcement Learning 14
Learning

Convergence (cont)

For any table entry O, (s,a) updated on iteration n+1, the
error in the revised estimate U, (5,a) is

0,.1(5,@) = O(s,a@)| =|(r +y max 0,(s',a)) — (r +y max 0(s'.a’)
=y [max 0, (5",.a’) ~ max O(s',.a)
<y max0,(s',a) ~ 0(s'.a')
<y max QAn(S",a') —Q(s",a’'

/4 !
s',a

Qn+1 (S9 a) o Q(S9 a)‘ Sy An
Note we used general fact that

max f,(a)-max f,(a) < max|fy(@- f(a)

CS 5751 Machine Chapter 13 Reinforcement Learning 15
Learning

< max
a

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, 0 by taking expected values

V’t (S) = Ert +V rt+1 +V 2rt+2 +]

=E|p 7 irt+i]

O(s,a) =E[r(s,a)+y V' *(0 (s.a))]

CS 5751 Machine Chapter 13 Reinforcement Learning 16
Learning

Nondeterministic Case

QO learning generalizes to nondeterministic worlds

Alter training rule to

0,(s,a) < (1-0a,)0, ,(s,a)+a [r+maxQ, ,(s',a")]

where
1

" 1+visits (s, a)

o

Can still prove converge of Q to O [Watkins and
Dayan, 1992]

CS 5751 Machine Chapter 13 Reinforcement Learning 17
Learning

Temporal Difference Learning

O learning: reduce discrepancy between successive
0 estimates

One step time difference:
0" (s, a,)=r,+y max O(s,...a)
Why not two steps?
0% (s,.a,) =1, +y 1, +y > max (s, ,, a)
Or n? “
O (s,,a) =1, +Y Ty +oty ", Y maXQ(SHn, a)
Blend all of these:
O (s,,a,) = (1-M)|0"(s,.a,) +1 02 (s5,,a,) +1 0 (s,,a,) +...

CS 5751 Machine Chapter 13 Reinforcement Learning 18
Learning

Temporal Difference Learning

O (s,.a,) = (1-M)|0" (s,.a,) +) 0P (5,,a,) +1. 20 (5,,a,) + ..

Equivalent expression:

0" (s,.a,) =, +y [(1-0)y max O(s,.) +1 O (5,,1,,,,)

TD(A) algorithm uses above training rule
« Sometimes converges faster than O learning

* converges for learning J* for any 0 < A <1
(Dayan, 1992)
* Tesauro’s TD-Gammon uses this algorithm

CS 5751 Machine Chapter 13 Reinforcement Learning 19
Learning

Subtleties and Ongoing Research
* Replace Q table with neural network or other
generalizer
« Handle case where state only partially observable
* Design optimal exploration strategies
« Extend to continuous action, state
* Learnandused: S x4 — S, d approximation to o

» Relationship to dynamic programming

CS 5751 Machine Chapter 13 Reinforcement Learning 20
Learning

RL Summary

* Reinforcement learning (RL)
— control learning
— delayed reward
— possible that the state 1s only partially observable

— possible that the relationship between states/actions
unknown

* Temporal Difference Learning
— learn discrepancies between successive estimates

— used in TD-Gammon

* V(s) - state value function

— needs known reward/state transition functions

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

21

RL Summary

* ((s,a) - state/action value function
— related to V
— does not need reward/state trans functions
— training rule
— related to dynamic programming

— measure actual reward received for action and future
value using current Q function

— deterministic - replace existing estimate

— nondeterministic - move table estimate towards
measure estimate

— convergence - can be shown 1n both cases

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

