Reinforcement Learning

» Control learning
» Control polices that choose optimal actions
* Q learning

» Convergence

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Control Learning

Consider learning to choose actions, e.g.,

* Robot learning to dock on battery charger

» Learning to choose actions to optimize factory
output

* Learning to play Backgammon

Note several problem characteristics

* Delayed reward

* Opportunity for active exploration

* Possibility that state only partially observable

* Possible need to learn multiple tasks with same
sensors/effectors

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

One Example: TD-Gammon
Tesauro, 1995

Learn to play Backgammon
Immediate reward

e +100 if win

* -100 if lose

* 0 for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player

€S 5751 Machine Chapter 13 Reinforcement Learning 3

Learning

Reinforcement Learning Problem

Environment
'Y

state \ (action

Agent

a a a,

5y L 5, 1L 5, =2
- P 2 P
Ty 1 2

reward

Goal: learn to choose actions that maximize
rotyr vyt ..., where 0 <y <1

C$ 5751 Machine Chapter 13 Reinforcement Learning
Learning

Markov Decision Process

Assume
* finite set of states §
* set of actions 4

+ at each discrete time, agent observes state s, € S
and choose action g, € A

* then receives immediate reward r,

+ and state changes to s,

* Markov assumption: s,,; = 8(s,, a,) and r, = r(s,, a,)
— i, r,ands,,, depend only on current state and action

— functions 6 and » may be nondeterministic
— functions 6 and no necessarily known to agent

CS 5751 Machine Chapter 13 Reinforcement Learning 5

Learning

Agent’s Learning Task

Execute action in environment, observe results, and
¢ learn action policy 7 : S — A that maximizes
E[rt+ Yrt+1+ y2r1+2+]
from any starting state in S
* here 0 <y <1 is the discount factor for future
rewards
Note something new:
* target functionisw: S — A4
* but we have no training examples of form <s,a>
* training examples are of form <<s,a>,r>

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Value Function

To begin, consider deterministic worlds ...

For each possible policy m the agent might adopt, we
can define an evaluation function over states

— 2
Vi) =1 +yh, +Y T, + e

= z ’Yi’;ﬂ'
i=0
where r,,r,.,,... are generated by following policy ©
starting at state s
Restated, the task is to learn the optimal policy *
n* =argmax V" (s),(Vs)

CS 5751 Machine Chapter 13 Reinforcement Learning 7

Learning

U]
\Y Sl
0 P /)
&0
100) @ b 100, G
T A 72] 20
0 | 40981 4 A
ot sty to
0 0 7 81 lido
< g P <4 2
T s o™
r(s,a) (immediate reward) values 0O(s,a) values

What to Learn

We might try to have agent learn the evaluation
function V™ (which we write as V*)

We could then do a lookahead search to choose best
action from any state s because

¥ (s)= argmax[r(s,a) +y V¥ (s,a))]

A problem:

» This works well if agent knows ad:Sx 4 — S,
andr:SxA4—> R

» But when it doesn’t, we can’t choose actions this
way

€S 5751 Machine Chapter 13 Reinforcement Learning 9

Learning

90 _,1()0_,@ 4 4G
L 4l al0a 4
\ AP BA T
< -
81 _|, 90 _|, 100 RO
V*(s) values One optimal policy
CS 5751 Machine Chapter 13 Reinforcement Learning 8
Learning
O Function

Define new function very similar to V*
O(s,a)=r(s,a)+y V¥ (s,0)

If agent learns Q, it can choose optimal action even
without knowing d!

w* (s)= argmax[r(s,a) +y V*(5 (s,a))]
w* (s5)=argmax O(s,a)

Q is the evaluation function the agent will learn

C$ 5751 Machine Chapter 13 Reinforcement Learning 10
Learning

Training Rule to Learn Q

Note Q and V* closely related:
V*(s) =max Q(s,a’)
Which allows us to write O recursively as
Q(St’at) = r(st,at)+y V*(B (Sr’at))
i = 1(s,a,)+1 max 0(s,.,.a")
Let O denote learner’s current approximation to Q.
Consider training rule
O(s,a) < r+y max Q(s',a’)
where s' is the state resulting from applying action a
in state s

CS 5751 Machine Chapter 13 Reinforcement Learning 11
Learning

O Learning for Deterministic Worlds

For each s,a initialize table entry Q(S,a) «~0
Observe current state s

Do forever:

* Select an action a and execute it

* Receive immediate reward r

* Observe the new state s' .

« Update the table entry for O(s,@) as follows:

O(s,a) < r+y max O(s'a")

LER =

CS 5751 Machine Chapter 13 Reinforcement Learning 12
Learning

Updating

63 63
<« <
R 100 R 100
= - o L
2[5y . 90Jg1y
v v
Dyighy
initial state: s, next state: s,
A A r
Q(s,,a,,gh,) «—r+y maax Q(s,a")
< 0+0.9max{63,81,100} =90
notice if rewards non - negative, then
(vVs,a,n) Q,,,(s,a)2 0, (s,a)
and
(Vs,a,n)0<Q, (s,a) < O(s,a)
CS 5751 Machine Chapter 13 Reinforcement Learning 13

Learning

Convergence

O converges to Q. Consider case of deterministic world

where each <s,a> visited infinitely often.

Proof: define a full interval to be an interval during which
each <s,a> is visited. During each full interval the largest
error in Q table is reduced by factor of y

Let Q,, be table after n updates, and A, be the maximum error
in A,, ; that is

A, =max|Q, (s,a)—O(s,a)

CS 5751 Machine Chapter 13 Reinforcement Learning 14
Learning

Convergence (cont)

For any table entry Q,(s,a) updated on iteration n+1, the
error in the revised estimate @, (5,@) is

0,.(5.0)=0(s. @) = [fr+y max 0,(5.a)~r-+1 max 0(s'))

=y |max 0,(5")~ max 0"
<y max[0,(5"a) - 06’ a)
0,(s".a)-0(s",a)

<y max|

0,.(s,:)-0(s,)| <y A,
Note we used general fact that

max fi(a)-max fy(a) < max|f,(@)- f(a)

€S 5751 Machine Chapter 13 Reinforcement Learning 15
Learning

Nondeterministic Case

What if reward and next state are non-deterministic?
We redefine V,Q by taking expected values

Vn (S‘) = E[rr +Y rt+l +y 2rt+2 +]
=ED v,

O(s,a)=E[r(s,a)+y V*(8 (5,0))]

C$ 5751 Machine Chapter 13 Reinforcement Learning 16
Learning

Nondeterministic Case
O learning generalizes to nondeterministic worlds

Alter training rule to

0,(s.a) « (1-a,)0, ,(s,a) +a ,[r+max 0, ,(s',a)]

where

1
1+ visits (s, a)

n

Can still prove converge of Q to O [Watkins and
Dayan, 1992]

CS 5751 Machine Chapter 13 Reinforcement Learning 17
Learning

Temporal Difference Learning

O learning: reduce discrepancy between successive

O estimates
One step time difference:

0" (s,,a,) =1, +y max QA(sM,a)
Why not two steps?a

0% (s,,a,) =7, +7 1, +1 " max (s,)
Or n? ’)

0 (s,2a,) =1, +Y 1y oy iy 4y Max O(s,,,.,q)
Blend all of these:

0" (5,,a) = (1-M)[0V(s,,a,) +1 0¥(s,,a,) +1 20V (s,,a,) +..

CS 5751 Machine Chapter 13 Reinforcement Learning 18
Learning

Temporal Difference Learning

0 (5,.a) = (1-1)[0"(5,.a) +1 0%(s,.4,) +1°0% (5,.a,) + .|

Equivalent expression:

O (s,a) =7 +v [1-0)ymax (s, a,)+) O (5,14,

TD(A) algorithm uses above training rule

* Sometimes converges faster than Q learning

* converges for learning V'* for any 0 <A <1
(Dayan, 1992)

» Tesauro’s TD-Gammon uses this algorithm

CS 5751 Machine Chapter 13 Reinforcement Learning
Learning

Subtleties and Ongoing Research
* Replace Q table with neural network or other
generalizer
» Handle case where state only partially observable
» Design optimal exploration strategies
« Extend to continuous action, state
* Learnandused : S x 4 — S, d approximation to &

* Relationship to dynamic programming

CS 5751 Machine Chapter 13 Reinforcement Learning 20
Learning

RL Summary

* Reinforcement learning (RL)
— control learning
— delayed reward
— possible that the state is only partially observable
— possible that the relationship between states/actions
unknown
+ Temporal Difference Learning
— learn discrepancies between successive estimates
— used in TD-Gammon
* V(s) - state value function
— needs known reward/state transition functions

€S 5751 Machine Chapter 13 Reinforcement Learning
Learning

RL Summary

* Q(s,a) - state/action value function
— related to V
— does not need reward/state trans functions
— training rule
— related to dynamic programming

— measure actual reward received for action and future
value using current Q function

— deterministic - replace existing estimate

— nondeterministic - move table estimate towards
measure estimate

— convergence - can be shown in both cases

C$ 5751 Machine Chapter 13 Reinforcement Learning 2
Learning

