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Instance Based Learning 
• k-Nearest Neighbor

• Locally weighted regression

• Radial basis functions

• Case-based reasoning

• Lazy and eager learning
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Instance-Based Learning
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When to Consider Nearest Neighbor
• Instance map to points in Rn

• Less than 20 attributes per instance
• Lots of training data
Advantages
• Training is very fast
• Learn complex target functions
• Do not lose information
Disadvantages
• Slow at query time
• Easily fooled by irrelevant attributes
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k-NN Classification
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5-Nearest Neighbor

1-NN Decision Surface
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Behavior in the Limit
Define p(x) as probability that instance x will be 

labeled 1 (positive) versus 0 (negative)
Nearest Neighbor
• As number of training examples approaches infinity, 

approaches Gibbs Algorithm
Gibbs: with probability p(x) predict 1, else 0

k-Nearest Neighbor:
• As number of training examples approaches infinity and k

gets large, approaches Bayes optimal
Bayes optimal: if p(x) > 0.5 then predict 1, else 0

• Note Gibbs has at most twice the expected error of Bayes 
optimal
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Distance-Weighted k-NN
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Curse of Dimensionality
Imagine instances described by 20 attributes, but 

only 2 are relevant to target function
Curse of dimensionality: nearest neighbor is easily 

misled when high-dimensional X
One approach:
• Stretch jth axis by weight zj, where z1,z2,…,zn chosen to 

minimize prediction error
• Use cross-validation to automatically choose weights 

z1,z2,…,zn

• Note setting zj to zero eliminates dimension j altogether
see (Moore and Lee, 1994)
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Locally Weighted Regression
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Radial Basis Function Networks
• Global approximation to target function, in terms 

of linear combination of local approximations

• Used, for example, in image classification

• A different kind of neural network

• Closely related to distance-weighted regression, 
but “eager” instead of “lazy”
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Radial Basis Function Networks
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Training RBF Networks
Q1: What xu to use for kernel function Ku(d(xu,x))?
• Scatter uniformly through instance space

• Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian 
Ku)?

• First choose variance (and perhaps mean) for each Ku

– e.g., use EM

• Then hold Ku fixed, and train linear output layer
– efficient methods to fit linear function
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Case-Based Reasoning
Can apply instance-based learning even when X| Rn

→ need different “distance” metric
Case-Based Reasoning is instance-based learning applied to 

instances with symbolic logic descriptions:
((user-complaint error53-on-shutdown)

(cpu-model PowerPC)

(operating-system Windows)

(network-connection PCIA)

(memory 48meg)

(installed-applications Excel Netscape 
VirusScan)

(disk 1Gig)

(likely-cause ???))
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Case-Based Reasoning in CADET
CADET: 75 stored examples of mechanical devices
• each training example: 

<qualitative function, mechanical structure>
• new query: desired function
• target value: mechanical structure for this function

Distance metric: match qualitative function 
descriptions
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Case-Based Reasoning in CADET

A problem specification:   Water faucet
Structure:

?
Function:

Qm

Tc

Th

Tm+
+

-
+

Qc

Qh

+
+

Cc

Ch

+
+

+

+

A stored case:   T-junction pipe
Structure:

T = temperature
Q = waterflow

Function:

Q1

Q2

Q3

+

+

T1

T2

T3

+

+

Q1,T1

Q3,T3

Q2,T2
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Case-Based Reasoning in CADET
• Instances represented by rich structural 

descriptions
• Multiple cases retrieved (and combined) to form 

solution to new problem
• Tight coupling between case retrieval and problem 

solving
Bottom line:
• Simple matching of cases useful for tasks such as 

answering help-desk queries
• Area of ongoing research
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Lazy and Eager Learning
Lazy: wait for query before generalizing
• k-Nearest Neighbor, Case-Based Reasoning

Eager: generalize before seeing query
• Radial basis function networks, ID3, Backpropagation, etc.

Does it matter?
• Eager learner must create global approximation
• Lazy learner can create many local approximations
• If they use same H, lazy can represent more complex 

functions (e.g., consider H=linear functions)
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kd-trees (Moore)
• Eager version of k-Nearest Neighbor
• Idea: decrease time to find neighbors

– train by constructing a lookup (kd) tree
– recursively subdivide space

• ignore class of points
• lots of possible mechanisms: grid, maximum variance, etc.

– when looking for nearest neighbor search tree
– nearest neighbor can be found in log(n) steps
– k nearest neighbors can be found by generalizing 

process (still in log(n) steps if k is constant)

• Slower training but faster classification
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kd Tree


