
1

CS 8751 ML & KDD Learning Sets of Rules 1

Learning Sets of Rules
• Sequential covering algorithms

• FOIL

• Induction as the inverse of deduction

• Inductive Logic Programming

CS 8751 ML & KDD Learning Sets of Rules 2

Learning Disjunctive Sets of Rules
Method 1: Learn decision tree, convert to rules

Method 2: Sequential covering algorithm

1. Learn one rule with high accuracy, any coverage

2. Remove positive examples covered by this rule

3. Repeat

CS 8751 ML & KDD Learning Sets of Rules 3

Sequential Covering Algorithm
SEQUENTIAL-COVERING(Target_attr,Attrs,Examples,Thresh)

Learned_rules ← {}
Rule ← LEARN-ONE-RULE(Target_attr,Attrs,Examples)
while PERFORMANCE(Rule,Examples) > Thresh do
– Learned_rules ← Learned_rules + Rule
– Examples ← Examples - {examples correctly classified

by Rule}
– Rule ← LEARN-ONE-RULE(Target_attr,Attrs,Examples)
Learned_rules ← sort Learned_rules according to

PERFORMANCE over Examples
return Learned_rules

CS 8751 ML & KDD Learning Sets of Rules 4

Learn-One-Rule
IF
THEN CoolCar=Yes

IF Type = SUV
THEN CoolCar=Yes

IF Type = Car
THEN CoolCar=Yes

IF Type = SUV AND
Doors = 4

THEN CoolCar=Yes

IF Doors = 4
THEN CoolCar=Yes

IF Type = SUV AND
Doors = 2

THEN CoolCar=Yes

IF Type = SUV AND
Color = Red

THEN CoolCar=Yes

CS 8751 ML & KDD Learning Sets of Rules 5

Covering Rules
Pos ← positive Examples
Neg ← negative Examples
while Pos do (Learn a New Rule)

NewRule ← most general rule possible
NegExamplesCovered ← Neg
while NegExamplesCovered do

Add a new literal to specialize NewRule
1. Candidate_literals ← generate candidates
2. Best_literal ← argmaxL∈ candidate_literals

PERFORMANCE(SPECIALIZE-RULE(NewRule,L))
3. Add Best_literal to NewRule preconditions
4. NegExamplesCovered ← subset of NegExamplesCovered that

satistifies NewRule preconditions
Learned_rules ← Learned_rules + NewRule
Pos ← Pos - {members of Pos covered by NewRule}

Return Learned_rules
CS 8751 ML & KDD Learning Sets of Rules 6

Subtleties: Learning One Rule
1. May use beam search
2. Easily generalize to multi-valued target functions
3. Choose evaluation function to guide search:

– Entropy (i.e., information gain)
– Sample accuracy:

where nc = correct predictions,
n = all predictions

– m estimate:

n
nc

mn
mpnc

+
+

2

CS 8751 ML & KDD Learning Sets of Rules 7

Variants of Rule Learning Programs
• Sequential or simultaneous covering of data?

• General → specific, or specific → general?

• Generate-and-test, or example-driven?

• Whether and how to post-prune?

• What statistical evaluation functions?

CS 8751 ML & KDD Learning Sets of Rules 8

Learning First Order Rules
Why do that?

• Can learn sets of rules such as

Ancestor(x,y) ← Parent(x,y)

Ancestor(x,y) ← Parent(x,z) ∧ Ancestor(z,y)

• General purpose programming language

PROLOG: programs are sets of such rules

CS 8751 ML & KDD Learning Sets of Rules 9

First Order Rule for Classifying Web Pages

From (Slattery, 1997)

course(A) ←
has-word(A,instructor),
NOT has-word(A,good),
link-from(A,B)
has-word(B,assignment),
NOT link-from(B,C)

Train: 31/31, Test 31/34
CS 8751 ML & KDD Learning Sets of Rules 10

FOIL
FOIL(Target_predicate,Predicates,Examples)
Pos ← positive Examples
Neg ← negative Examples
while Pos do (Learn a New Rule)

NewRule ← most general rule possible
NegExamplesCovered ← Neg
while NegExamplesCovered do

Add a new literal to specialize NewRule
1. Candidate_literals ← generate candidates
2. Best_literal ← argmaxL∈ candidate_literal FOIL_GAIN(L,NewRule)
3. Add Best_literal to NewRule preconditions
4. NegExamplesCovered ← subset of NegExamplesCovered that

satistifies NewRule preconditions
Learned_rules ← Learned_rules + NewRule
Pos ← Pos - {members of Pos covered by NewRule}

Return Learned_rules

CS 8751 ML & KDD Learning Sets of Rules 11

Specializing Rules in FOIL
Learning rule: P(x1,x2,…,xk) ← L1…Ln

Candidate specializations add new literal of form:
• Q(v1,…,vr), where at least one of the vi in the

created literal must already exist as a variable in
the rule

• Equal(xj,xk), where xj and xk are variables already
present in the rule

• The negation of either of the above forms of
literals

CS 8751 ML & KDD Learning Sets of Rules 12

Information Gain in FOIL

Where
• L is the candidate literal to add to rule R
• p0 = number of positive bindings of R
• n0 = number of negative bindings of R
• p1 = number of positive bindings of R+L
• n1 = number of negative bindings of R+L
• t is the number of positive bindings of R also covered by

R+L
Note
• is optimal number of bits to indicate the class

of a positive binding covered by R









+

−
+

≡
00

0
2

11

1
2 loglog),(_

np
p

np
ptRLGAINFOIL

00

0
2log

np
p
+

−

3

CS 8751 ML & KDD Learning Sets of Rules 13

Induction as Inverted Deduction
Induction is finding h such that

(∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)
where
• xi is the ith training instance
• f(xi) is the target function value for xi

• B is other background knowledge

So let’s design inductive algorithms by inverting
operators for automated deduction!

CS 8751 ML & KDD Learning Sets of Rules 14

Induction as Inverted Deduction
“pairs of people, <u,v> such that child of u is v,”

f(xi) : Child(Bob,Sharon)
xi : Male(Bob),Female(Sharon),Father(Sharon,Bob)
B : Parent(u,v) ← Father(u,v)

What satisfies (∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)?
h1 : Child(u,v) ← Father(v,u)
h2 : Child(u,v) ← Parent(v,u)

CS 8751 ML & KDD Learning Sets of Rules 15

Induction and Deduction
Induction is, in fact, the inverse operation of

deduction, and cannot be conceived to exist
without the corresponding operation, so that the
question of relative importance cannot arise. Who
thinks of asking whether addition or subtraction is
the more important process in arithmetic? But at
the same time much difference in difficulty may
exist between a direct and inverse operation; … it
must be allowed that inductive investigations are
of a far higher degree of difficulty and complexity
than any question of deduction … (Jevons, 1874)

CS 8751 ML & KDD Learning Sets of Rules 16

Induction as Inverted Deduction
We have mechanical deductive operators

F(A,B) = C, where A ∧ B |– C

need inductive operators
O(B,D) = h where

(∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)

CS 8751 ML & KDD Learning Sets of Rules 17

Induction as Inverted Deduction
Positives:
• Subsumes earlier idea of finding h that “fits” training data
• Domain theory B helps define meaning of “fit” the data

B ∧ h ∧ xi |– f(xi)
• Suggests algorithms that search H guided by B

Negatives:
• Doesn’t allow for noisy data. Consider

(∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)
• First order logic gives a huge hypothesis space H

– overfitting…
– intractability of calculating all acceptable h’s

CS 8751 ML & KDD Learning Sets of Rules 18

Deduction: Resolution Rule
P ∨ L

¬ L ∨ R
P ∨ R

1. Given initial clauses C1 and C2, find a literal L
from clause C1 such that ¬ L occurs in clause C2.

2. Form the resolvent C by including all literals from
C1 and C2, except for L and ¬ L. More precisely,
the set of literals occurring in the conclusion C is

C = (C1 - {L}) ∪ (C2 - {¬ L})
where ∪ denotes set union, and “-” set difference.

4

CS 8751 ML & KDD Learning Sets of Rules 19

Inverting Resolution
C1: PassExam ∨ ¬KnowMaterial C2: KnowMaterial ∨ ¬Study

C: PassExam ∨ ¬Study

C1: PassExam ∨ ¬KnowMaterial C2: KnowMaterial ∨ ¬Study

C: PassExam ∨ ¬Study

CS 8751 ML & KDD Learning Sets of Rules 20

Inverted Resolution (Propositional)
1. Given initial clauses C1 and C, find a literal L that

occurs in clause C1, but not in clause C.

2. Form the second clause C2 by including the
following literals

C2 = (C - (C1 - {L})) ∪ {¬ L}

CS 8751 ML & KDD Learning Sets of Rules 21

First Order Resolution
1. Find a literal L1 from clause C1 , literal L2 from

clause C2, and substitution θ such that
L1θ = ¬L2θ

2. Form the resolvent C by including all literals from
C1θ and C2θ, except for L1 theta and ¬L2θ. More
precisely, the set of literals occuring in the
conclusion is

C = (C1 - {L1})θ ∪ (C2 - {L2 })θ
Inverting:

C2 = (C - (C1 - {L1}) θ1) θ2
-1 ∪{¬L1 θ1 θ2

-1}

CS 8751 ML & KDD Learning Sets of Rules 22

Cigol
Father(Tom,Bob)

Father(Shannon,Tom)

GrandChild(Bob,Shannon)

GrandChild(Bob,x) ∨ ¬Father(x,Tom))

GrandChild(y,x) ∨ ¬Father(x,z) ∨ ¬Father(z,y))

{Shannon/x}

{Bob/y,Tom/z}

CS 8751 ML & KDD Learning Sets of Rules 23

Progol
PROGOL: Reduce combinatorial explosion by

generating the most specific acceptable h
1. User specifies H by stating predicates, functions,

and forms of arguments allowed for each
2. PROGOL uses sequential covering algorithm.

For each <xi,f(xi)>
– Find most specific hypothesis hi s.t.

B ∧ hi ∧ xi |– f(xi)
actually, only considers k-step entailment

3. Conduct general-to-specific search bounded by
specific hypothesis hi, choosing hypothesis with
minimum description length

