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Learning Sets of Rules 
• Sequential covering algorithms

• FOIL

• Induction as the inverse of deduction

• Inductive Logic Programming
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Learning Disjunctive Sets of Rules
Method 1: Learn decision tree, convert to rules

Method 2: Sequential covering algorithm

1. Learn one rule with high accuracy, any coverage

2. Remove positive examples covered by this rule

3. Repeat
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Sequential Covering Algorithm
SEQUENTIAL-COVERING(Target_attr,Attrs,Examples,Thresh)

Learned_rules ← {}
Rule ← LEARN-ONE-RULE(Target_attr,Attrs,Examples)
while PERFORMANCE(Rule,Examples) > Thresh do
– Learned_rules ← Learned_rules + Rule
– Examples ← Examples - {examples correctly classified 

by Rule}
– Rule ← LEARN-ONE-RULE(Target_attr,Attrs,Examples)
Learned_rules ← sort Learned_rules according to 

PERFORMANCE over Examples
return Learned_rules
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Learn-One-Rule
IF
THEN CoolCar=Yes

IF Type = SUV
THEN CoolCar=Yes

IF Type = Car
THEN CoolCar=Yes

IF Type = SUV AND
Doors = 4

THEN CoolCar=Yes

IF Doors = 4
THEN CoolCar=Yes

IF Type = SUV AND
Doors = 2

THEN CoolCar=Yes

IF Type = SUV AND
Color = Red

THEN CoolCar=Yes
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Covering Rules
Pos ← positive Examples
Neg ← negative Examples
while Pos do (Learn a New Rule)

NewRule ← most general rule possible
NegExamplesCovered ← Neg
while NegExamplesCovered do

Add a new literal to specialize NewRule
1. Candidate_literals ← generate candidates
2. Best_literal ← argmaxL∈ candidate_literals

PERFORMANCE(SPECIALIZE-RULE(NewRule,L))
3. Add Best_literal to NewRule preconditions
4. NegExamplesCovered ← subset of NegExamplesCovered that 

satistifies NewRule preconditions
Learned_rules ← Learned_rules + NewRule
Pos ← Pos - {members of Pos covered by NewRule}

Return Learned_rules
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Subtleties: Learning One Rule
1. May use beam search
2. Easily generalize to multi-valued target functions
3. Choose evaluation function to guide search:

– Entropy (i.e., information gain)
– Sample accuracy:

where nc = correct predictions,
n = all predictions

– m estimate:

n
nc

mn
mpnc
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Variants of Rule Learning Programs
• Sequential or simultaneous covering of data?

• General → specific, or specific → general?

• Generate-and-test, or example-driven?

• Whether and how to post-prune?

• What statistical evaluation functions?
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Learning First Order Rules
Why do that?

• Can learn sets of rules such as

Ancestor(x,y) ← Parent(x,y)

Ancestor(x,y) ← Parent(x,z) ∧ Ancestor(z,y)

• General purpose programming language

PROLOG: programs are sets of such rules
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First Order Rule for Classifying Web Pages

From (Slattery, 1997)

course(A) ←
has-word(A,instructor),
NOT has-word(A,good),
link-from(A,B)
has-word(B,assignment),
NOT link-from(B,C)

Train: 31/31, Test 31/34
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FOIL
FOIL(Target_predicate,Predicates,Examples)
Pos ← positive Examples
Neg ← negative Examples
while Pos do (Learn a New Rule)

NewRule ← most general rule possible
NegExamplesCovered ← Neg
while NegExamplesCovered do

Add a new literal to specialize NewRule
1. Candidate_literals ← generate candidates
2. Best_literal ← argmaxL∈ candidate_literal FOIL_GAIN(L,NewRule)
3. Add Best_literal to NewRule preconditions
4. NegExamplesCovered ← subset of NegExamplesCovered that

satistifies NewRule preconditions
Learned_rules ← Learned_rules + NewRule
Pos ← Pos - {members of Pos covered by NewRule}

Return Learned_rules
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Specializing Rules in FOIL
Learning rule: P(x1,x2,…,xk) ← L1…Ln

Candidate specializations add new literal of form:
• Q(v1,…,vr), where at least one of the vi in the 

created literal must already exist as a variable in 
the rule

• Equal(xj,xk), where xj and xk are variables already 
present in the rule

• The negation of either of the above forms of 
literals
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Information Gain in FOIL

Where
• L is the candidate literal to add to rule R
• p0 = number of positive bindings of R
• n0 = number of negative bindings of R
• p1 = number of positive bindings of R+L
• n1 = number of negative bindings of R+L
• t is the number of positive bindings of R also covered by

R+L
Note
• is optimal number of bits to indicate the class 

of a positive binding covered by R
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Induction as Inverted Deduction
Induction is finding h such that

(∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)
where
• xi is the ith training instance
• f(xi) is the target function value for xi

• B is other background knowledge

So let’s design inductive algorithms by inverting 
operators for automated deduction!
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Induction as Inverted Deduction
“pairs of people, <u,v> such that child of u is v,”

f(xi) : Child(Bob,Sharon)
xi : Male(Bob),Female(Sharon),Father(Sharon,Bob)
B : Parent(u,v) ← Father(u,v)

What satisfies (∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)?
h1 : Child(u,v) ← Father(v,u)
h2 : Child(u,v) ← Parent(v,u)
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Induction and Deduction
Induction is, in fact, the inverse operation of 

deduction, and cannot be conceived to exist 
without the corresponding operation, so that the 
question of relative importance cannot arise.  Who 
thinks of asking whether addition or subtraction is 
the more important process in arithmetic?  But at 
the same time much difference in difficulty may 
exist between a direct and inverse operation; … it 
must be allowed that inductive investigations are 
of a far higher degree of difficulty and complexity 
than any question of deduction … (Jevons, 1874)
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Induction as Inverted Deduction
We have mechanical deductive operators

F(A,B) = C, where A ∧ B |– C

need inductive operators
O(B,D) = h where

(∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)
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Induction as Inverted Deduction
Positives:
• Subsumes earlier idea of finding h that “fits” training data
• Domain theory B helps define meaning of “fit” the data

B ∧ h ∧ xi |– f(xi) 
• Suggests algorithms that search H guided by B

Negatives:
• Doesn’t allow for noisy data.  Consider

(∀<xi,f(xi)> ∈ D) B ∧ h ∧ xi |– f(xi)
• First order logic gives a huge hypothesis space H

– overfitting…
– intractability of calculating all acceptable h’s
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Deduction: Resolution Rule
P ∨ L

¬ L ∨ R
P ∨ R

1. Given initial clauses C1 and C2, find a literal L
from clause C1 such that ¬ L occurs in clause C2.

2. Form the resolvent C by including all literals from
C1 and C2, except for L and ¬ L.  More precisely, 
the set of literals occurring in the conclusion C is

C = (C1 - {L}) ∪ (C2 - {¬ L})
where ∪ denotes set union, and “-” set difference.
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Inverting Resolution
C1: PassExam ∨ ¬KnowMaterial C2: KnowMaterial ∨ ¬Study

C: PassExam ∨ ¬Study

C1: PassExam ∨ ¬KnowMaterial C2: KnowMaterial ∨ ¬Study

C: PassExam ∨ ¬Study
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Inverted Resolution (Propositional)
1. Given initial clauses C1 and C, find a literal L that 

occurs in clause C1, but not in clause C.

2. Form the second clause C2 by including the 
following literals

C2 = (C - (C1 - {L})) ∪ {¬ L}
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First Order Resolution
1. Find a literal L1 from clause C1 , literal L2 from 

clause C2, and substitution θ such that
L1θ = ¬L2θ

2. Form the resolvent C by including all literals from 
C1θ and C2θ, except for L1 theta and ¬L2θ.  More 
precisely, the set of literals occuring in the 
conclusion is

C = (C1 - {L1})θ ∪ (C2 - {L2 })θ
Inverting:

C2 = (C - (C1 - {L1}) θ1) θ2
-1 ∪{¬L1 θ1 θ2 

-1}
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Cigol
Father(Tom,Bob)

Father(Shannon,Tom)

GrandChild(Bob,Shannon)

GrandChild(Bob,x) ∨ ¬Father(x,Tom))

GrandChild(y,x) ∨ ¬Father(x,z) ∨ ¬Father(z,y))

{Shannon/x}

{Bob/y,Tom/z}
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Progol
PROGOL: Reduce combinatorial explosion by 

generating the most specific acceptable h
1. User specifies H by stating predicates, functions, 

and forms of arguments allowed for each
2. PROGOL uses sequential covering algorithm.

For each <xi,f(xi)> 
– Find most specific hypothesis hi s.t.

B ∧ hi ∧ xi |– f(xi)
actually, only considers k-step entailment

3. Conduct general-to-specific search bounded by 
specific hypothesis hi, choosing hypothesis with 
minimum description length


