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Computational Learning Theory
• Notions of interest: efficiency, accuracy, 

complexity
• Probably, Approximately Correct (PAC) Learning
• Agnostic learning
• VC Dimension and Shattering
• Mistake Bounds
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Computational Learning Theory
What general laws constrain inductive learning?

Some potential areas of interest:
• Probability of successful learning
• Number of training examples
• Complexity of hypothesis space
• Accuracy to which target concept is approximated
• Efficiency of learning process
• Manner in which training examples are presented
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The Concept Learning Task
Given
• Instance space X – (e.g., possible faces described by 

attributes Hair, Nose, Eyes, etc.)
• A unknown target function c – (e.g., 

Smiling : X → {yes, no})
• A hypothesis space H: H = { h : X → {yes, no} }
• A unknown, likely not observable probability distribution 

D over the instance space X
Determine
• A hypothesis h in H such that h(x) = c(x) for all x in D?
• A hypothesis h in H such that h(x) = c(x) for all x in X?
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Variations on the Task – Data Sample
How many training examples sufficient to learn 

target concept?

1. Random process (e.g., nature) produces instances
• Instances x generated randomly, teacher provides c(x)

2. Teacher (knows c) provides training examples
• Teacher provides sequences of form <x,c(x)>

3. Learner proposes instances, as queries to teacher
• Learner proposes instance x, teacher provides c(x)
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True Error of a Hypothesis

• True error of a hypothesis h with respect to target concept 
c and distribution D is the probability that h will 
misclassify an instance drawn at random according to D.
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Notions of Error
Training error of hypothesis h with respect to target concept c
• How often h(x) ≠ c(x) over training instances
True error of hypothesis h with respect to c
• How often h(x) ≠ c(x) over future random instances

Our concern
• Can we bound the true error of h given training error of h?
• Start by assuming training error of h is 0 (i.e., h ∈VSH,D)
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Exhausting the Version Space

Definition: the version space VSH,D is said to be ε-
exhausted with respect to c and D, if every 
hypothesis h in VSH,D has error less than ε with 
respect to c and D.
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How many examples to ε-exhaust VS?
Theorem:

If hypothesis space H is finite, and D is sequence of m ≥ 1 
independent random examples of target concept c, then 
for any 0 ≤ ε ≤ 1, probability that version space with 
respect to H and D is not ε-exhausted (with respect to c) 
is less than |H|e-ε m

Bounds the probability that any consistent learner will output 
a hypothesis h with error(h) ≥ ε

If we want this probability to be below δ
|H|e-ε m ≤ δ

Then
m ≥ (1/ ε)(ln |H| + ln(1/ δ))
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Learning conjunctions of boolean literals
How many examples are sufficient to assure with 

probability at least (1 – δ) that
every h in VSH,D satisfies errorD(h) ≤ ε

Use our theorem:
m ≥ (1/ ε)(ln |H| + ln(1/ δ))

Suppose H contains conjunctions of constraints on 
up to n boolean attributes (i.e., n boolean literals).  
Then |H| = 3n, and
m ≥ (1/ ε)(ln3n + ln(1/ δ))

or
m ≥ (1/ ε)(n ln3 + ln(1/ δ))
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For concept Smiling Face
Concept features:
• Eyes {round,square} → RndEyes, ¬RndEyes
• Nose {triangle,square} → TriNose, ¬TriNose
• Head {round,square} → RndHead, ¬RndHead
• FaceColor {yellow,green,purple} → YelFace, ¬YelFace, 

GrnFace, ¬GrnFace, PurFace, ¬PurFace
• Hair {yes,no} → Hair, ¬Hair

Size of |H| = 37 = 2187
If we want to assure that with probability 95%, VS contains only 

hypotheses errorD(h) ≤ .1, then sufficient to have m examples, 
where
m ≥ (1/ .1)(ln(2187)+ ln(1/ .05))
m ≥ 10(ln(2187)+ ln(20))
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PAC Learning
Consider a class C of possible target concepts 

defined over a set of instances X of length n, and a 
learner L using hypothesis space H.

Definition: C is PAC-learnable by L using H if for 
all c ∈ C, distributions D over X, ε such that 0 < ε
< ½, and δ such that 0 < δ < ½, learner L will with 
prob. at least (1 - δ) output a hypothesis h ∈ H
such that errorD(h) ≤ ε, in time that is polynomial 
in 1/ε, 1/δ, n and size(c).
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Agnostic Learning
So far, assumed c ∈ H
Agnostic learning setting: don’t assume c ∈ H
• What do we want then?

– The hypothesis h that makes fewest errors on 
training data

• What is sample complexity in this case?
m ≥ (1/ 2ε 2)(ln |H| + ln(1/ δ))

Derived from Hoeffding bounds:
Pr[errortrue(h) > errorD(h) + ε] ≤ e-2mε 2
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But what if hypothesis space not finite?
What if |H| can not be determined?
• It is still possible to come up with estimates based 

not on counting how many hypotheses, but based 
on how many instances can be completely 
discriminated by H

• Use the notion of a shattering of a set of instances 
to measure the complexity of a hypothesis space

• VC Dimension measures this notion and can be 
used as a stand in for |H|
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Shattering a Set of Instances
• Definition: a dichotomy of a set S is a partition of 

S into two disjoint subsets.
• Definition: a set of instances S is shattered by 

hypothesis space H iff for every dichotomy of S
there exists some hypothesis in H consistent with 
this dichotomy.

Example:
3 instances
shattered

Instance space X
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The Vapnik-Chervonenkis Dimension
• Definition: the Vapnik-Chervonenkis (VC) 

dimension, VC(H), of hypothesis space H defined 
over instance space X is the size of the largest 
finite subset of X shattered by H.  If arbitrarily 
large finite sets of X can be shattered by H, then 
VC(H) = ∞.

• Example: VC dimension of linear decision 
surfaces is 3.

CS 8751 ML & KDD Computational Learning Theory 16

Sample Complexity with VC Dimension
• How many randomly drawn examples 

suffice to ε -exhaust VSH,D with probability 
at least (1 – δ)?
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Mistake Bounds
So far: how many examples needed to learn?
What about: how many mistakes before 

convergence?
Consider setting similar to PAC learning:
• Instances drawn at random from X according to 

distribution D
• Learner must classify each instance before 

receiving correct classification from teacher
Can we bound the number of mistakes learner makes 

before converging?
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Mistake Bounds: Find-S
Consider Find- S when H = conjunction of boolean

literals
Find- S:
• Initialize h to the most specific hypothesis:

l1 ∧ ¬ l1 ∧ l2 ∧ ¬ l2 ∧ l3 ∧ ¬ l3 ∧ … ∧ ln∧ ¬ ln

• For each positive training instance x
– Remove from h any literal that is not satisfied by x

• Output hypothesis h

How many mistakes before converging to correct h?
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Mistakes in Find-S
• Assuming c ∈ H

– Negative examples – can never be mislabeled as 
positive, the current hypothesis h is always at least as 
specific as target concept c

– Positive examples – can be mislabeled as negative 
(concept not general enough, consider initial)

– First positive example, 2n terms in literal (positive and 
negative of each feature), n will be eliminated

– Each subsequent mislabeled positive example – will 
eliminate at least one term

– Thus at most n+1 mistakes
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Mistake Bounds: Halving Algorithm
Consider the Halving Algorithm
• Learn concept using version space candidate 

elimination algorithm
• Classify new instances by majority vote of version 

space members

• How many mistakes before converging to correct 
h?

• … in worst case?
• … in best case?
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Mistakes in Halving
• At each point, predictions are made based on a 

majority of the remaining hypotheses
• A mistake can be made only when at least half of 

the hypotheses are wrong
• Thus the size of H decreases by half for each 

mistake
• Thus, worst case bound is related to log2 |H|
• How about best case?

– Note, prediction of the majority could be correct but 
number of remaining hypotheses can decrease

– Possible for the number of hypotheses to reach one with 
no mistakes


