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Concept Learning
• Learning from examples

• General-to-specific ordering over hypotheses

• Version Spaces and candidate elimination 
algorithm

• Picking new examples

• The need for inductive bias
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Some Examples for SmileyFaces

Eyes FcolorNose Hair?Head Smile?
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Representing Hypotheses
Many possible representations for hypotheses h
Idea: h as conjunctions of constraints on features
Each constraint can be:

– a specific value (e.g., Nose = Square)
– don’t care (e.g., Eyes = ?)
– no value allowed (e.g., Water=Ø)

For example,
Eyes Nose Head Fcolor Hair?

<Round, ?, Round, ?, No> ?
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Prototypical Concept Learning Task
Given:

– Instances X: Faces, each described by the attributes 
Eyes, Nose, Head, Fcolor, and Hair?

– Target function c: Smile? : X -> { no, yes }
– Hypotheses H: Conjunctions of literals such as

<?,Square,Square,Yellow,?>

– Training examples D:  Positive and negative examples 
of the target function

Determine: a hypothesis h in H such that h(x)=c(x)
for all x in D.

><><>< )(,,...,)(,,)(, 2211 mm xcxxcxxcx
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Inductive Learning Hypothesis
Any hypothesis found to approximate the target 

function well over a sufficiently large set of 
training examples will also approximate the target 
function well over other unobserved examples.

• What are the implications?
• Is this reasonable?
• What (if any) are our alternatives?
• What about concept drift (what if our views/tastes 

change over time)?
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Instances, Hypotheses, and More-General-Than

Instances X Hypotheses H

x1=<Round,Square,Square,Purple,Yes>

Specific

General

x2=<Round,Square,Round,Green,Yes>
h1=<Round,?,Square,?,?>

h3=<Round,?,?,?,?>
h2=<Round,?,?,?,Yes>

h3

h1 h2
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Find-S Algorithm
1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x
For each attribute constraint ai in h

IF the constraint ai in h is satisfied by x THEN 

do nothing

ELSE 

replace ai in h by next more general constraint satisfied by x

3. Output hypothesis h
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Hypothesis Space Search by Find-S

h3,4

Instances X Hypotheses H

Specific

General

h1,2

h1=<Round,Triangle,Round,Purple,Yes>x1=<Round,Triangle,Round,Purple,Yes> +
x2=<Square,Square,Square,Green,Yes> -

x5=<Square,Square,Round,Yellow,Yes> +
x4=<Round,Triangle,Round,Green,No> -

x3=<Square,Triangle,Round,Yellow,Yes> +
h2=<Round,Triangle,Round,Purple,Yes>

h3=<?,Triangle,Round,?,Yes>
h4=<?,Triangle,Round,?,Yes>

h5=<?,?,Round,?,Yes>

h0=<φ,φ,φ,φ,φ >
h0
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Complaints about Find-S
• Cannot tell whether it has learned concept

• Cannot tell when training data inconsistent

• Picks a maximally specific h (why?)

• Depending on H, there might be several!

• How do we fix this?
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The List-Then-Eliminate Algorithm

1. Set VersionSpace equal to a list containing every 
hypothesis in H

2. For each training example, <x,c(x)>
remove from VersionSpace any hypothesis h for which 

h(x) != c(x)

3. Output the list of hypotheses in VersionSpace

• But is listing all hypotheses reasonable?
• How many different hypotheses in our simple 

problem?
– How many not involving “?” terms?
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Version Spaces
A hypothesis h is consistent with a set of training 

examples D of target concept c if and only if 
h(x)=c(x) for each training example in D.

The version space, VSH,D, with respect to hypothesis 
space H and training examples D, is the subset of 
hypotheses from H consistent with all training 
examples in D.

)()( )    )(,(),( xcxhDxcxDhConsistent =∈><∀≡

)},( |   {, DhConsistentHhVS DH ∈≡
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Example Version Space

S:   { <?,Triangle,Round,?,Yes> }

G:  { <?,?,Round,?,?>  <?,Triangle,?,?,?> }

<?,?,Round,?,Yes> <?,Triangle,?,?,Yes><?,Triangle,Round,?,?>
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Representing Version Spaces
The General boundary, G, of version space VSH,D is 

the set of its maximally general members.

The Specific boundary, S, of version space VSH,D is 
the set of its maximally specific members.

Every member of the version space lies between 
these boundaries
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shgGgSsHhVS DH

  toequalor  general more is  means  where
)}    )(  )(  (|  {,

≥

≥≥∈∃∈∃∈=

CS 8751 ML & KDD Concept Learning Basics 15

Candidate Elimination Algorithm
G = maximally general hypotheses in H
S = maximally specific hypotheses in H

For each training example d, do
If d is a positive example

Remove from G any hypothesis that does not include d
For each hypothesis s in S that does not include d

Remove s from S
Add to S all minimal generalizations h of s such that

1. h includes d, and
2. Some member of G is more general than h

Remove from S any hypothesis that is more general
than another hypothesis in S
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Candidate Elimination Algorithm (cont)
For each training example d, do (cont)

If d is a negative example
Remove from S any hypothesis that does include d
For each hypothesis g in G that does include d

Remove g from G
Add to G all minimal generalizations h of g such that

1. h does not include d, and
2. Some member of S is more specific than h

Remove from G any hypothesis that is less general
than another hypothesis in G

If G or S ever becomes empty, data not consistent (with H)
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Example Trace

S0:   { <Ø,Ø,Ø,Ø,Ø> }

G0:   { <?,?,?,?,?> }

X1=<R,T,R,P,Y> +S1:   { <R,T,R,P,Y> }

G1
X2=<S,S,S,G,Y> -

G2:   { <R,?,?,?,?>, <?,T,?,?,?>, <?,?,R,?,?>, <?,?,?,P,?> }

S2

X3=<S,T,R,Y,Y> +S3:   { <?,T,R,?,Y> }

G3

X4=<R,T,R,G,N> -G4:   { <?,T,?,?,Y>, <?,?,R,?,Y> }

S4

X5=<S,S,R,Y,Y> +S5:   { <?,?,R,?,Y> }

G5
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What Training Example Next?

S:   { <?,Triangle,Round,?,Yes> }

G:  { <?,?,Round,?,?>  <?,Triangle,?,?,?> }

<?,?,Round,?,Yes> <?,Triangle,?,?,Yes><?,Triangle,Round,?,?>
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How Should These Be Classified?

S:   { <?,Triangle,Round,?,Yes> }

G:  { <?,?,Round,?,?>  <?,Triangle,?,?,?> }

<?,?,Round,?,Yes> <?,Triangle,?,?,Yes><?,Triangle,Round,?,?>

? ? ?
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What Justifies this Inductive Leap?
+ < Round, Triangle, Round, Purple, Yes >
+ < Square, Triangle, Round, Yellow, Yes >

S: < ?, Triangle, Round, ?, Yes >

Why believe we can classify the unseen?
< Square, Triangle, Round, Purple, Yes > ?
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An UN-Biased Learner
Idea: Choose H that expresses every teachable 

concept (i.e., H is the power set of X)
Consider H’ = disjunctions, conjunctions, negations 

over previous H.
For example:

What are S, G, in this case? 

><∨>< ?,?,,,?,,,?, PurpleSquareSquareYesRoundTriangle
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Inductive Bias
Consider

– concept learning algorithm L
– instances X, target concept c
– training examples Dc={<x,c(x)>}
– let L(xi,Dc) denote the classification assigned to the 

instance xi by L after training on data Dc.
Definition:

The inductive bias of L is any minimal set of assertions B
such that for any target concept c and corresponding 
training examples Dc

where A      B means A logically entails B

)],(    ))[(  ( ciici DxLxDBXx ∧∧∈∀
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Inductive Systems and Equivalent Deductive Systems

Candidate
Elimination
Algorithm

Using Hypothesis
Space H

Theorem Prover

Training examples

Training examples

New instance

New instance

Assertion "H
contains hypothesis"

Classification of
new instance, or

"don't know"

Classification of
new instance, or

"don't know"

Inductive System

Equivalent Deductive System
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Three Learners with Different Biases
1. Rote learner: store examples, classify new 

instance iff it matches previously observed 
example (don’t know otherwise).

2. Version space candidate elimination algorithm.

3. Find-S


