Evaluating Hypotheses

» Sample error, true error
+ Confidence intervals for observed hypothesis error
+ Estimators

* Binomial distribution, Normal distribution,
Central Limit Theorem

» Paired t-tests

* Comparing Learning Methods
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Problems Estimating Error

1. Bias: If § is training set, errorg(h) is optimistically
biased

bias = Elerrory(h)]—error, (h)

For unbiased estimate, # and S must be chosen
independently

2. Variance: Even with unbiased S, errorg(h) may
still vary from errorp(h)
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Two Definitions of Error

The true error of hypothesis / with respect to target function f
and distribution D is the probability that 4 will misclassify
an instance drawn at random according to D.

error, (h) = Pr[[f(x) # h(x)]

The sample error of & with respect to target function f'and
data sample S is the proportion of examples 4 misclassifies

errorg(h) = %25 (f(x) * h(x))

xe§

where & (f(x) * h(x))is Lif f(x)# h(x), and 0 otherwise

How well does errorg(h) estimate error(h)?
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Example
Hypothesis 4 misclassifies 12 of 40 examples in S.
12
h)y=—=.30
errorg(h) 20

What is error(h)?
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Estimators

Experiment:

1. Choose sample S of size n according to
distribution D

2. Measure errorg(h)

errorg(h) is a random variable (i.e., result of an
experiment)

errorg(h) is an unbiased estimator for errorp(h)

Given observed errorg(h) what can we conclude
about errorp(h)?
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Confidence Intervals
If

S contains n examples, drawn independently of / and each
other

e n2>30
Then

* With approximately N% probability, errorp(h) lies in
interval

errory(h) £z, Jerror; ()1 —errorg ()
n

where
N%:| 50% 68% 80% 90% 95% 98% 99%
zy: | 0.67 1.00 1.28 1.64 196 233 2.53
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Confidence Intervals
If

* S contains n examples, drawn independently of h and each
other

e 1230

Then
+ With approximately 95% probability, errorp(h) lies in
interval

error, (h) +1.96, <70 (= error (1)
S —ae n
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errorg(h) is a Random Variable

» Rerun experiment with different randomly drawn S (size n)
» Probability of observing » misclassified examples:

Binomial distribution for n=40, p=0.3
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Binomial Probability Distribution

Binomial distribution for n=40, p=0.3

0.04
0.02
0.00

Probabilty P(r) of r heads in n coin flips, if p = Pr (heads)
e Expected, or mean valueof X : E/X] = ZiP(i) =np
i=0

e Variance of X : Var(X) = E[(X — E[X])’]1=np(1-p)

e Standard deviation of X : 6 , =+ E[(X — E[X])*] = /np(1- p)
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Normal Probability Distribution

Normal distribution with mean 0, standard deviation 1
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The probability that X will fall into the interval (a,b) is given by
Jh p(x)dx
e Expected, or mean valueof X : E/X] =p

e Varianceof X : Var(X)=c">
o Standard deviationof X: 6, =c
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Normal Distribution Approximates Binomial
error,(h) follows a Binomial distribution, with
e meang,,,, ;, =error,(h)
e standard deviation

error, (h)(1—error, (h))
O errorg(h) = f

Approximate this by a Normal distribution with
o meang,,, , = error,(h)

e standard deviation

errorg(h)(1—errorg(h))
S crrors(h) - .
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Normal Probability Distribution

04
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80% of area (probability) liesin u £1.28
N% of area (probability) liesin x £ z,6

N%:| 50% 68% 80% 90% 95% 98% 99%
zy: 10.67 1.00 128 1.64 196 233 2.53
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Confidence Intervals, More Correctly
If

« S l(iontains n examples, drawn independently of h and each
other

e n2>30
Then

* With a]i)proximately 95% probability, errorg(h) lies in
interva

erron, (h) +1.96,| A= errory (1)
n
* equivalently, errorp(h) lies in interval
error, (1) +1.96, | <o (= error, (1)
n
» which is approximatel
error () £1.96, <70 = error; (1)
n
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Calculating Confidence Intervals

1. Pick parameter p to estimate

e errorp(h)

2. Choose an estimator

* errors(h)

3. Determine probability distribution that governs estimator

errorg(h) governed by Binomial distribution, approximated
by Normal when n > 30

4. Find interval (L, U) such that N% of probability mass falls
in the interval

Use table of z), values
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Central Limit Theorem
Consider a set of independent, identically distributed random
variablesY, ...Y,, all governed by an arbitrary probability distribution

with mean  and finite variance o°. Define the sample mean

,:l i
Y,n;Y,

Central Limit Theorem. As 1 — oo, the distribution governing ¥

U . . c
approaches a Normal distribution, with mean x and variance —.
n
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Difference Between Hypotheses
Test i, onsample S,, test &, on S,
1. Pick parameter to estimate
d = errory(h)—errory(h,)
2.Choose an estimator
d =errorg (hy)—error, (h,)
3. Determine probability distribution that governs estimator
o ~ \/ error ()(1-errorg (h)) . errorg (hy)(1-errorg (hy))
W R

n ny

4.Find interval (L, U) such that N% of probability mass falls
in the interval
\/ errorg (h)(1—errorg () errorg (hy)(1-errorg (hy))
tz, ] ] + s , \h

n ny
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Paired ¢ test to Compare £ 4,/
1. Partition data into & disjoint test sets 7}, 7,,..., T, of
equal size, where this size is at least 30.
2.Forifrom1to k do
8, «—error; (h,)—error; (hy)

3.Return the value d, where
_1&
d=—>3
20
N% confidence interval estimate for d :
8 Lty

— 1 & Y
sb-—:,/k(kfl)psi 5)

Note o, approximately Normally distributed
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N-Fold Cross Validation

* Popular testing methodology

* Divide data into N even-sized random folds

e Forn=1toN
— Train set = all folds except n
— Test set = fold n
— Create learner with train set
— Count number of errors on test set

* Accumulate number of errors across N test sets
and divide by N (result is error rate)

» For comparing algorithms, use the same set of
folds to create learners (results are paired)
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N-Fold Cross Validation

» Advantages/disadvantages

— Estimate of error within a single data set

— Every point used once as a test point

— At the extreme (when N = size of data set), called
leave-one-out testing

— Results affected by random choices of folds (sometimes
answered by choosing multiple random folds —
Dietterich in a paper expressed significant reservations)
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Results Analysis: Confusion Matrix

* For many problems (especially multiclass
problems), often useful to examine the sources of
error

¢ Confusion matrix:

Predicted
ClassA | ClassB | ClassC | Total

ClassA 25 5 20 50
=

5 [classB| o 45 5 50
2

S [ClassC | 25 0 25 50

Total 50 50 50 150
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Results Analysis: Confusion Matrix

* Building a confusion matrix
— Zero all entries
— For each data point add one in row corresponding to
actual class of problem under column corresponding to
predicted class
* Perfect prediction has all values down the
diagonal
» Off diagonal entries can often tell us about what is
being mis-predicted
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Receiver Operator Characteristic
ROC) Curves

* Originally from gignal detgctlon
* Becoming very popular for ML
» Usedin:
— Two class problems
— Where predictions are ordered in some way (e.g., neural network
activation is often taken as an indication of how strong or weak a
prediction is)
* Plotting an ROC curve:
— Sort predictions (right) by their predicted strength
— Start at the bottom left

— For each positive example, go up 1/P units where P is the number
of positive examples

— For each negative example, go right 1/N units where N is the
number of negative examples
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ROC Curve
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ROC Properties

+ Can visualize the tradeoff between coverage and accuracy
(as we lower the threshold for prediction how many more
true positives will we get in exchange for more false
positives)

» Gives a better feel when comparing algorithms

— Algorithms may do well in different portions of the curve

* A perfect curve would start in the bottom left, go to the top

left, then over to the top right

— A random prediction curve would be a line from the bottom left to
the top right

* When comparing curves:
— Can look to see if one curve dominates the other (is always better)

— Can compare the area under the curve (very popular — some people
even do t-tests on these numbers)
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