Evaluating Hypotheses

- Sample error, true error
- · Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- · Paired t-tests
- · Comparing Learning Methods

CS 8751 ML & KDD

Evaluating Hypotheses

Problems Estimating Error

1. *Bias*: If *S* is training set, *error*_S(*h*) is optimistically biased

$$bias \equiv E[error_s(h)] - error_D(h)$$

For unbiased estimate, *h* and *S* must be chosen independently

 Variance: Even with unbiased S, error_S(h) may still vary from error_D(h)

CS 8751 ML & KDD

Evaluating Hypotheses

Two Definitions of Error

The **true error** of hypothesis *h* with respect to target function *f* and distribution *D* is the probability that *h* will misclassify an instance drawn at random according to *D*.

$$error_D(h) \equiv \Pr_{x \in D} [f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise

How well does $error_S(h)$ estimate $error_D(h)$?

CS 8751 ML & KDD

Evaluating Hypotheses

Example

Hypothesis *h* misclassifies 12 of 40 examples in *S*.

$$error_{S}(h) = \frac{12}{40} = .30$$

What is $error_D(h)$?

CS 8751 ML & KDD

Evaluating Hypotheses

Estimators

Experiment:

- 1. Choose sample *S* of size *n* according to distribution *D*
- 2. Measure error_s(h)

error_S(h) is a random variable (i.e., result of an experiment)

 $error_S(h)$ is an unbiased estimator for $error_D(h)$

Given observed $error_S(h)$ what can we conclude about $error_D(h)$?

CS 8751 ML & KDD

Evaluating Hypotheses

Confidence Intervals

If

- S contains n examples, drawn independently of *h* and each other
- n ≥ 30

Then

 With approximately N% probability, error_D(h) lies in interval

nterval
$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where

 N%:
 50%
 68%
 80%
 90%
 95%
 98%
 99%

 z_N :
 0.67
 1.00
 1.28
 1.64
 1.96
 2.33
 2.53

CS 8751 ML & KDD

Evaluating Hypotheses

Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

With approximately 95% probability, error_D(h) lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

CS 8751 ML & KDD

Evaluating Hypotheses

error_S(h) is a Random Variable • Rerun experiment with different randomly drawn S (size n) • Probability of observing r misclassified examples: $\frac{0.14}{0.12}$ $\frac{0.14}{0.12}$ $\frac{0.14}{0.02}$ $\frac{0.08}{0.06}$ $\frac{0.08}{0.06}$ $\frac{0.09}{0.00}$ $\frac{0.$

Evaluating Hypotheses

Binomial Probability Distribution

$$P(r) = \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$$

Probabilty P(r) of r heads in n coin flips, if p = Pr (heads)

- Expected, or mean value of $X : E[X] \equiv \sum_{i=0}^{n} iP(i) = np$
- Variance of X: $Var(X) = E[(X E[X])^2] = np(1-p)$
- Standard deviation of $X : \sigma_X = \sqrt{E[(X E[X])^2]} = \sqrt{np(1-p)}$

CS 8751 ML & KDD Evaluating Hypotheses

Normal Probability Distribution

The probability that X will fall into the interval (a,b) is given by $\int_{a}^{b} p(x)dx$

- Expected, or mean value of $X : E[X] = \mu$
- Variance of $X : Var(X) = \sigma^2$

CS 8751 ML & KDD

• Standard deviation of $X : \sigma_X = \sigma$

CS 8751 ML & KDD Evaluating Hypotheses

Normal Distribution Approximates Binomial

error_s(h) follows a Binomial distribution, with

- $\operatorname{mean} \mu_{\operatorname{error}_S(h)} = \operatorname{error}_D(h)$
- standard deviation

$$\sigma_{error_S(h)} = \sqrt{\frac{error_D(h)(1 - error_D(h))}{n}}$$

Approximate this by a Normal distribution with

- $\operatorname{mean}\mu_{\operatorname{error}_S(h)} = \operatorname{error}_D(h)$
- · standard deviation

$$\sigma_{error_S(h)} \approx \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

CS 8751 ML & KDD

Evaluating Hypotheses

11

Normal Probability Distribution

80% of area (probability) lies in $\mu \pm 1.28\sigma$ N% of area (probability) lies in $\mu \pm z_N \sigma$

N%: 50% 68% 80% 90% 95% 98% 99% z_N: 0.67 1.00 1.28 1.64 1.96 2.33 2.53

CS 8751 ML & KDD Evaluating Hypotheses

12

Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each other.
- n ≥ 30

Then

- With approximately 95% probability, $error_S(h)$ lies in interval $error_D(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 error_D(h))}{n}}$
- equivalently, $error_D(h)$ lies in interval $error_S(h) \pm 1.96 \sqrt{\frac{error_D(h)(1 error_D(h))}{error_D(h)(1 error_D(h))}}$
- which is approximately

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

CS 8751 ML & KDD

Evaluating Hypotheses

Calculating Confidence Intervals

- 1. Pick parameter p to estimate
- error_D(h)
- 2. Choose an estimator
- error_S(h)
- 3. Determine probability distribution that governs estimator
- error₅(h) governed by Binomial distribution, approximated by Normal when n ≥ 30
- 4. Find interval (*L*,*U*) such that N% of probability mass falls in the interval
- Use table of z_N values

CS 8751 ML & KDD

Evaluating Hypotheses

14

Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 ... Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean

$$\overline{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \overline{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{n}$.

CS 8751 ML & KDD

Evaluating Hypotheses

Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

 $d \equiv error_{D}(h_{1}) - error_{D}(h_{2})$

2. Choose an estimator $d = error_{S_1}(h_1) - error_{S_2}(h_2)$

3. Determine probability distribution that governs estimator

Determine probability distribution that governs estimator
$$\sigma_{d} \approx \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that N% of probability mass falls in the interval

$$\hat{d} \pm z_{N} \sqrt{\frac{error_{S_{1}}(h_{1})(1 - error_{S_{1}}(h_{1}))}{n_{1}} + \frac{error_{S_{2}}(h_{2})(1 - error_{S_{2}}(h_{2}))}{n_{2}}}$$

CS 8751 ML & KDD

Evaluating Hypothese

Paired t test to Compare h_A, h_B

- 1. Partition data into k disjoint test sets $T_1, T_2, ..., T_k$ of equal size, where this size is at least 30.
- 2. For i from 1 to k do
- $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value d, where

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_{i}$$

N% confidence interval estimate for d:

$$\delta \pm t_{N,k-1} s_{\overline{\delta}}$$

$$s_{\overline{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \overline{\delta}_i)^2}$$

Note δ_i approximately Normally distributed

CS 8751 ML & KDD

Evaluating Hypotheses

17

N-Fold Cross Validation

- · Popular testing methodology
- · Divide data into N even-sized random folds
- For n = 1 to N
 - Train set = all folds except n
 - Test set = fold n
 - Create learner with train set
 - Count number of errors on test set
- Accumulate number of errors across N test sets and divide by N (result is error rate)
- For comparing algorithms, use the same set of folds to create learners (results are paired)

CS 8751 ML & KDD

Evaluating Hypotheses

18

N-Fold Cross Validation

- · Advantages/disadvantages
 - Estimate of error within a single data set
 - Every point used once as a test point
 - At the extreme (when N = size of data set), called leave-one-out testing
 - Results affected by random choices of folds (sometimes answered by choosing multiple random folds -Dietterich in a paper expressed significant reservations)

Evaluating Hypotheses CS 8751 ML & KDD

Results Analysis: Confusion Matrix

- For many problems (especially multiclass problems), often useful to examine the sources of
- Confusion matrix:

		Predicted			
		ClassA	ClassB	ClassC	Total
Expected	ClassA	25	5	20	50
	ClassB	0	45	5	50
	ClassC	25	0	25	50
	Total	50	50	50	150

Evaluating Hypotheses CS 8751 ML & KDD

Results Analysis: Confusion Matrix

- Building a confusion matrix
 - Zero all entries
 - For each data point add one in row corresponding to actual class of problem under column corresponding to predicted class
- Perfect prediction has all values down the diagonal
- Off diagonal entries can often tell us about what is being mis-predicted

CS 8751 ML & KDD

Evaluating Hypothese

Receiver Operator Characteristic

• Originally from signal detection

- · Becoming very popular for ML
- Used in:
 - Two class problems
 - Where predictions are ordered in some way (e.g., neural network activation is often taken as an indication of how strong or weak a prediction is)
- · Plotting an ROC curve:
 - Sort predictions (right) by their predicted strength
 - Start at the bottom left
 - For each positive example, go up 1/P units where P is the number of positive examples
 - For each negative example, go right 1/N units where N is the number of negative examples

CS 8751 ML & KDD Evaluating Hypotheses

22

ROC Properties

- · Can visualize the tradeoff between coverage and accuracy (as we lower the threshold for prediction how many more true positives will we get in exchange for more false positives)
- · Gives a better feel when comparing algorithms
 - Algorithms may do well in different portions of the curve
- A perfect curve would start in the bottom left, go to the top left, then over to the top right
 - A random prediction curve would be a line from the bottom left to the top right
- When comparing curves:
 - Can look to see if one curve dominates the other (is always better)
 - Can compare the area under the curve (very popular some people even do t-tests on these numbers)

CS 8751 ML & KDD Evaluating Hypotheses 24