Learning Sets of Rules

- Sequential covering algorithms
- FOIL
- Induction as the inverse of deduction
- Inductive Logic Programming

Sequential Covering Algorithm

SEQUENTIAL-COVERING(Target_attr,Attrs,Examples,Thresh)
Learned_rules $\leftarrow\}$
Rule \leftarrow LEARN-ONE-RULE(Target_attr,Attrs,Examples)
while PERFORMANCE (Rule,Examples) $>$ Thresh do

- Learned_rules \leftarrow Learned_rules + Rule
- Examples \leftarrow Examples - \{examples correctly classified by Rule\}
- Rule \leftarrow LEARN-ONE-RULE(Target_attr,Attrs,Examples)

Learned_rules \leftarrow sort Learned_rules according to PERFORMANCE over Examples
return Learned_rules

CS 8751 ML \& KDD
Learning Sets of Rules

Learning Disjunctive Sets of Rules

Method 1: Learn decision tree, convert to rules
Method 2: Sequential covering algorithm

1. Learn one rule with high accuracy, any coverage
2. Remove positive examples covered by this rule
3. Repeat

Covering Rules

Pos \leftarrow positive Examples
Neg \leftarrow negative Examples
while Pos do (Learn a New Rule)
NewRule \leftarrow most general rule possible
NegExamplesCovered \leftarrow Neg
while NegExamplesCovered do
Add a new literal to specialize NewRule

1. Candidate_literals \leftarrow generate candidates
2. Best_literal $\leftarrow \operatorname{argmax}_{L \in \text { candidate literals }}$ PERFORMANCE(SPECIALIZE-RULE(NewRule,L))
3. Add Best_literal to NewRule preconditions
4. NegExamplesCovered \leftarrow subset of NegExamplesCovered that satistifies NewRule preconditions
Learned_rules \leftarrow Learned_rules + NewRule
Pos $\leftarrow \overline{\text { Pos }}-\{$ members of Pos covered by NewRule $\}$
Return Learned_rules
CS 8751 ML \& KDD
Learning Sets of Rules

Subtleties: Learning One Rule

1. May use beam search
2. Easily generalize to multi-valued target functions
3. Choose evaluation function to guide search:

- Entropy (i.e., information gain)
- Sample accuracy:

$$
\frac{n_{c}}{n}
$$

where $n_{c}=$ correct predictions,

$$
n=\text { all predictions }
$$

- m estimate: $\frac{n_{c}+m p}{n+m}$

CS 8751 ML \& KDD
Learning Sets of Rules

Variants of Rule Learning Programs

- Sequential or simultaneous covering of data?
- General \rightarrow specific, or specific \rightarrow general?
- Generate-and-test, or example-driven?
- Whether and how to post-prune?
- What statistical evaluation functions?

Learning First Order Rules

Why do that?

- Can learn sets of rules such as
$\operatorname{Ancestor}(x, y) \leftarrow \operatorname{Parent}(x, y)$
Ancestor $(x, y) \leftarrow \operatorname{Parent}(x, z) \wedge$ Ancestor (z, y)
- General purpose programming language

PROLOG: programs are sets of such rules

FOIL

FOIL(Target_predicate,Predicates,Examples)
Pos \leftarrow positive Examples
Neg \leftarrow negative Examples
while Pos do (Learn a New Rule)
NewRule \leftarrow most general rule possible
NegExamplesCovered \leftarrow Neg
while NegExamplesCovered do
Add a new literal to specialize NewRule

1. Candidate_literals \leftarrow generate candidates
2. Best_literal $\leftarrow \operatorname{argmax}_{L \in \text { candidate_literal }}$ FOIL_GAIN $(L, N e w R u l e)$
3. Add Best_literal to NewRule preconditions
4. NegExamplesCovered \leftarrow subset of NegExamplesCovered that satistifies NewRule preconditions
Learned_rules \leftarrow Learned_rules + NewRule
Pos $\leftarrow \overline{\text { Pos }}-\{$ members of $\overline{\text { Pos covered by NewRule }\}}$
Return Learned_rules
CS 8751 ML \& KDD
Learning Sets of Rules
10

Specializing Rules in FOIL

Learning rule: $P\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leftarrow L_{1} \ldots L_{n}$
Candidate specializations add new literal of form:

- $Q\left(v_{l}, \ldots, v_{r}\right)$, where at least one of the v_{i} in the created literal must already exist as a variable in the rule
- Equal $\left(x_{j}, x_{k}\right)$, where x_{j} and x_{k} are variables already present in the rule
- The negation of either of the above forms of literals

Information Gain in FOIL

FOIL_GAIN $(L, R) \equiv t\left(\log _{2} \frac{p_{1}}{p_{1}+n_{1}}-\log _{2} \frac{p_{0}}{p_{0}+n_{0}}\right)$
Where

- L is the candidate literal to add to rule R
- $p_{0}=$ number of positive bindings of R
- $n_{0}=$ number of negative bindings of R
- $p_{1}=$ number of positive bindings of $R+L$
- $n_{l}=$ number of negative bindings of $R+L$
- t is the number of positive bindings of R also covered by $R+L$
Note
- $-\log _{2} \frac{p_{0}}{p_{0}+n_{0}}$ is optimal number of bits to indicate the class
of a positive binding covered by R
CS 8751 ML \& KDD
Learning Sets of Rules
12

Induction as Inverted Deduction

Induction is finding h such that

$$
\left(\forall<x_{i} f\left(x_{i}\right)>\in D\right) B \wedge h \wedge x_{i} \mid-f\left(x_{i}\right)
$$

where

- x_{i} is the i th training instance
- $f\left(x_{i}\right)$ is the target function value for x_{i}
- B is other background knowledge

So let's design inductive algorithms by inverting operators for automated deduction!

Induction and Deduction

Induction is, in fact, the inverse operation of deduction, and cannot be conceived to exist without the corresponding operation, so that the question of relative importance cannot arise. Who thinks of asking whether addition or subtraction is the more important process in arithmetic? But at the same time much difference in difficulty may exist between a direct and inverse operation; ... it must be allowed that inductive investigations are of a far higher degree of difficulty and complexity than any question of deduction ... (Jevons, 1874)

Induction as Inverted Deduction

Positives:

- Subsumes earlier idea of finding h that "fits" training data
- Domain theory B helps define meaning of "fit" the data

$$
B \wedge h \wedge x_{i} \mid-f\left(x_{i}\right)
$$

- Suggests algorithms that search H guided by B

Negatives:

- Doesn't allow for noisy data. Consider

$$
\left(\forall<x_{i} f\left(x_{i}\right)>\in D\right) B \wedge h \wedge x_{i} \mid-f\left(x_{i}\right)
$$

- First order logic gives a huge hypothesis space H
- overfitting...
- intractability of calculating all acceptable h 's

Induction as Inverted Deduction

"pairs of people, $\langle u, v>$ such that child of u is v,"
$f\left(x_{i}\right)$: Child(Bob,Sharon)
x_{i} : Male(Bob),Female(Sharon),Father(Sharon,Bob)
$B: \operatorname{Parent}(u, v) \leftarrow$ Father (u, v)

What satisfies $\left(\forall<x_{i} f\left(x_{i}\right)>\in D\right) B \wedge h \wedge x_{i} \mid-f\left(x_{i}\right)$?
$h_{1}: \operatorname{Child}(u, v) \leftarrow \operatorname{Father}(v, u)$
$h_{2}: \operatorname{Child}(u, v) \leftarrow \operatorname{Parent}(v, u)$

Induction as Inverted Deduction

We have mechanical deductive operators

$$
F(A, B)=C, \text { where } A \wedge B \mid-C
$$

need inductive operators
$O(B, D)=h$ where
$\left(\forall<x_{i} f f\left(x_{i}\right)>\in D\right) B \wedge h \wedge x_{i} \mid-f\left(x_{i}\right)$

CS 8751 ML \& KDD

Deduction: Resolution Rule
 $P \vee L$
 $$
\frac{\neg L \vee R}{P \vee R}
$$

1. Given initial clauses $C 1$ and $C 2$, find a literal L
from clause $C 1$ such that $\neg L$ occurs in clause $C 2$.
2. Form the resolvent C by including all literals from $C 1$ and $C 2$, except for L and $\neg L$. More precisely, the set of literals occurring in the conclusion C is

$$
C=(C 1-\{L\}) \cup(C 2-\{\neg L\})
$$

where \cup denotes set union, and "-" set difference.

Inverting Resolution

First Order Resolution

1. Find a literal L_{1} from clause C_{1}, literal L_{2} from clause C_{2}, and substitution θ such that

$$
L_{1} \theta=\neg L_{2} \theta
$$

2. Form the resolvent C by including all literals from $C_{1} \theta$ and $C_{2} \theta$, except for L_{1} theta and $\neg L_{2} \theta$. More precisely, the set of literals occuring in the conclusion is

$$
C=\left(C_{1}-\left\{L_{1}\right\}\right) \theta \cup\left(C_{2}-\left\{L_{2}\right\}\right) \theta
$$

Inverting:

$$
C_{2}=\left(C-\left(C_{1}-\left\{L_{1}\right\}\right) \theta_{1}\right) \theta_{2}^{-1} \cup\left\{\neg L_{1} \theta_{1} \theta_{2}^{-1}\right\}
$$

Progol

PROGOL: Reduce combinatorial explosion by generating the most specific acceptable h

1. User specifies H by stating predicates, functions, and forms of arguments allowed for each
2. PROGOL uses sequential covering algorithm.

For each $\left\langle x_{i} f\left(x_{i}\right)\right\rangle$

- Find most specific hypothesis h_{i} s.t.

$$
B \wedge h_{i} \wedge x_{i} \mid-f\left(x_{i}\right)
$$

actually, only considers k-step entailment
3. Conduct general-to-specific search bounded by specific hypothesis h_{i}, choosing hypothesis with minimum description length
CS 8751 ML \& KDD Learning Sets of Rules

