

	Employee Data Set													
521	#	Age	Yrs	Salary	Sex	Group								
698	1	45	9	50,000	М	Accnt								
1,01	2	34	2	36,000	М	DBMS								
181	3	54	22	45,000	М	Servc								
	4	41	15	53 , 000	F	DBMS								
121	5	52	3	49,000	F	Accnt								
1	6	23	1	26,000	М	Servc								
2// 5	7	22	1	26,000	F	Servc								
4. 9	8	61	30	98,000	F	Presd								
W.C.	9	51	18	39 , 000	М	Accnt								
4														
	CS 875	51 ML & KDD		Data Clustering		12								

11	Employee Distance Matrix											
18		1	2	3	4	5	6	7	8			
R	2	1.50										
11	3	1.49	1.89									
	4	2.23	1.57	2.48								
	5	1.27	2.51	2.46	1.50							
5	6	1.84	1.34	1.23	2.91	2.85						
9	7	2.84	2.34	2.23	1.91	1.85	1.00					
	8	3.22	3.72	2.83	2.15	2.21	4.06	3.06				
	9	0.41	1.69	1.20	2.40	1.42	2.03	3.03	3.03			

An Incremental Clustering Algorithm Assign first data point to a cluster Consider next data point. Either assign data point to an existing cluster or create a new cluster. Assignment to cluster based on threshold Repeat step 2 until all points are clustered Useful for efficient clustering

CS 8751 ML & KDD

Data Clustering

27

k-Means Variations What if too many/not enough clusters? After some convergence: any cluster with too large a distance between members is split any clusters too close together are combined any cluster not corresponding to any points is moved thresholds decided empirically