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Reinforcement Learning 
• Control learning

• Control polices that choose optimal actions

• Q learning

• Convergence
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Control Learning
Consider learning to choose actions, e.g.,
• Robot learning to dock on battery charger
• Learning to choose actions to optimize factory 

output
• Learning to play Backgammon
Note several problem characteristics
• Delayed reward
• Opportunity for active exploration
• Possibility that state only partially observable
• Possible need to learn multiple tasks with same 

sensors/effectors
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One Example:  TD-Gammon
Tesauro, 1995

Learn to play Backgammon
Immediate reward
• +100 if win
• -100 if lose
• 0 for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player

CS 8751 ML & KDD Reinforcement Learning 4

Reinforcement Learning Problem

Environment

Agent

state action reward

s0 r0

a0 s1 r1

a1 s2 r2

a2 ...

Goal: learn to choose actions that maximize
r0 + γr1 + γ2r2 + …, where 0 ≤ γ < 1
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Markov Decision Process
Assume
• finite set of states S
• set of actions A
• at each discrete time, agent observes state st∈ S 

and choose action at ∈ A
• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = δ(st, at) and rt = r(st, at)
– i.e., rt and st+1 depend only on current state and action
– functions δ and r may be nondeterministic
– functions δ and r no necessarily known to agent
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Agent’s Learning Task
Execute action in environment, observe results, and
• learn action policy π : S → A that maximizes

E[rt + γrt+1 + γ2rt+2 + …]
from any starting state in S

• here 0 ≤ γ < 1 is the discount factor for future 
rewards

Note something new:
• target function is π : S → A
• but we have no training examples of form <s,a>
• training examples are of form <<s,a>,r>
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Value Function
To begin, consider deterministic worlds …
For each possible policy π the agent might adopt, we 

can define an evaluation function over states

where rt,rt+1,… are generated by following policy π
starting at state s

Restated, the task is to learn the optimal policy π*
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What to Learn
We might try to have agent learn the evaluation 

function Vπ* (which we write as V*)
We could then do a lookahead search to choose best 

action from any state s because

A problem:
• This works well if agent knows a δ : S × A → S, 

and r : S × A →ℜ
• But when it doesn’t, we can’t choose actions this 

way

[ ](s,a))V*(r(s,a)(s) δ γargmaxπ*
a

+≡
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Q Function
Define new function very similar to V*

If agent learns Q, it can choose optimal action even 
without knowing d!

Q is the evaluation function the agent will learn
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Training Rule to Learn Q
Note Q and V* closely related:

Which allows us to write Q recursively as

Let      denote learner’s current approximation to Q.  
Consider training rule

where s' is the state resulting from applying action a
in state s
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Q Learning for Deterministic Worlds
For each s,a initialize table entry 
Observe current state s
Do forever:
• Select an action a and execute it
• Receive immediate reward r
• Observe the new state s'
• Update the table entry for               as follows:

• s ← s'

)(ˆmax γ)(ˆ a,sQrs,aQ
a

′′+←
′

0)(ˆ ←s,aQ

)(ˆ s,aQ
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Convergence
converges to Q.  Consider case of deterministic world 

where each <s,a> visited infinitely often.

Proof: define a full interval to be an interval during which 

each <s,a> is visited.  During each full interval the largest 

error in        table is reduced by factor of γ

Let       be table after n updates, and ∆n be the maximum error 

in       ; that is
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Convergence (cont)
For any table entry                  updated on iteration n+1, the 

error in the revised estimate                is
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Nondeterministic Case
What if reward and next state are non-deterministic?
We redefine V,Q by taking expected values
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Nondeterministic Case
Q learning generalizes to nondeterministic worlds
Alter training rule to

where

Can still prove converge of       to Q [Watkins and 
Dayan, 1992]
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Temporal Difference Learning
Q learning: reduce discrepancy between successive 

Q estimates
One step time difference:

Why not two steps?

Or n?

Blend all of these:
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Temporal Difference Learning

Equivalent expression:

TD(λ) algorithm uses above training rule
• Sometimes converges faster than Q learning
• converges for learning V* for any 0 ≤ λ ≤1 

(Dayan, 1992)
• Tesauro’s TD-Gammon uses this algorithm
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Subtleties and Ongoing Research
• Replace        table with neural network or other 

generalizer

• Handle case where state only partially observable

• Design optimal exploration strategies

• Extend to continuous action, state

• Learn and use d : S × A → S, d approximation to δ

• Relationship to dynamic programming

Q̂


