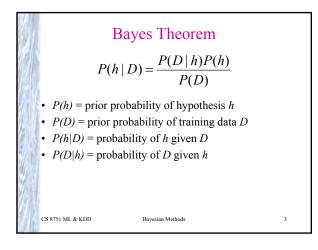
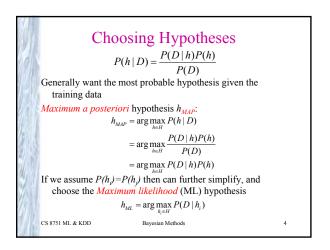


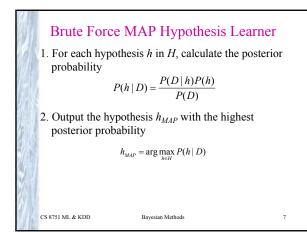
Drovide practical learning algorithms: Provide practical learning algorithms: Naïve Bayes learning Bayesian belief network learning Combine prior knowledge (prior probabilities) with observed data Drovides prior probabilities: Provides useful conceptual framework: Provides "gold standard" for evaluating other learning algorithms Additional insight into Occam's razor

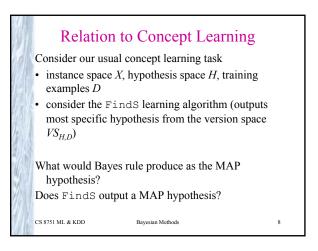


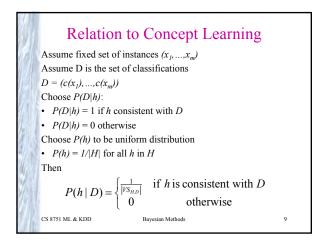


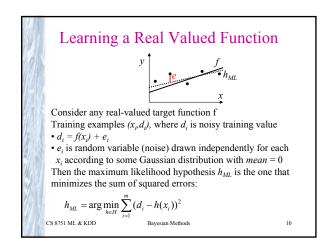
	Bay	yes Theorem	
	Does patient have cancer or not? A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct		
	negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.8% of the entire population have this cancer.		
4.53	P(cancer) =	$P(\neg cancer) =$	
#// AB	P(+ cancer) =	P(- cancer) =	
417	$P(+ \neg cancer) =$	$P(- \neg cancer) =$	
<i>)</i> []	P(cancer +) =		
M^{1}	$P(\neg cancer +) =$		
	CS 8751 ML & KDD	Bayesian Methods	5

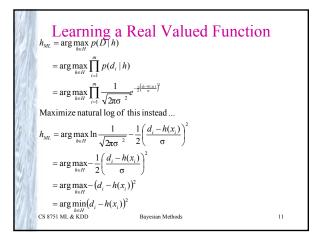
	Some Formulas for Probabilities
19	 <i>Product rule</i>: probability <i>P</i>(<i>A</i> ∧ <i>B</i>) of a conjunction of two events <i>A</i> and <i>B</i>:
	$P(A \land B) = P(A B)P(B) = P(B A)P(A)$
	• <i>Sum rule:</i> probability of disjunction of two events <i>A</i> and <i>B</i> :
12	$P(A \lor B) = P(A) + P(B) - P(A \land B)$
	• <i>Theorem of total probability:</i> if events A ₁ ,,A _n
	are mutually exclusive with $\sum_{i=1}^{n} P(A_i) = 1$, then
	$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$
	CS 8751 ML & KDD Bayesian Methods 6

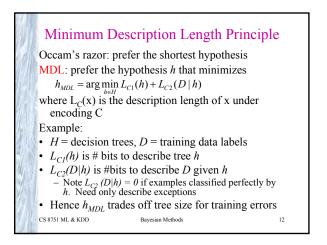












	Minimum Description Length Principle		
6.8	$h_{MAP} = \arg\max_{h \in H} P(D \mid h) P(h)$		
h/k	$= \arg \max_{h \in H} \log_2 P(D \mid h) + \log_2 P(h)$		
1^{20}	$= \arg\min_{h \in \mathcal{D}} -\log_2 P(D \mid h) - \log_2 P(h) (1)$		
1.	Interesting fact from information theory:		
le le	The optimal (shortest expected length) code for an event with probability p is $\log_2 p$ bits.		
18	So interpret (1):		
11	$-\log_2 P(h)$ is the length of <i>h</i> under optimal code		
46	$-\log_2 P(D h)$ is length of D given h in optimal code		
1	\rightarrow prefer the hypothesis that minimizes		
4	length(h)+length(misclassifications)		
7/6	CS 8751 ML & KDD Bayesian Methods	13	

