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Support Vector Machines (SVMs)
• Learning mechanism based on linear 

programming
• Chooses a separating plane based on maximizing 

the notion of a margin
– Based on PAC learning

• Has mechanisms for
– Noise
– Non-linear separating surfaces (kernel functions)

• Notes based on those of Prof. Jude Shavlik
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Support Vector Machines

A+

A-

Find the best separating plane in feature space
- many possibilities to choose from

which is the
best choice?
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SVMs – The General Idea
• How to pick the best separating plane?
• Idea:

– Define a set of inequalities we want to satisfy
– Use advanced optimization methods (e.g., linear 

programming) to find satisfying solutions

• Key issues:
– Dealing with noise
– What if no good linear separating surface?
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Linear Programming
• Subset of Math Programming
• Problem has the following form:

function f(x1,x2,x3,…,xn) to be maximized
subject to a set of constraints of the form:

g(x1,x2,x3,…,xn) > b
• Math programming - find a set of values for the variables 

x1,x2,x3,…,xn that meets all of the constraints and 
maximizes the function f

• Linear programming - solving math programs where the 
constraint functions and function to be maximized use 
linear combinations of the variables
– Generally easier than general Math Programming problem
– Well studied problem
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Maximizing the Margin

A+

A-

the decision
boundary

The margin between categories
- want this distance to be maximal
- (we’ll assume linearly separable for now)
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PAC Learning
• PAC – Probably Approximately Correct learning
• Theorems that can be used to define bounds for 

the risk (error) of a family of learning functions
• Basic formula, with probability (1 - η):

• R – risk function, α is the parameters chosen by 
the learner, N is the number of data points, and h 
is the VC dimension (something like an estimate 
of the complexity of the class of functions)
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Margins and PAC Learning
• Theorems connect PAC theory to the size of the 

margin
• Basically, the larger the margin, the better the 

expected accuracy
• See, for example, Chapter 4 of Support Vector 

Machines by Christianini and Shawe-Taylor, 
Cambridge University Press, 2002
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Some Equations
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What the Equations Mean

A+

A-

Support 
Vectors

Margin

x´w = γ + 1

x´w = γ - 1

2 / ||w||2

CS 8751 ML & KDD Support Vector Machines 10

Choosing a Separating Plane

A+

A-

?
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Our “Mathematical Program” (so far)
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Dealing with Non-Separable Data
We can add what is called a “slack” variable to each 

example

This variable can be viewed as:
0 if the example is correctly separated
y “distance” we need to move example to make it

correct (i.e., the distance from its surface)
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“Slack” Variables
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y
Support 
Vectors
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The Math Program with Slack Variables
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Support Vector Machine
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Why the word “Support”?
• All those examples on or on the wrong side of the 

two separating planes are the support vectors
– We’d get the same answer if we deleted all the non-

support vectors!
– i.e., the “support vectors [examples]” support the 

solution
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PAC and the Number of Support Vectors
• The fewer the support vectors, the better the 

generalization will be
• Recall, non-support vectors are

– Correctly classified
– Don’t change the learned model if left out of the 

training set

• So

examples  training#
ctorssupport ve #     rateerror out oneleave ≤−−
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Finding Non-Linear Separating Surfaces
• Map inputs into new space

Example: features   x1 x2

5     4

Example: features   x1 x2       x1
2 x2

2 x1*x2

5     4     25      16        20

• Solve SVM program in this new space
– Computationally complex if many features
– But a clever trick exists
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The Kernel Trick
• Optimization problems often/always have a 

“primal” and a “dual” representation
– So far we’ve looked at the primal formulation
– The dual formulation is better for the case of a non-

linear separating surface
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Perceptrons Re-Visited
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Dual Form of the Perceptron Learning Rule
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Primal versus Dual Space
• Primal – “weight space”

– Weight features to make output decision

• Dual – “training-examples space”
– Weight distance (which is based on the features) to 

training examples

)sgn()( newnew xwxh rrr
⋅=

[ ])xxyα()xh( ij

#examples

j
jjnew

rrr
⋅= ∑

=1
sgn

CS 8751 ML & KDD Support Vector Machines 22

The Dual SVM
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Non-Zero αi’s

 weights the tocontribute    
 0) (i.e., ctorssupport ve only the -  

   

Recall

ctorssupport ve    the
 are 0  withexamples Those

1

≠

=

≠

∑ =

i

i
n

i ii

i

xyw

α

α

α

rr

CS 8751 ML & KDD Support Vector Machines 24

Generalizing the Dot Product
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The New Space for a Sample Kernel

2212211122122111

2222121221211111

2
2211

2

2

,,,,,,           
            

)(
2let  and

Let 

zzzzzzzzxxxxxxxx
zzxxzzxxzzxxzzxx

zxzx)zx(
#features

)zx () z,xK(

⋅=

+++=
+=⋅

=
⋅=

rr

rrrr

Our new feature space (with 4 dimensions)
- we’re doing a dot product in it

CS 8751 ML & KDD Support Vector Machines 26

g(+)

Visualizing the Kernel
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Original Space
Separating plane 
(non-linear here but
linear in derived space)
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Derived Feature Space

New Space
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g(-) g(-)g() is feature transformation 

function

process is similar to what 
hidden units do in ANNs but 
kernel is user chosen
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More Sample Kernels
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What Makes a Kernel
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Key SVM Ideas
• Maximize the margin between positive and 

negative examples (connects to PAC theory)
• Penalize errors in non-separable case
• Only the support vectors contribute to the solution
• Kernels map examples into a new, usually non-

linear space
– We implicitly do dot products in this new space (in the 

“dual” form of the SVM program)


