Support Vector Machines (SVMs)

* Learning mechanism based on linear
programming

+ Chooses a separating plane based on maximizing
the notion of a margin
— Based on PAC learning

» Has mechanisms for
— Noise
— Non-linear separating surfaces (kernel functions)

* Notes based on those of Prof. Jude Shavlik
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Support Vector Machines

Find the best separating plane in feature space
- many possibilities to choose from
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SVMs — The General Idea

» How to pick the best separating plane?
* Idea:
— Define a set of inequalities we want to satisfy
— Use advanced optimization methods (e.g., linear
programming) to find satisfying solutions
» Key issues:
— Dealing with noise
— What if no good linear separating surface?
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Linear Programming

» Subset of Math Programming
* Problem has the following form:
function f{x,X,X3...,x,) to be maximized
subject to a set of constraints of the form:
8(X;,XX35..X,) > b
* Math programming - find a set of values for the variables
X ;XX 3...,X, that meets all of the constraints and
maximizes the function f
» Linear programming - solving math programs where the
constraint functions and function to be maximized use
linear combinations of the variables
— Generally easier than general Math Programming problem
— Well studied problem
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Maximizing the Margin

The margin between categories
- want this distance to be maximal
- (we’ll assume linearly separable for now)

=~ - _the decision
boundary
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PAC Learning

* PAC — Probably Approximately Correct learning
» Theorems that can be used to define bounds for
the risk (error) of a family of learning functions
* Basic formula, with probability (1 - 7):
R@= R, @)+ \/h(log(ZN/h)flog(nM)
N
* R —risk function, a is the parameters chosen by
the learner, N is the number of data points, and h
is the VC dimension (something like an estimate
of the complexity of the class of functions)
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Margins and PAC Learning
» Theorems connect PAC theory to the size of the
margin
* Basically, the larger the margin, the better the
expected accuracy

* See, for example, Chapter 4 of Support Vector
Machines by Christianini and Shawe-Taylor,
Cambridge University Press, 2002
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Some Equations
Separating Plane

w-X= V4
W - weights, ¥ - input features,  © o® ;
y - threshold % o °

For all positive examples o

W Xpos =V F ! 1s result from dividing
For all negative examples _through by a constant
. 1 for convenience

Xneg =V

Distance between blue and red planes (the margin)

. 2 .
margin =— Euclidean length (“2 norm”) of
HWH “~ the weight vector
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What the Equations Mean
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Choosing a Separating Plane
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Our “Mathematical Program” (so far)

2 . .
<«—— for technical reasons easier to
optimize this “quadratic program”

min HM

Wy

such that
WX, 2 y+1 (for +examples)

WX, <y—1 (for —examples)

Note : w, ¥ are our adjustable parameters (we could, of course, use the

ANN "trick" and move y to the left side of our inequalities)

We can now use existing math programming optimization
software to find a solution to the above (a global optimal soln)
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Dealing with Non-Separable Data

We can add what is called a “slack” variable to each
example

This variable can be viewed as:
0 if the example is correctly separated
y “distance” we need to move example to make it
correct (i.e., the distance from its surface)
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“Slack” Variables

Support
Vectors

The Math Program with Slack Variables

min [ + 5],
w— one for each input feature
s —one for each example
1 —scaling constant

H§ H , —"one norm" - sum of components (all positive)

such that

P% 4s >yl This is the “traditional”
pos, TS =V Support Vector Machine
W

Xoeg, =8, <71

Vs, 20

CS 8751 ML & KDD Support Vector Machines

Why the word “Support”?

* All those examples on or on the wrong side of the
two separating planes are the support vectors
— We’d get the same answer if we deleted all the non-
support vectors!
— i.e., the “support vectors [examples]” support the
solution
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PAC and the Number of Support Vectors

» The fewer the support vectors, the better the
generalization will be

+ Recall, non-support vectors are

— Correctly classified

— Don’t change the learned model if left out of the

training set
* So
#support vectors

leave—one —out error rate < ————
# training examples
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Finding Non-Linear Separating Surfaces

* Map inputs into new space
Example: features x, X,
5 4

Example: features x; X, X2 X2 X;*x,
5 4 25 16 20

» Solve SVM program in this new space
— Computationally complex if many features
— But a clever trick exists
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The Kernel Trick

» Optimization problems often/always have a
“primal” and a “dual” representation
— So far we’ve looked at the primal formulation
— The dual formulation is better for the case of a non-
linear separating surface
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Perceptrons Re-Visited

In perceptrons, if T=+1land F= -1,
Wit = Wi +11 1,5,

if the example x, is currently misclassified

So

#examples
W fnal = Z Q) X;
i=1
where ¢, is some number of times we get
X, wrong and change weights
=0 (allzero)
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This assumes w

initial
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Dual Form of the Perceptron Learning Rule
output of perceptron = h(xX) = sgn(w-X)

© +1 ifz>0
sgn(z)=
g -1 otherwise

Hexamples
So h(X) = sgﬂ({ Zaiyixl'f)
= sgn(Za,.y,[)'c‘ ')"c])

New (i.e., dual) perceptron algorithm :
For each example i

Hexamples
if y, * sz]yj [Sc, 4)?,] <0 (i.e., predicted, # teacher,)
=

thena, =, +1  (counts errors)
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Primal versus Dual Space

* Primal — “weight space”
— Weight features to make output decision

h(x,,,)=sgn(w-X,,)

* Dual — “training-examples space”
— Weight distance (which is based on the features) to
training examples

texamples

h(R,e,) =sgn( 3 0,, [7‘/ '7‘/])
=
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The Dual SVM

Letn = #training examples

i o (_ = )7 n )
glm((z 2o o VY G\ X pI:E

such that
n
i Vit
Va,20
Can convert back to primal form :
- n —
W= 2 VidiX;
_ max},’:fl«w-xl.>)+m1ny’=|(<w-xl.>)
y=-—
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Non-Zero a;’s

Those examples with ¢, # 0 are

the support vectors

Recall
w= :1:1 Yioux,
- only the support vectors (i.e., &; # 0)
contribute to the weights
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Generalizing the Dot Product

We can generalize
Dot_Product(X,,X,) =X, - X,
to other " kernel functions"
eg, K(E,5)=% %)
LAn acceptable kernel (usually non - linear) maps
the original features into a new space implicitly
- in this new space we're computing a dot product
- we don't need to explicitly know the features
in the new space
- usually more efficient than directly converting

to new space
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The New Space for a Sample Kernel

LetK(xzZ) = (x-2)
and let #features =2
-2 =(xz +x,2,)

=X\ X\Z,Z, + X\ X,Z,Z, + X, X\2,Z; + X, X,Z,2Z,

Visualizing the Kernel
Original Space

Separating plane
(non-linear here but
linear in derived space)

= <x1xl,x1x2,x2xl,x2x2> : <zlzl,zlzz,zzzl,zzzz>

Our new feature space (with 4 dimensions)
- we’re doing a dot product in it
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Input Space New Space

g) 9 g
g0

g() is feature transformation

function g+

(+) g(=)
q(+)g

process is similar to what g(+)

hidden units do in ANNSs but X >
kernel is user chosen Derived Feature Space
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More Sample Kernels

1) K(%Z) = ((¥-Z)+ const )’
) K(FEZ) = e*H"‘*EHZ/‘T2
- Gaussian kernel, leads to RBF network
3) K(x,Z) = tanh(c *(¥-2)+d)
- Related to sigmoid of ANN's
- plus many more, including many designed for
specific tasks (text, DNA, etc.)
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What Makes a Kernel

Mercer's theoremn characterizes when a
function f{¥,Z) is a kernel

If K,() and K,() are kernels, then so are

DK+ K0
2) ¢*K,() where c is constant

3K, *K,0)
4) f{(x)* f(z) where f{) returns a real
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Key SVM Ideas

* Maximize the margin between positive and
negative examples (connects to PAC theory)

* Penalize errors in non-separable case
* Only the support vectors contribute to the solution

» Kernels map examples into a new, usually non-
linear space

— We implicitly do dot products in this new space (in the
“dual” form of the SVM program)
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