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Introduction

m Generalization abilities and its
dependence on sample complexity
Confidence of predictions
Understanding generalization
m Relevant for learning in high dimensional
spaces

" I
Learning high dimensional data

m High dimensional problems may be constrained
in ways that make them lower dimensional
problems (but learning is still in the initial, i.e.,
high dimensional, space)

m For some high dimensional problems
generalization may be dependent on lower
dimensionality of the problem

m Random projection of sample into lower
dimension space preserving distances (Johnson
and Lindenstrauss, 1984)

"
Contribution

m Garg, Har-Peled and Roth (2002):

Project sample and linear classifying
hypothesis

Generalization bounds for linear classifiers in
high dimensional space
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Projection profile

m Projection profile of D
“data dependent,
complexity measure for
learning”

a, : expected amount of
error introduced when h
and data are projected into
k-dimensions

v(x) : distance between x

and classifying hyperplane i
u(x) = min| 3exp(— (V(X))k],l
8(2 + ‘V(x)‘)z

P(D,h)=(a,(D,h),a,(D,h),...)

ak(D,h):j L u(x)dD
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Projection profile contd.

m Decreases monotonically
m Tradeoff between dimension and accuracy
m Takes into account distribution of
geometric distances from classifier
(margin distribution)
m Overall performance will depend on
Estimation of projection profile
“standard” VC component

Definitions

m Classification problem f: R™- >{1,1}
® S ={(X1, Y1), --r Kiny Yin)?
m heR" n dnensional linear classifier
m Assumed to pass through the origin, so
For an example x, $(x) = sign (h" x)
m Signed distance of x from h: v(x) = 2" x = sign (v(x))
m Empirical error: £(.s) = ”172 1(G(x) # ;)
m Expected error:  E(x.5) = E‘[Iﬁm * [(0)]

- I
Random Projection Matrix

m Random projection matrix:

Ris xxnmatrix

Each entry is N(0O, 1/k)
m For xeR" , projection of x x'= Rx € R*
m Similar for a classifier h
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Margin Distribution based Bounds

m Decision of classifier is based on the sign of
v(x) = h'x = sign (v(x))

m |v(x)|- ageometric distance between x and
hyperplane orthogonal to h that passes through
the origin

m Given a set of samples with some distribution,
induces margin distribution




"
Main Theorem (3.1)

Let S ={(x,, ¥y). ... (Xop Yory)} be @ set of n-dimensional labeled examples
and h a linear classifier. Then, for all constants 0<d<1, 0<k, with
probability at least 7-45, the expected error of h is bound by

o (k+D)m " 1t
E<E(S,h)+mindy, +2\—— K+1 &
k 2m
6 <o vik
= *Wz/:-ex"[’s(2+\v,\)2] v, =vx) =,

"
Observations

1. If x is far from h, then projection of x
should be far from projection of h

2. Empirical error in projection space:
images of datapoints not consistent with
image of h

3. Optimal bound: balance between penalty
for projection and VC error term in that
dimension

m The probability of misclassifying x relative to its
classification in original space:

P[x[gn (h"x)# sign (h'" ,\")]S 3 cxpﬂf 8(2‘:#}

m Projection error (caused by projection matrix):

Err,,, (h,R,S) = ﬁ Z{ES I(sign(h Tx)# sign(h'rx'))

Bounds on classification error

m With probability >4  §the projection error

satisfies i
RS vk
Err,, (h,R,S)< 81(5,5) A-.(s.a):;§§3cxp[—wj
m Bounds on classification error with probability
=S N
E(h,S)<E(h,S)+e s 22l

< E(h,S))+26,(S,,6)+2¢,(S,,6)+2 5
m
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Improved bounds

m Important is the distance from classifier
m Expected probability of error for an image of x:

T

82+0)f S
. ak(D,h):I min| 3exp) 7M:Z 2 _1ldD
b 8(2+‘(V(x))‘) kv(x)”

m Also possible to improve if R has entries {-1,+1}
(Achlioptas, 2001)

" JEE
Projection error

m Histogram of
distances from h (for
context sensitive
spelling correction)

m Contributions of
points to
generalization error
as a function of
distance from h i




"
Bounds Tradeoff

= X from Normal
distribution with mean
0.3, variance 0.1

"
VC Bounds

m VC bounds with probability >4 &

\/(Ml{m[ﬂ]n}ma‘u
n+l

m

Worst-case generalization of classifier

Depend on the space of the data, independent of the
actual data

e<E+

T I
Bounds via margin

m Deriving bounds via margin:

< 2 [flog,(32m)log, 8e—mﬂogz z—m) [ =afat(5/8)
m f 5
8 —min. margin
m Linear functions case:(BR/5)
B is norm of the classifier
R is maximal norm of the data
m Independent of the data space, depends on
margin with the given data

" JEE
VC, margin based bounds

m Drawback: Large number of observed
datapoints before bounds are meaningful (<0.5)

i.e., margin-based: need at least 17 times the
dimension of a datapoint

= With 0.9 margin, need about 100,000 datapoints
high dimensional data : 17,000 dimensional data
(context sensitive spelling correction experiment)

= VC bounds: 120,000 datapoints before meaningful

" JEE
Experiment 1

m Context sensitive
error correction with
winnow based
algorithm (Golding
and Roth, 1999)

= 17,000 dimensional
data

" JEE
Experiment 2

m Face detection
problem

m RBF kernel was used L
to learn classifier

m No other details




Conclusions

m A new analysis method for linear learning
algorithms

m Data dependent complexity measure for
learning and bound on error as a function
of margin distribution of data relative to the
classifier
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VC Dimension

X — f s yest=f(x, w)

e.g. f(x, w) = sign(x*w)
+1or-1

e Different machines have different amounts of “power”
e Tradeoff
o More power: Can model complex classifiers but might overfit
o Less power: Do not overfit, but can model simple classifiers
e How do we characterize the amount of power?

csa751 On generalization bounds, projection profile, 2
and margin distribution

Vapnik-Chervonenkis
dimension

1
TrainError(w) = EZ

k=1

N |~

‘yﬁ =[x, W)‘ TestError(w) = E|:%‘y - f(x, W)@

R is #training data points

*Given a machine f, let its VC dimension be h
+h is the measure of f's power
*With probability ] — n

Rlog(2R/ k) +1)—log(17/4)
R

TestError(w) < TrainError(w) + \/

This gives a way to estimate the error on future data based on training error
and VC dimension of f

cs8751 On generalization bounds, projection profie, 3
and margin distribution

How to compute h? :

e A machine f can shatter a set of points x,, x,,
.....x, if and only if
o For every possible training set of the form (x,,y,),
(X2Y2)s (XY
o There exists some value of w that gets 0 training
error.

e NOTE: There are 2" such training sets to
consider, each with a different combination of
+1’s and -1’s for the y values.

cse751 On generalization bounds, projection profile, 4
‘and margin distribution

Shattering

Can f shatter the following points?

% e, ) = sign(x.w)

Yes!!! 4 possible values for y

. L 1§
A/ |

w={0,1} w=(-2,3) w=(2.-3) w=(0,-1}

Cs8751 On generalization bounds, projection profile, 5
and margin distribution

VC dimension definition

e Given a machine f, the VC dimension h is

e The maximum number of points that can be
arranged so that f shatters them

Cs8751 On generalization bounds, projection profile, 6
and margin distribution
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VC Dimension

® According to the VC theory, a meaningful
separating hyper-plane can be found after
training by 17n examples.

it However, in most cases, not all attributes
affect the classification result.

# Q: How small can we shrink the input
dimension?

Margin/Error probability Relationship

# Shawe-Taylor’s paper shows there is a
relationship between the margin and the
error probability.

& The confidence of whether we predict a
point correctly can be represent as a
function its margin.

Random Projection and Margin
Distribution

® This paper proves that
m the distance distortion can be represent as a
function over the projection dimension.
# Thus, given hypothesis h and the dimension
of the projection space, we can

m calculate the error probability for a data
example after the projection.

The Main Theorem

# The main theorem (Theorem 3.1) shows the true
error probability is bounded by
m the empirical error probability,
m plus the sum of
= The projection penalty, and
= The VC dimension term.
# We can build the Projection Profile, which give us
a way to balance between the dimension of the
projection space and the accuracy.

Contributions of this paper

® Devise a new linear learning algorithm that
uses random projection and margin
distribution analysis.

u Pointing out it’s possible to reduce the
dimension of the training data set while not
introducing too much distortion error.

® Giving a way to balance between dimension
and accuracy by the projection profile.




References

u Ashutosh Garg, Sariel Har Rled, Dan Roth , On
generalization bounds, projection profile, and
margin distribution, Feb. 2, 2002

& A blumer, A Ehrenfeucht, D. Haussler, and M. K.
Warmuth. Learnability and the Vapnick
Chervonenkis dimension. Journal of ACM,
36(4):929-865, 1989.

u J. Shawe 'Hylor. Classification accuracy based on
observed margin. Algorithmica, 22(1/2):157-172,
1998




