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ABSTRACT
An adaptive semi-supervised ensemble method, ASSEM-
BLE, is proposed that constructs classification ensembles
based on both labeled and unlabeled data. ASSEMBLE
alternates between assigning “pseudo-classes” to the unla-
beled data using the existing ensemble and constructing
the next base classifier using both the labeled and pseudo-
labeled data. Mathematically, this intuitive algorithm cor-
responds to maximizing the classification margin in hypoth-
esis space as measured on both the labeled and unlabeled
data. Unlike alternative approaches, ASSEMBLE does not
require a semi-supervised learning method for the base clas-
sifier. ASSEMBLE can be used in conjunction with any
cost-sensitive classification algorithm for both two-class and
multi-class problems. ASSEMBLE using decision trees won
the NIPS 2001 Unlabeled Data Competition. In addition,
strong results on several benchmark datasets using both
decision trees and neural networks support the proposed
method.
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1. INTRODUCTION
For many practical classification applications in areas such

as image analysis, drug discovery, and web pages analy-
sis, labeled data (with known class labels) can be in short
supply but unlabeled data (with unknown class labels) is
more readily available. Semi-supervised learning deals with
methods for exploiting the unlabeled data in addition to
the labeled data to improve performance on the classifica-
tion task. Semi-supervised learning has been the topic of
four different Neural Information Processing Workshops [5,
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10, 14, 15]. Existing approaches include semi-supervised
SVM [2, 22], co-training [4], and mixture models [17]. In
this paper, we examine the problem from an ensemble per-
spective. Ensemble methods such as AdaBoost [8] work by
iteratively using a base learning mechanism to construct a
classifier to improve the ensemble classifier and then adding
the classifier to the current ensemble with an appropriate
scalar multiplier (the step-size). It is well known that such
algorithms are performing gradient descent of an error func-
tion in function space [13, 16]. Depending on the measure
of quality of the classifier, different criteria are produced
for choosing the base classifier and assigning the step-size.
D’Alché-Buc et al., [6] showed that these error measures can
be extended to semi-supervised learning, but the resulting
algorithm, SSMBoost, is of limited utility because it requires
the base learner to be a semi-supervised algorithm and many
base classifiers may be required for acceptable performance
because SSMBoost uses a small fixed step-size. Our goal
is to produce an adaptive semi-supervised ensemble method
that can be used with any cost-sensitive base learner and
that has a simple, adaptive step-size rule.

A very intuitive approach would be to choose the ensemble
such that it works consistently on the unlabeled data, (i.e.,
such that the classification functions tended to vote for the
same class on the unlabeled data). This is a form of regular-
ization that could prevent overfitting on the training data.
In this work, we will show how this intuitive idea is equiva-
lent to maximizing the margin in function space of both the
labeled and unlabeled data. It is now well known that for
classification boosting can be regarded as maximizing a mea-
sure of the margin in functions space [16] and that margin
measures can be adopted to semi-supervised learning [2, 6,
11]. As in SSMBoost [6], we adopt the MarginBoost [16] no-
tation and strategy adapted to the margin measured on both
the labeled and unlabeled data. But the ASSEMBLE anal-
ysis and resulting algorithms are very different from those
of SSMBoost. The key difference is that we assign “pseudo-
classes” to the unlabeled data. These pseudo-classes make
ASSEMBLE a far more practical and powerful approach.

The advantages of ASSEMBLE are:

• Any weight-sensitive classification algorithm can be
boosted using labeled and unlabeled data.

• Unlabeled data can be assimilated into margin-cost
based ensemble algorithms for both two-class and multi-
class problems.
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• ASSEMBLE can efficiently exploit the adaptive step-
sizes used to weight each base learner within existing
supervised ensemble methods. SSMBoost is practi-
cally limited to fixed step-sizes.

• ASSEMBLE can exploit unlabeled data to reduced the
number of classifiers needed in the ensemble therefore
speeding up learning.

• ASSEMBLE works well in practice. This paper pro-
vides the first account of the winning ASSEMBLE al-
gorithm used in the 2001 NIPS Unlabeled Data Com-
petition.

• Computational results show the approach is effective
on a number of test problems, producing more accu-
rate ensembles than AdaBoost using the same number
of base learners.

The remainder of this paper is organized as follows: Sec-
tion 2 examines margins for labeled and unlabeled data
and our semi-supervised version of the AnyBoost algorithm.
Section 3 presents the winning ASSEMBLE.AdaBoost al-
gorithm from the 2001 NIPS Unlabeled Data Competition
and provides comparative results with supervised AdaBoost
on the contest datasets. In Section 4, semi-supervised and
supervised ensembles of neural networks and decision trees
are studied for several benchmark datasets. We conclude
with discussion and future work in Section 5.

2. MARGINS WITH UNLABELED DATA:
SEMI-SUPERVISED BOOSTING

In order to apply boosting to datasets with both labeled
and unlabeled data we must come up with a mechanism for
defining the margin associated with unlabeled data points.
While the strategy is in general applicable to many differ-
ent margin cost functions, we focus on the one used in Ad-
aBoost. Let the base classifiers be fj(x) : Rn → [1,−1]
where fj is the jth classifier in the ensemble. Let the labeled
training data, L, be the n-dimensional points x1, . . . , x` with
know labels, y1, . . . , y`. For now assume the problem has
two classes yi = 1 or −1. A multi-class extension is dis-
cussed in later sections. The ensemble classifier F (x) is
formed from a linear combination of the J base classifiers
F (x) =

PJ
j=1 wjfj(x) where wj is the weighting term for

the jth classifier. For labeled data points the margin is
yiF (xi). AdaBoost performs gradient descent in function
space in order to minimize an exponential margin cost func-
tion

1

`

X
i∈labeled

e−yiF (xi) (1)

Suppose we are given a set of unlabeled data, U . To
incorporate unlabeled data we must define the margin of
an unlabeled data point. We do not know the class yi for
unlabeled data points. Note that for labeled data points, the
margin, yiF (xi), is positive if the point is correctly classified
and negative if the point is wrongly classified. An unlabeled
point is never right or wrong (in some sense you can think of
it as always being correct). So as in [2, 6, 11, 22] we define
the margin for an unlabeled data point xi to be

|F (xi)| (2)

To allow the same margin to be used for both supervised
and unsupervised data we can introduce the concept of a
pseudo-class. The pseudo-class of an unlabeled data point
xi is defined as yi = sign(F (xi)). The margin then is

yiF (xi) (3)

where yi is the known class label if xi is labeled or the
pseudo-class if xi is unlabeled. The introduction of the
pseudo-class is the critical difference between our approach
and the independently developed SSMBoost [6]. By intro-
ducing pseudo-classes, we can show that our Adaptive Semi-
Supervised ensEMBLE method (ASSEMBLE), which corre-
sponds to the intuitive semi-supervised ensemble algorithm,
maximizes the margins of both the labeled and unlabeled
points in function space. As noted above, given that the
margin for labeled points is yiF (xi), we can define the mar-
gin for unlabeled data points as |F (xi)|. Using these values
we can then define a margin cost function that incorporates
both labeled and unlabeled data. The ASSEMBLE cost
function for ADABoost is

C(F ) =
X

i∈labeled

αie
−yiF (xi) +

X
j∈unlabeled

αje
−|F (xj)| (4)

In general for the supervised case with cost function M :
R → R, the cost function is

C(F ) =
X

i

αiM(yiF (xi)) (5)

(typically αi = 1
`

where ` is number of points but we allow
different weights). In general the ASSEMBLE cost function
for any margin cost function, M , is

C(F ) =
X

i∈labeled

αiM (−yiF (xi)) +
X

j∈unlabeled

αj (−|F (xj)|)

(6)
The terms αi and αj are used to weight the labeled and
unlabeled data so that we could, for example, choose to
weight the margins associated with unlabeled data points
as counting only 40% as much as the margins for labeled
data points.

To create a practical descent-based algorithm we build
on the AnyBoost approach. Recall the AnyBoost algorithm
from [16]:

Algorithm 2.1. Anyboost Algorithm

1. Let F0(x) := 0

2. for t := 0 to T do

3. Let ft+1 := L(Ft,−∇C(Ft))

4. if − < ∇C(Ft), ft+1 >≤ 0 then

5. return Ft

6. end if

7. Choose wt+1

8. Let Ft+1 := Ft + wt+1ft+1

9. end for

10. return FT+1



Here, Ft represents the ensemble classifier after the tth com-
ponent classifier has been added. T is the maximum num-
ber of classifiers we propose to include in our ensemble.
L(Ft,−∇C(Ft)) is a weak learning function applied to our
existing ensemble classifier that produces a new possible
classifier ft+1 that maximizes − < ∇C(Ft), ft+1 >, the in-
ner product of the new base classifier with the gradient of
the cost function. If this inner product is negative, adding
ft+1 cannot decrease the cost function, and the algorithm
terminates without adding the new component classifier. To
add the classifier to the ensemble, a weighting factor wt+1

is selected via an appropriate linesearch that guarantees de-
crease in the cost function.

But adding in unlabeled points our cost function now be-
comes

C(F ) =
X

i∈labeled

αiM(yiF (xi)) +
X

j∈unlabeled

αjM(|F (xi)|)

(7)
Note that this function is not differentiable since the abso-
lute value function is not differentiable. By introduction of a
pseudo-class yi for the the unlabeled data, the subgradient1

of C is

∇C(F )(x) =

8<: 0 ifx 6= xi,
i = ` + 1 . . . ` + u

αiyiM
′(yiF (xi)) if x = xi

9=;
(8)

where ` and u are the number of labeled and unlabeled data
points respectively, yi is the class (true for labeled or pseudo-
class for unlabeled), and M ′(z) is the derivative of the mar-
gin cost function with respect to z. Then we get

− < ∇C(F ), f >= −
X

i

αiyif(xi)M
′(yiF (xi)) (9)

We can safely assume the margin cost function is monoton-
ically decreasing, thus −M ′(z) is always positive. Maximiz-
ing − < ∇C(F ), f > is equivalent to finding f maximizing

−
X

yi=f(xi)

αiM
′(yiF (xi)) +

X
yi 6=f(xi)

αiM
′(yiF (xi)) (10)

where for j ∈ unlabeled, yj = sign(F (xj)).
Equivalently we can define a vector D of misclassification

costs, to allow a base learner to maximize − < ∇C(F ), f >
by constructing the minimum cost classifier. Let

z = −
X

i

αiM
′(yiF (xi))

and define

D(i) :=
αiM

′(yiF (xi))

z
. (11)

The base learner then can construct the base classifier f
by minimizing (or approximately minimizing) the weighted
error

P
i : f(xi) 6= yiD(i) . Note that the pseudo-classes

are used for the unlabeled data, thus any cost sensitive base
learning algorithm can be used.

The resulting Adaptive Semi-Supervised ensEMBLE al-
gorithm is the following:

Algorithm 2.2. ASSEMBLE

1To simplify presentation, we use ∇ to also represent the
subgradient. Strictly speaking we are now using a sub-
gradient method instead of a gradient descent method.

1. Select D0(i)

2. yi := [1, 0,−1] for i ∈ unlabeled.

3. Let F0(x) := 0

4. for t := 0 to T do

5. Let ft+1 := L(S, Y, Dt)

6. if
P

Dt(i)yift+1(xi) ≤ 0 then

7. return Ft

8. end if

9. Choose wt+1

10. Let Ft+1 := Ft + wt+1ft+1

11. Let yi = sign(Ft+1(xi)) if i ∈ unlabeled

12. Let Dt+1(i) :=
αiM′(yiFt+1(xi))P
j αjM′(yjFt+1(xj))

for all i

13. end for

14. return FT+1

L(S, Y, Dt) is our base learning algorithm that is applied
to the distribution of data points S with current labels Y
where the data points are weighted according to the current
distribution Dt. We assume that this base learning algo-
rithm L will optimize the misclassification costs, ignoring
points i with either yi = 0 or Dt(i) = 0. Now the exact al-
gorithm that results depends on the choice of cost function.
For example if assume we choose the cost function used in
AdaBoost, M(z) = e−z, then step 12 in the algorithm be-
comes

Let Dt+1(i) :=
αie

−yiFt+1(xi)P
j αje−yjFt+1(xj)

for all i (12)

2.1 Choice of Step-Size
More problematic is how to determine the step-size wt+1

in step 9. In the original AdaBoost algorithm, the step-
size is performed using an exact linesearch since for the Ad-
aBoost cost functional, the exact step-size has a closed form
solution. When we add the unsupervised data we would like
wt+1 to be chosen to minimizeP

i∈labeled αiM(yi(Ft(xi) + wt+1ft(xi)))
+
P

i∈unlabeled αiM(|(Ft(xi) + wt+1ft(xi)|). (13)

Unfortunately, no closed form solution exists for wt+1.
One possibility is to pick a small fixed step-size (e.g., wt+1 =
0.05). If the step-size is sufficiently small, the algorithm will
converge but it may converge very slowly. The algorithm
then becomes inefficient in terms of training time, storage
of the classification function, and prediction time because
many base classifiers will be used. This was the approach
used in SSMBoost [6].

An intuitive approach would be to just use the step-sizes
used for supervised learning ensembles, and simply use the
pseudo-classes for the unlabeled data. For example, we
could choose wt+1 to minimizeX

i

αiM(yi(Ft(xi) + wt+1ft+1(xi)) (14)



It is easy to show that mathematically, this leads to a de-
crease whenever a decrease is possible. For any unlabeled
point xi for which the sign of the pseudo-class yi = sign(Ft(xi))
is correctly predicted by the new base classifier in the ensem-
ble (i.e., sign(ft(xi)) = yj), the pseudo-class cost function
is accurate since

M(|Ft(xi) + wt+1ft(xi)|) = M(yi(Ft(xi) + wt+1ft(xi)))
(15)

If the unlabeled point is incorrectly classified (i.e., if yi 6=
sign(ft(xi))), then

yi(Ft(xi) + wt+1ft(xi))
= |Ft(xi)|+ yi(wt+1ft(xi))
= |Ft(xi)| − |wt+1ft(xi)|
≤ |Ft(xi) + wt+1ft(xi)|

(16)

Since M is a monotonically decreasing function,

M(yi(Ft(xi) + wt+1ft(xi))) ≥ M(|(Ft(xi) + wt+1ft(xi)|)
(17)

So the the pseudo-class cost function provides an upper
bound on the true cost function. So if we choose wt+1

to strictly decrease the pseudo-cost function then it must
strictly decrease the true cost function. Furthermore it is
always possible to strictly decrease the pseudo-cost function
if the problem is not optimal. If αi is a constant for every
data point, then we can just use the step-sizes developed
for supervised ensemble methods for various costs (see for
example [16]). If αi is variable, then minor modifications
may be required.

2.2 ASSEMBLE Variations
It is possible to construct many variations of the basic

ASSEMBLE algorithm. For example, to employ ASSEM-
BLE for multi-class problems we can extend the mechanism
by assigning pseudo-classes for unlabeled points based on
the weighted vote of the previous classifiers in the ensemble.
This approach works well in our letter-recognition results
(see Section 4.2).

As another example, we could employ other loss functions
and associated step-sizes defined for gradient based classi-
fication algorithms such as exponential loss and logistic re-
gression. All one has to do is add a step to estimate the
pseudo-costs in each iteration. In the next sections we ex-
amine how AdaBoost has been adapted to semi-supervised
learning.

3. ASSEMBLE IN NIPS COMPETITION
The following variation of the ASSEMBLE algorithm was

used for the semi-supervised method competition at the
NIPS’2001 workshop, Competition: Unlabeled Data for Su-
pervised Learning, organized by Stefan C. Kremer and Deb-
orah A. Stacey. ASSEMBLE (previously known as Semi-
Supervised Boosting) was the best among 34 algorithms and
over 100 participants utilizing unlabeled data [14].

ASSEMBLE was used to assimilate unlabeled data into
a multiclass version of AdaBoost. AdaBoost was adopted
to multiclass using a similar approach to [12]. Specifically,
ft(xi) = 1 if an instance xi is correctly classified and ft(xi) =
−1 otherwise. This makes AdaBoost increase the weight of
a misclassified point and decrease it otherwise. The pre-
dicted class is the one which achieves a majority in a vote
weighted by the ensemble weights. As in the two-class case,
the pseudo-classes of the unlabeled data are their predicted

classes. To keep training times similar for AdaBoost and
ASSEMBLE.AdaBoost, the unlabeled and labeled data were
sampled at each iteration so that the size of the training set
for the base learner equaled the size of labeled data. The
usual adaptive step-size for AdaBoost was used with the
class of unlabeled points based on the pseudo-classes.

Here is the Contest version of ASSEMBLE:

Algorithm 3.1. ASSEMBLE.AdaBoost(L,U,T,α, β)

1. Let ` := |L| and u := |U |

2. Let D1(i) :=

�
β/` if i ∈ L
(1− β)/u if i ∈ U

�
3. Let yi := c where c is the class of the nearest neighbor

point in L for i ∈ U .

4. Let f1 := L(L + U, Y, D1)

5. for t := 1 to T do

6. Let ŷi := ft(xi), i = 1 . . . ` + u

7. ε =
P

i Dt[yi 6= ŷi], i = 1 . . . ` + u

8. If ε > 0.5 then Stop

9. wt = 0.5 ∗ log( 1−ε
ε

)

10. Let Ft := Ft−1 + wtft

11. Let yi = Ft(xi) if i ∈ U

12. Let Dt+1 as in AdaBoost (equation (12) with α)

13. S = Sample(L + U, `, Dt+1)

14. ft+1 = L(S, Y, Dt+1)

15. end for

16. return FT+1

The ASSEMBLE.AdaBoost algorithm practically inherits
all the good properties of AdaBoost. But AdaBoost is prone
to overfitting. Overfitting in AdaBoost is prevented by max-
imizing the margin in function space based on both labeled
and unlabeled data. Since we sample ` points from all the
available data, ASSEMBLE has similar computational com-
plexity with AdaBoost. Nearest neighbor assignment was
used to assign the initial pseudo-class labels. While the
above algorithm is potentially applicable to any supervised
learning method, we used limited depth decision trees [21]
in the competition. The depth of the decision trees was set
to a level that minimizes the AdaBoost training error. The
rationale behind using decision trees was to show that semi-
supervised approach can work even with a simple classifi-
cation method. The initial misclassification costs D0 were
set skewed to emphasize the labeled data, but after that
misclassification costs for unlabeled and labeled data were
assumed to have equal importance ( αi = 1).

For the contest, ASSEMBLE.AdaBoost was implemented
in SPLUS. The results from the competition are summarized
in Table 1. There were originally 13 datasets in the com-
petition for both classification and regression problems. We
only considered the classification problems. Because of the
limitations in SPLUS, we did not run ASSEMBLE boosting
on some of the datasets. Separate labeled (L), unlabeled



Table 1: Results for ASSEMBLE.AdaBoost in NIPS 2001 Semi-Supervised Competition. Acc is the test set
accuracy and Impr is the percentage improvement of ASSEMBLE.AdaBoost over AdaBoost.

Data Dim. No of No of Points Acc Impr
Classes L U T (%) (%)

P1 13 2 36 92 100 65.00 8.33
P4 192 9 108 108 216 78.70 21.43
P5 1000 2 50 3952 100 76.00 16.92
P6 12 2 530 2120 2710 75.72 0.10
P8 296 4 537 608 211 57.82 16.19
CP2 21 3 300 820 300 50.67 26.67
CP3 10 5 1000 1269 500 41.20 6.74

(U) and test data were provided in this competition. Ac-
curacy results on the test data and the improvements com-
pared to AdaBoost are reported in Table 1. We used the
same number of iterations for both AdaBoost and ASSEM-
BLE.AdaBoost in general for the competition. The number
of iterations (T) were determined based on the training error
convergence in the supervised AdaBoost runs. The parame-
ter β was set to 0.9 and αi to 1 in all runs. Semi-supervised
algorithm produced double-digit improvements relative to
AdaBoost.

4. BENCHMARK EXPERIMENTS
In order to assess the performance of the algorithms out-

lined above, we performed additional experiments on a num-
ber of datasets drawn from the literature. To test the effec-
tiveness of ASSEMBLE across different classifier method-
ologies, we performed experiments using decision trees and
neural networks, methods that have proven very effective in
previous experiments with ensembles [1, 18].

4.1 Results from DT Experiments
ASSEMBLE.AdaBoost used with decision trees was tested

on three benchmark datasets obtained from boosting liter-
ature [19]. The benchmark datasets were used without any
data transformation. Each dataset consists of 100 random
instances of training and test dataset pairs. The detailed
information about datasets can be found in [19]. To con-
form with previous approaches in empirical studies of semi-
supervised learning methods [6, 7, 9, 11], we left some of the
training data as unlabeled data and then evaluated the al-
gorithm on test data. Training data were sampled 10 times
at three different levels to form labeled and unlabeled data.
Specifically, the size of the combined labeled and unlabeled
data was held constant, but the proportion of data treated
as unlabeled was varied from 20 to 60 percent. Thus 10
predictions are made for each test point.

The ASSEMBLE.AdaBoost code used in this comparison
was identical to the one used in the contest described in
Section 3. The code was implemented in SPLUS to allow
the RPART [21] decision tree algorithm to be used as the
base learner. We set the maximum depth of the decision
trees generated by RPART at 4. Information gain was used
as the splitting criterion. RPART can be used for regression
problems but we examined only the classification case in this
paper.

The number of boosting iterations was limited to a max-
imum of 25. Again we set the parameters β to 0.9 and αi

to 1 in our experiments. The results from experiments are
reported in Table 2. We report the mean error rates of AS-

SEMBLE.Adaboost and Adaboost on 1000 different runs for
each benchmark dataset. Unlabeled data were sampled as
60%, 40% and 20% of the total data used for training.

Results in Table 2 demonstrate that that semi-supervised
boosting is better or comparable to AdaBoost despite the
fact that in each trial ASSEMBLE.Adaboost received much
less labeled data.

4.2 Results from NN Experiments
In our last set of experiments we examined the perfor-

mance of ASSEMBLE on neural networks. The ASSEM-
BLE variant for the neural network experiments was slightly
different than that used for the NIPS Contest. The algo-
rithm differs in that step 13 from ASSEMBLE.AdaBoost is
dropped (all of the available data is used), and in steps 2 and
3 the unlabeled points are initially set to have class 0 (they
are not incorporated into the first classifier). These changes
were used largely because of the significant cost for nearest
neighbor labeling for the larger datasets we employed in our
multiple tests. We also employ a parameter αi that is dif-
ferent for the two sets of data, using a term that weights
the margins of unlabeled points by less (fractions from 0.4
to 1.0 were employed) to prevent the networks from overly
focusing on the unlabeled points.

In our neural network experiments we used simple multi-
layer perceptrons with a single layer of hidden units. The
networks were trained using backpropagation with a learn-
ing rate of 0.15 and a momentum value of 0.90. The datasets
for the experiments are breast-cancer-wisconsin, pima-indians
diabetes, and letter-recognition drawn from the UCI Ma-
chine Learning repository [3]. The number of units in the
hidden layer for the datasets was 5 for the breast-cancer and
diabetes datasets and 40 in the letter-recognition dataset.
The number of training epochs was set to 20 for breast-
cancer, 30 for diabetes, and 30 for letter recognition, as done
in previous ensemble experiments (see [18]). We explored a
number of values ranging from 0.4 to 1.0 for the parameter
used to weight the unlabeled data points, though there was
very little difference among the values. The results we show
use a value of 0.4 for this parameter.

To obtain our results we performed ten 10-fold cross val-
idation experiments for each result. Unlabeled data was
obtained by randomly marking a percentage of the data (in
this case, 10, 25, and 50 percent) of the data as unlabeled
points. Each semi-supervised and regular AdaBoost exper-
iment was run on the same set of points (though the unla-
beled points from each dataset are left out when applying
AdaBoost). Each method was allowed to produce up to 30
members of the ensemble, although the breast-cancer and



Table 2: Experiments on Decision Trees
Dataset Unlabeled AdaBoost ASSEMBLE

Rate (%) Test Set Error (Std Dev) Test Set Error (Std Dev)

B. Cancer 60 32.51 (2.88) 32.07 (2.93)
B. Cancer 40 31.59 (3.00) 31.36 (3.01)
B. Cancer 20 30.95 (3.25) 30.26 (3.20)
Banana 60 15.96 (0.73) 16.41 (0.74)
Banana 40 14.50 (0.58) 14.94 (0.58)
Banana 20 13.71 (0.53) 14.17 (0.59)
Diabetes 60 27.91 (1.23) 27.52 (1.16)
Diabetes 40 27.55 (1.22) 27.21 (1.15)
Diabetes 20 27.39 (1.36) 26.92 (1.27)

Table 3: Experiments for ASSEMBLE.AdaBoost on Neural Networks
Dataset Unlabeled AdaBoost ASSEMBLE

Rate (%) Test Set Error (Std Dev) Test Set Error (Std Dev)

Wisconsin Breast Cancer 50 5.09 (1.17) 4.34 (1.21)
Wisconsin Breast Cancer 25 4.91 (0.62) 4.15 (0.45)
Wisconsin Breast Cancer 10 4.46 (0.41) 3.84 (0.43)
Pima Indians Diabetes 50 25.95 (1.44) 25.54 (1.24)
Pima Indians Diabetes 25 25.81 (1.25) 24.45 (1.04)
Pima Indians Diabetes 10 25.45 (1.29) 24.22 (1.19)
Letter Recognition 50 10.11 (0.50) 9.50 (0.49)
Letter Recognition 25 9.63 (0.30) 9.21 (0.31)
Letter Recognition 10 6.87 (0.21) 6.15 (0.16)

diabetes converged quickly and therefore stopped at many
fewer classifiers.

Table 3 shows the results using the neural networks de-
scribed above as component classifiers for this variation of
the ASSEMBLE algorithm. Note that in every case, AS-
SEMBLE produced a small but measurable gain in the over-
all performance.

As a further test of the effectiveness of our algorithm
we performed several experiments on the largest of these
datasets (letter-recognition) to assess how useful unlabeled
data would be in overcoming limitations imposed by the bias
of the classifier. In this case, we greatly limited the capabili-
ties of the classifier by decreasing the number of units in the
hidden layer (we performed experiments using, 5, 10, and 20
hidden units). Since this problem has 26 output classes, the
resulting neural networks not only have to perform general-
ization, but also an encoding/decoding problem. Thus, we
would expect that additional data might help to overcome
these problems.

Figure 1 shows the resulting error rate graphed as a func-
tion of the number of classifiers. Note that not only does
ASSEMBLE outperform standard AdaBoost but that the
resulting gains generally happen earlier, and it is only with
a large number of classifiers in the ensemble that AdaBoost
begins to catch up.

5. CONCLUSION
In this paper we introduce a novel semi-supervised learn-

ing technique ASSEMBLE (for Adaptive Semi-Supervised
enSEMBLE) that is able to solve semi-supervised learning
problems (i.e., problems where some of the data is not la-
beled with a class). ASSEMBLE can be used to make any
cost sensitive classification method semi-supervised by in-
corporating it into a semi-supervised boosting algorithm.

The key to making ASSEMBLE work is the introduction of
pseudo-classes for the unlabeled data. We demonstrate that
an appropriate margin can be derived by attaching pseudo-
class yi to an unlabeled data point that simply reflects the
majority class picked for that point by the current ensem-
ble. This choice of pseudo-class allows us to derive a class of
boosting algorithms that can be applied in semi-supervised
learning situations. By incorporating pseudo-classes, exist-
ing ensemble algorithms can be readily adapted to semi-
supervised learning. In this work, we focus on ASSEM-
BLE.AdaBoost, a semi-supervised version of the popular
AdaBoost algorithm based on exponential margin cost func-
tions.

ASSEMBLE performs extremely well in empirical tests
on both two-class and multi-class problems. Using decision
trees as its component classifier, it placed first out of 34 al-
gorithms in the NIPS 2001 competition on semi-supervised
datasets. In further empirical tests using neural networks
and decision trees on datasets where some of the data points
were artificially marked as unlabeled, ASSEMBLE consis-
tently performs as well as or better than AdaBoost. Overall,
the ASSEMBLE algorithm appears to be a robust method
for combining unlabeled data with labeled data.

We plan to apply ASSEMBLE to larger datasets in or-
der to determine how well the algorithm scales for larger
problems. ASSEMBLE should be readily adaptable to scal-
able boosting algorithms such as in [20]. An interesting
open problem is how to exploit unlabeled data in regression
problems. For classification ASSEMBLE favors ensembles
that vote consistently on the unlabeled data. The analogous
strategy for regression would be to favor ensembles that ex-
hibit low variance on the unlabeled data. But we leave these
issues to future work.
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Figure 1: Neural network results for the Letter Recognition dataset using networks with 5, 10 and 20 hidden
units. Results shown are for 10, 25, and 50 percent of the data marked as unlabeled (ufractions of 0.10, 0.25,
and 0.5) for AdaBoost (superv) and ASSEMBLE (semi sup).
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