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Abstract

We propose a novel approach for incorporating prior knowledge into the
perceptron. The goal is to update the hypothesis taking into account both
label feedback and prior knowledge, in the form of soft polyhedral advice,
so as to make increasingly accurate predictions on subsequent rounds.
Advice helps speed up and bias learning so that good generalization can
be obtained with less data. The updates to the hypothesis use a hybrid
loss that takes into account the margins of both the hypothesis and advice
on the current point. Analysis of the algorithm via mistake bounds and
experimental results demonstrate that advice can speed up learning.

1 INTRODUCTION

We propose a novel online learning method that incorporates advice into a perceptron
learner that we call the Adviceptron. Prior work has shown that advice is an important
and easy way to introduce domain knowledge into learning; this includes work on
knowledge-based neural networks (Towell & Shavlik 1994) and prior knowledge in
support vector kernels (Schölkopf et al. 1998). More specifically, for SVMs (Vapnik
2000), prior knowledge can be incorporated in three ways (Schölkopf & Smola 2001):
by modifying the training data, the kernel or the formulation to be optimized. While
we focus on the last approach, we direct readers to a recent and extensive survey
(Lauer & Bloch 2008) on prior knowledge in SVMs.

Despite advances to date, research has not addressed how to incorporate
advice into incremental SVM algorithms from either a theoretical or computational
perspective. In this work, we show that it is possible to effectively incorporate advice
as in Knowledge-Based Support Vector Machines (KBSVMs) (Fung et al. 2003) into
the classical perceptron (Kivinen 2003). The main motivation for adding advice is
that it can introduce bias and reduce the number of samples required. We present a
framework for generalizing SVM-type losses to online algorithms with simple, closed-
form updates and known convergence properties. We focus on incorporating advice
into the binary classification problem and which leads to a new algorithm called the
Adviceptron. However, these techniques are readily generalized to other learning tasks
such as multi-class classification, regression and others.
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In the Adviceptron, as in KBSVMs, advice is specified for convex, polyhedral
regions in the input space of data. Advice takes the form of simple, possibly con-
junctive, implicative rules. Advice can be specified about every potential data point
in the input space that satisfies certain advice constraints, such as the rule

(feature7 ≥ 5) ∧ (feature12 ≥ 4) ⇒ (class = +1),

which states that the class should be +1 when feature7 is at least 5 and feature12

is at least 4. Advice can be specified, not only for individual features as above but
also for linear combinations of features, while the conjunction of each of these rules
allows more complex advice sets.

2 KNOWLEDGE-BASED SVMs

We now describe knowledge-based SVMs as introduced in (Fung et al. 2003). We learn
a linear classifier (w′x = b) given data (xt, yt)

T
t=1 with xt ∈ R

n and labels yt ∈ {±1}.
In addition, we also have prior knowledge specified as follows: all points that satisfy
constraints of the polyhedral set D1x ≤ d1 belong to class +1. That is, the advice
specifies that ∀x, D1x ≤ d1 ⇒ w′x−b ≥ 0. Advice can also be given about the other
class using a second set of constraints: ∀x, D2x ≤ d2 ⇒ w′x − b ≤ 0. Combining
both cases using advice labels, z = ±1, advice is given as Dx ≤ d ⇒ z(w′x− b) ≥ 0.
We assume that m advice sets (Di,d

i, zi)
m
i=1 are given.

Advice in implication form cannot be incorporated into an SVM directly; this
is done by exploiting theorems of the alternative. Observing that p ⇒ q is equivalent
to ¬p ∨ q, we require that that the latter be true; this is same as requiring that the
negation (p ∧ ¬q) be false or that the system of equations

{

Dx − d τ ≤ 0, zw′x − zb τ < 0, −τ < 0
}

has no solution (x, τ). (1)

The variable τ is introduced to bring the system to nonhomogeneous form. Applying
the nonhomogeneous Farkas theorem of the alternative (Mangasarian 1969) to (1) we
have

{

D′u + zw = 0, −d′u− zb ≥ 0, u ≥ 0
}

has a solution u. (2)

The set of (hard) constraints above incorporates the advice specified by a single advice

set. If there are m advice sets, each of the m rules is added as the equivalent set
of constraints of the form (2). When these are incorporated into a standard SVM,
the formulation becomes a hard-KBSVM (hard because the advice is assumed to be
linearly separable). As with data, linear separability of advice is a limiting assumption
and can be relaxed by introducing slack variables to soften the constraints (2). If P
and L are convex regularization and loss functions respectively, the KBSVM is

minimize
(ξ,ui,ηi,ζi)≥0,w,b

P(w) +λLdata(ξ) + µ

m
∑

i=1

Ladvice(η
i, ζi)

subject to Y (Xw − be) + ξ ≥ e,

D′
iu

i + ziw + ηi = 0,

−di′ui − zib + ζi ≥ 0, i = 1, . . . , m,

(3)
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where Y = diag(y) and e is a vector of ones of the appropriate dimension. There are
two regularization parameters λ, µ ≥ 0, which tradeoff the data and advice errors
with the regularization. While converting the advice from implication to constraints,
we introduced new variables: the advice vectors ui ≥ 0. These perform the same role
as the dual multipliers α in the classical SVM. Recall that points with non-zero α’s
are the support vectors which additively contribute to w. Here, for each advice set,
the constraints of the set which have non-zero uis are called support constraints.

2.1 Learning From Knowledge Only

We assume that the vectors ui are computed based on the advice alone before any
data are available. This is possible because we can learn purely from the advice or
by sampling the advice regions to generate pseudo-data. Given only the advice, the
following formulation is used to generate the advice vectors in a pre-processing step:

minimize
u

i≥0,w,ηi,ζi

1

2
‖w‖2

2 + µ

m
∑

i=1

(

∥

∥ηi
∥

∥

2

2
+ ζ2

i

)

subject to D′
iu

i + ziw + ηi = 0,

−di′ui − zib + ζi ≥ 0, i = 1, . . . , m.

(4)

We denote the optimal solution to (4) as (w⋆,ui,⋆). It provides two important pieces
of the Adviceptron: the advice-only hypothesis which is used to initialize the algo-
rithm (w1 = w⋆, rather than w1 = 0 as in most approaches without advice), and ui,⋆,
the advice vectors, that are incorporated into the perceptron at every iteration under
certain conditions (see Section 3). These advice vectors constrain the current hypoth-
esis, wt at every iteration during learning via D′

iu
i,⋆ + ziw + ηi = 0, i = 1, . . . , m.

The equation above is the primary mechanism through which advice is incorporated
into the perceptron.

As in most online settings, we drop the bias term, b. Once it is dropped and
the ui’s are fixed to ui,⋆, the second constraint drops out the formulation (4). Thus,
in order to incorporate advice in the online setting, we just need to ensure that the
current hypothesis wt is “consistent” with advice constraints.

3 DERIVING THE ADVICEPTRON

For the rest of the section, we assume that at trial t, we have a current hypothesis
wt as well as the pre-computed advice vectors ui,⋆. We are given a labeled instance
(xt, yt) which is used to update (if necessary) and obtain a new hypothesis wt+1.
As in the classical perceptron case, we assume that in the event of misclassification
that is, if ytw

t′xt ≤ 0, there is an update and in the event of correct classification,
ytw

t′xt > 0, there is no update. Define σh
t as follows

σh
t =

{

1, if ytw
t′xt ≤ 0, (misclassification)

0, if ytw
t′xt > 0, (correct classification)

(5)
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In the classical perceptron, updates happen only when σh
t = 1. Our advice-taking

approach differs from the perceptron case in that even when σh
t = 0, the learner

might wish to update wt if there is a misclassification according to the advice.

3.1 Advice Updates When wt Classifies Correctly (σh

t
= 0)

Consider the case where, according to wt, the current point (xt, yt) is correctly clas-
sified (ytw

t′xt > 0). In the classical perceptron, there is no update. To extend
the problem to include advice, we consider the following optimization problem which
tries to ensure that the current hypothesis wt is consistent with the given m pieces
of advice, (Di,d

i, zi)
m
i=1. We wish to update wt to

min
w

1

2
‖w − wt‖2

2 +
µ

2

m
∑

i=1

‖ηi‖2
2, s. t. D′

iu
i,⋆ + ziw + ηi = 0, i = 1, . . . , m. (6)

Eliminating ηi results in an unconstrained problem whose optimal solution can com-
puted from the gradient condition. We denote the advice-estimate of the hypothesis

according to the i-th advice set to be ri = −ziD
′
iu

i,⋆. Denote the overall average

advice-estimate to be r = 1
m

∑m

i=1 ri = − 1
m

∑m

i=1 zi D′
i u

i,⋆. The advice-estimates,
ri, represent information about each advice set as a point in the hypothesis space i.e.,
each ri provides an estimate of the hypothesis according to that particular advice
set. The centroid of these points is the average advice-estimate, r. Finally, define the
advice-influence parameter to be ν = 1

1+mµ
.

Now, the optimal solution to (6) can be compactly represented as w = ν wt +
(1 − ν) r, which is a convex combination of the current hypothesis and the average
advice-estimate. The margin of the updated hypothesis wt+1 is γa = ν ytw

t′xt +(1−
ν) ytr

′xt, a convex combination of the margin of the current data point xt w.r.t. wt,
and the margin w.r.t. r. This provides a condition under which we could apply the
update rule (6) if ytw

t′xt > 0 and :

if γa ≤ 0, perform update according to w = ν wt + (1 − ν) r,
if γa > 0, there is no advice update.

Thus, even if the classical perceptron performs no update, if, according to the advice,
the new point is misclassified, wt is updated to reflect this. Also note that for any
µ > 0, the value of ν ∈ [0, 1) and advice influence can be tuned by choosing µ.

3.2 Advice Updates When wt Misclassifies (σh

t
= 1)

The derivations in the previous subsection can be extended to deriving updates when
xt is misclassified by both the current hypothesis and advice. Such an update should
ensure that the new hypothesis classifies the current point correctly and is consistent
with the advice-estimate r. This update is the optimal solution to:

min
w

1

2
‖w−wt‖2

2 −λytw
′xt +

µ

2

m
∑

i=1

‖ηi‖2
2 s. t. D′

iu
i,⋆ + ziw + ηi = 0 i = 1, . . . , m.(7)
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Here, the formulation has the additional term −λytw
′xt, where λ > 0 is the learning

rate. The new term introduces an additional restriction that the updated hypothesis
not only classify the point (xt, yt) correctly, but do so with as large a margin as
possible while being consistent with the advice-estimate. In a manner similar to
the last subsection, we can derive the update rule for the case when σh

t = 1 to be
w = ν (wt + λytx

t) + (1 − ν) r.

3.3 A Unified Update Rule

We can combine the two update rules using σh
t to write down a unified update rule.

Thus, if ν ytw
t′xt+(1−ν) ytr

′xt ≤ 0, update using wt+1 = ν(wt+λσh
t ytx

t)+(1−ν)r.
Recall that σh

t = 1 if there is a perceptron update. Analogous to this, we can define
σa

t , which is 1 when there is an advice update:

σa
t =

{

1, if yt(ν wt + (1 − ν) r)′xt ≤ 0,

0, if yt(ν wt + (1 − ν) r)′xt > 0.
(8)

We can now formulate the Adviceptron (see Algorithm 1).

Algorithm 1 The Adviceptron Algorithm

input data (xt, yt)
T
t=1, advice sets (Di,d

i, zi)
m
i=1, λ, µ > 0

pre-compute (ui,⋆, w⋆) as optimal solution to (4)
1: let ri = −ziD

′

iu
i,⋆, r = 1/m

∑m

i=1
ri

2: let ν = 1/(1 + mµ)
3: let initial hypothesis, w1 = w⋆

4: for (xt, yt) do

5: predict label ŷt = sign(wt′xt)
6: receive correct label yt

7: compute σh
t and σa

t using (5) and (8)
8: if σa

t = 0 (there is no advice update) then

9: update wt+1 = wt + λσh
t ytx

t

10: else if σa
t = 1 (there is an advice update) then

11: update wt+1 = ν(wt + λσh
t ytx

t) + (1 − ν)r
12: end if

13: end for

We can analyze the performance of the Adviceptron by comparing to some
hypothesis w∗ which has a margin γ on the given instances, i.e., ytw

∗′xt > γ holds
for t = 1, . . . , T . Let the number of mistakes made by the current hypothesis wt be
M =

∑T
t=1 σh

t and the number of mistakes made by the advice-influenced hypothesis,

νwt + (1 − ν)r, be Ma =
∑T

t=1 σa
t .

Theorem 1. Let S = {(xt, yt)}
T
t=1 be a sequence of examples with (xt, yt) ∈ R

n × {±1},
and ‖xt‖2 ≤ X ∀t. Let A = {(Di, di, zi)}

m
i=1 be m advice sets with advice vectors ui,⋆ ≥ 0,

with ri = −ziD
′

iu
i,⋆ the i-th advice-estimate of the hypothesis and let r = 1

m

∑m

i=1
ri, be
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Figure 1: (left) promoters (right) diabetes. For a sufficiently small choice of µ,
initial error is much lower and the Adviceptron converges faster than the perceptron.

the average advice-estimate. If some w∗ ∈ R
n with ‖w∗ − r‖2 ≤ A has a margin γ on S,

the Adviceptron makes at most

M ≤
X2A2

γ2
(1 + (1 − ν) Ma)

mistakes on S, where ν = 1/(1 + mµ), µ > 0.

The proof is not presented here due to lack of space. The algorithm’s behavior can be
analyzed by investigating the bound closely; the following conclusions can be drawn:

• Smaller values of A tighten the bound because w∗ is more “consistent” with the
average advice-estimate r. If w∗ = r, we recover the original perceptron bound.

• Fewer advice updates, Ma, tighten the bound. The more consistent the current hy-
pothesis wt is with the advice r, the less likely it is that there will be an advice update.
Intuitively, this will be because an advice update occurs only when the convex combi-
nation of the margins according to wt and r is negative (ν ytw

t′xt+(1−ν) ytr
′xt ≤ 0).

If at the t-th trial, if wt is sufficiently influenced by the advice, there will be no mistake
according to the advice (σa

t = 0) and no advice update.

4 EXPERIMENTS

We show experiments using three real world data sets: the Promoters-106 data set and
Pima Indians Diabetes data set, both available from the UCI repository (Asuncion
& Newman 2007) and the USPS digit recognition data set (Hull 1994). promoters

consists of 106 data points for 57 characters of a gene sequence. The data set is
translated into 228 features, a binary bit for each location in the sequence indicating
whether that location is an A, G, T, or C. A domain theory for the data set is also
available from UCI and consists of 14 rules, which can easily be transformed into a
set of 64 rules; see (Fung et al. 2003). The diabetes consists of 768 points with 8
attributes. For domain advice, we constructed two rules based on statements from
the NIH web site on risks for Type-2 Diabetes1. A person who is obese, characterized
by high body mass index (BMI ≥ 30) and a high bloodglucose (≥ 126) is at strong

1http://diabetes.niddk.nih.gov/DM/pubs/riskfortype2
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Figure 2: Results for three pairwise digit recognition tasks from the USPS data set. (top
right) 3 vs 5. (bottom left) 5 vs 8. (bottom right) 3 vs 8.

risk for diabetes, while a person who is at normal weight (BMI ≤ 25) and a low
bloodglucose level (≤ 100) is unlikely to have diabetes. Rules are constructed based
on the above advice: e.g., (BMI ≤ 25) ∧ (bloodglucose ≤ 100) ⇒ ¬diabetes.

The usps data consists of 9298 points described by 16 × 16 pixel greyscale
images to represent handwritten digit images. We investigate 3 tasks: predicting 3
vs 5, 3 vs 8 and 5 vs 8. To create rules for these tasks we hand drew ten images
each of the digits (more specifically, our view of what the canonical digits should look
like) and then performed a blurring of the images together using PCA. We took the
principal components of the resulting image and used them as templates for rules
based on matching expected and observed pixels (see Figure 2, top left).

For each experiment, we ran 25 iterations (for promoters, 100 iterations
owing to small sample size), each using a different random 15% of the data as a
test set (1% for promoters). The advice leads to significantly faster convergence of
accuracy over the no-advice perceptron learner. This reflects the intuitive idea that
a learner, when given prior knowledge that is useful, will be able to more quickly find
a good solution. In each case, note also that the learner is able to use the learning
process to improve on the starting accuracy (which would be produced by advice
only). Thus, the Adviceptron is able to learn effectively from both data and advice.

A second point is that the knowledge allows the learner to converge on a level
of accuracy that is not achieved by the perceptron, which does not have the benefit of
advice. Although we would expect that with large amounts of data, the perceptron
might eventually be able to achieve performance similar to the Adviceptron, this
shows that advice can provide large improvements over just learning with data.
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5 CONCLUSIONS
In this paper we have presented a new online learning method, the Adviceptron, that
is a novel approach that makes use of prior knowledge in the form of polyhedral ad-
vice. Our approach differs from previous polyhedral advice-taking approaches such
as KBSVM (Fung et al. 2003) and the neural-network-based KBANN system (Towell
& Shavlik 1994) in two significant ways: it is an online method with closed-form
solutions and it provides a theoretical mistake bound. We have shown theoretically
and experimentally, that that a learner with reasonable advice can significantly out-
perform a learner without advice. We believe our approach can serve as a template
for other methods to incorporate advice into online learning methods.

KBSVMs can be extended to kernels as demonstrated in (Fung et al. 2003)
and we can directly use this approach to kernelize the Adviceptron. Other research
directions include extending the approach to other tasks such as regression and multi-
class problems. Yet another avenue is the case of advice refinement wherein the advice
is no longer fixed but also updated incrementally based on the data.
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