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Abstract
Knowledge-based support vector machines
(KBSVMs) incorporate advice from experts,
which can improve accuracy and generaliza-
tion significantly. A major limitation occurs
when the expert advice is noisy or incorrect
which can lead to poorer models and de-
creased generalization. We propose a model
that extends KBSVMs and learns not only
from data and advice, but also simultane-
ously improves the advice. This model, which
contains bilinear constraints for advice refine-
ment, is effective for learning in domains with
small data sets. We propose two approaches
to handle the bilinearity of the formulation
along with experimental results.

1. Introduction
For learning in complex environments, incor-

porating prior knowledge from experts can greatly im-
prove generalization, often with many fewer labeled
examples. Such approaches have been shown in rule
learning methods, e.g., Pazzani & Kibler (1992); arti-
ficial neural networks (ANNs), e.g., Towell & Shavlik
(1994); and more recently, in support vector machines,
e.g., Fung et al. (2003a). One limitation of approaches
to date concerns how well they adapt when the knowl-
edge provided by the expert is inexact or partially
correct. Many rule-learning methods implicitly fo-
cus on refining the given rules to learn better rules,
while ANNs form the rules as portions of the net-
work which could be refined. Further, ANN methods
have been paired with rule extraction methods, e.g.,
Craven & Shavlik (1996), to try to understand the re-
sulting learned network.
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Here, we consider the framework of knowledge-
based support vector machines (KBSVMs), which were
first introduced by Fung et al. (2003a) for classifica-
tion. KBSVMs have been further extended to in-
corporate kernels (Fung et al., 2003b), for kernel ap-
proximation (Mangasarian et al., 2004) and more re-
cently, Kunapuli et al. (2010) derived an online version
of KBSVMs. Extensive empirical results establish that
expert advice can be effective, especially for applica-
tions such as breast-cancer diagnosis and tuberculosis
spoligotype identification. KBSVMs are an effective
and attractive methodology for knowledge discovery as
they can use expert advice produce good models that
generalize well with a small amount of labeled data.

Advice is usually provided by domain experts,
typically as rules-of-thumb, based on the expert’s ac-
cumulated experience in the domain and may not al-
ways be completely accurate. It is desirable that,
rather than ignoring inaccurate rules or heavily penal-
izing approximate rules, the effectiveness of the advice
can be improved by refining them. There are three
reasons for this: first, improved rules result in the im-
provement of the overall generalization. Second, if the
refinements to the advice are interpretable, it will help
in the understanding of underlying phenomena for the
experts. Finally, this is particularly appealing for ap-
plications where only a small number of labeled exam-
ples are available, and advice can be used in lieu of a
possibly expensive labeling process.

To handle advice, KBSVMs minimize an ob-
jective function that contains three terms:

model complexity + λ data misfit + µ advice misfit.

The parameter µ trades-off regularization with advice

loss, which is analogous to data loss and measures the
closeness of fit to the advice (also see eq. 4). Fur-
thermore, the KBSVM incorporates different rules into
the hypothesis by taking linear combinations via ad-

vice vectors. Again, analogous to support vectors, only
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Figure 1. (left) Standard SVM, trades off between model complexity and error with respect to the data; (center) KBSVM,
trades off between flatness and error with respect to data and advice. A piece of advice set 1 extends over the margin,
and is penalized as the advice error. No part of advice set 2 touches the margin and is ignored. (right) SVM that refines
advice by truncating (advice set 1) or extending (advice set 2) advice so that the overall advice error is minimized.

some of the rules are incorporated and these are called
support constraints. The rules that are not support
constraints are ignored, typically when the cost of try-
ing to fit them into the hypothesis becomes too great.

To see this, consider Figure 1. The figure on
the left is the classical SVM, which trades off regu-
larization with the data error. Figure 1 (center) illus-
trates standard KBSVMs (Fung et al., 2003a). Expert
rules are specified as polyhedral advice regions in in-
put space and introduce a bias to focus the learner on
a model that also includes the advice:

∀x ∈ advice region i, class(x) = 1,

and similarly for class(x) = −1. In the KBSVM in
Figure 1 (center), a piece of advice region 1 extends
beyond the margin, and this is penalized as the ad-

vice error. Each advice region contributes to the final
hypothesis in a KBSVM via its advice vector, u1 and
u2 (see Section 2). As no part of advice set 2 touches
the margin (u2 = 0), none of its rules contribute any-
thing to the final classifier and are ignored. As some of
the rules in advice set 1 touch (in this case, intersect)
the margin, (u1 6= 0), and the corresponding rules are
called the support constraints, which are analogous to
support vectors. Consequently, in the final classifier
only uses advice set 1, with advice error. However,
though the rules are inaccurate, they are able to im-
prove the overall generalization compared to the SVM.

Now consider an SVM that is capable of refin-
ing inaccurate advice (Figure 1, right). Inaccurate ad-
vice (set 1) that intersects the hyperplane is truncated
such that it minimizes the advice error with respect to
the optimal classifier. Previously ignored advice (set
2) is extended, or refined to cover as much more of the
input space as is feasible with respect to the optimal
margin. Note that in the latter case, as advice region
2 is extended, it pushes the classifier up. The optimal
classifier now has minimized the error with respect to

the data and the refined the advice. This allows it
to further improve upon the performance of not just
the SVM but also the KBSVM. This is the motivation
behind this proposed approach.

Our approach generalizes the work of
Maclin et al. (2007), to produce a model that corrects
the polyhedral advice regions of KBSVMs. The
resulting mathematical program is no longer a linear
or quadratic program owing to bilinear correction
factors in the constraints. We propose two algo-
rithmic techniques to solve the resulting bilinear
program, one based on successive linear programming
(Maclin et al., 2007), and a concave-convex procedure
(Yuille & Rangarajan, 2001). Before detailing the
refinement algorithms, we briefly introduce KBSVMs.

2. Knowledge-Based SVMs
In KBSVMs, advice is specified in the form IF

antecedent THEN consequent. The antecedents are
convex, polyhedral regions in the input space of data.
Advice can be specified about every potential data
point in the input space that satisfies certain advice
constraints. We illustrate with the following example.

Consider a classification task of learning to
identify if a patient is at risk for diabetes, based on
various features such as body mass index, blood glu-
cose level, age etc. The National Institute for Health
(NIH) web site on risks for Type-2 Diabetes1 pro-
vides the following guidelines to establish risk for di-
abetes, according to which, a person who is obese,
characterized by high body mass index (BMI ≥ 30)
and high bloodglucose level (≥ 126) is at strong risk
for diabetes, while a person who is at normal weight
(BMI ≤ 25) and low bloodglucose level (≤ 100) is un-
likely to have diabetes. As BMI and bloodglucose are

1http://diabetes.niddk.nih.gov/DM/pubs/
∼riskfortype2
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features of the data set, we can give advice by com-
bining these conditions into conjunctive rules, one for
each class:

(BMI ≤ 25) ∧ (bloodglucose≤ 100) ⇒ ¬diabetes

(BMI ≥ 30) ∧ (bloodglucose≥ 126) ⇒ diabetes

(1)
In general, rules such as the ones above define a poly-
hedral region of the input space and are expressed as
the implication

Dx ≤ d ⇒ z(w′x− b) ≥ 1, (2)

where z = +1 indicates that all points x that satisfy
the constraints Dx ≤ d (i.e., lie in the polyhedral re-
gion) belong to class +1, while z = −1 indicates the
same for the other class.

KBSVMs learn a linear classifier (w′x = b)
given data (xi, yi)

ℓ
i=1 with xi ∈ R

n and labels yi ∈
{±1}. The data points are collected row-wise in the
matrix X ∈ R

ℓ×n, and Y = diag(y). We assume that
m advice sets (Di,d

i, zi)
m
i=1 are given in addition to

the data, and if the i-th advice set has ki constraints,
we have Di ∈ R

ki×n, di ∈ R
ki and zi = {±1}. The

absolute value of a scalar y is denoted |y|, the 1-norm
of a vector x is denoted ‖x‖1 =

∑n

i=1 |xi|, and the
entrywise 1-norm of a m × n matrix A is denoted
‖A‖1 =

∑m

i=1

∑n

i=1 |Aij |. Finally, e is a vector of ones
of appropriate dimension.

The linear SVM formulation for classification
optimizes model complexity + λ training error:

min
w,b,(ξ≥0)

‖w‖1 + λe′ξ

s.t. Y (Xw − eb) + ξ ≥ e.
(3)

The implication (2), for the i-th advice set, can be in-
corporated into (3) using the nonhomogeneous Farkas
theorem of the alternative (Fung et al., 2003a) that
introduces advice vectors ui. The advice vectors per-
form the same role as the dual multipliers α in the
classical SVM. Recall that points with non-zero α’s
are the support vectors which additively contribute to
w. Here, for each advice set, the constraints of the set
which have non-zero uis are called support constraints.

The resulting formulation is the KBSVM:

min
w,b,(ξ,ui,ηi,ζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ D′
iu

i + ziw ≤ ηi,

−di′ui − zib + ζi ≥ 1, i = 1, . . . , m.

(4)

In the case of noisy advice, the advice errors ηi and
ζi soften the advice constraints analogous to the data
errors ξ. Returning to Figure 1, for advice set 1, η1

and ζ2 are non-zero, while for advice set 2, u2 = 0.
The influence of data and advice is determined by the
choice of the parameters λ and µ which reflect the
user’s trust in the data and advice respectively.

3. Advice-Refining KBSVMs
Previously, Maclin et al. (2007) formulated a

model to refine advice in KBSVMs. However, in their
model, only the terms di are refined, that is, they only
attempt to refine each rule such that

Dix ≤ (di−f i) ⇒ zi(w
′x−b) ≥ 0, i = 1, . . . , m. (5)

The resulting formulation adds the refinement terms
into the KBSVM model (4) in the advice constraints,
as well as in the objective. The latter allows for
the overall extent of the refinement to be controlled
by the refinement parameter ν > 0. This formula-
tion was called Refining-Rules Support Vector Ma-
chine (RRSVM):

min
w,b,fi,

(ξ,ui,ηi,ζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

+ ν
∑m

i=1 ‖f i‖1

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ D′
iu

i + ziw ≤ ηi,

−(di − f i)′ui − zib + ζi ≥ 1, i = 1, . . . , m.

(6)

The RRSVM is no longer an LP owing to bilinear
terms f i′ui. Here, we consider a full generalization
of RRSVMs, which allows for much more flexibility in
refining the advice based on the data, while still re-
taining interpretability of the resulting refined advice:

(Di−Fi)x ≤ (di−f i) ⇒ zi(w
′x−b) ≥ 0, i = 1, . . . , m.

(7)
The formulation (6) now changes to include the addi-
tional refinement terms Fi:

min
w,b,Fi,fi,

(ξ,ui,ηi,ζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

+ ν
∑m

i=1

(

‖Fi‖1 + ‖f i‖1

)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − Fi)
′ui + ziw ≤ ηi,

−(di − f i)′ui − zib + ζi ≥ 1, i = 1, . . . , m.

(8)

The objective function of (8) trades-off the effect of re-
finement in each of the advice sets via the refinement

parameter ν. This is the Advice-Refining KBSVM
(arkSVM); it improves upon the work of Maclin et
al. in two important ways. First, refining d alone is
highly restrictive as it allows only for the translation

of the boundaries of the polyhedral advice; the gener-
alized refinement offered by arkSVMs allows for much
more flexibility owing to the fact that the boundaries



Advice Refinement in Knowledge-Based Support Vector Machines

Algorithm 1 arkSVM via SLP (arkSVM-slp)

1: initialize: F̂ 1
i = 0, f̂ i,1 = 0

2: while
∑

j

(

‖F t
j − F t+1

j ‖ + ‖f t
j − f t+1

j ‖
)

> ǫ do

3: (estimation step) solve for {ûi,t+1}m
i=1

min
ui≥0

w,b,(ξ,ηi,ζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − F̂ t
i )′ui + ziw ≤ ηi,

−(di − f̂ i,t)′ui − zib + ζi ≥ 1,

i = 1, . . . , m.

4: (refinement step) solve for (F̂ t+1
i , f̂ i,t+1)m

i=1

min
Fi,fi,

w,b,(ξ,ηi,ζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

+ ν
∑m

i=1

(

‖Fi‖1 + ‖f i‖1

)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − Fi)
′ûi,t+1 + ziw ≤ ηi,

−(di − f i)′ûi,t+1 − zib + ζi ≥ 1,

i = 1, . . . , m.

5: end while

of the advice can be translated and rotated (see Figure
2). Second, the newly added refinement terms, F ′

iu
i,

are bilinear also, and do not make the overall prob-
lem more complex; in addition to the successive linear
programming approach of Maclin et al. (2007), we also
propose a concave-convex procedure that leads to an
approach based on successive quadratic programming.
We provide details of both approaches next.

3.1. Successive Linear Programming (SLP)

One approach is to solve a sequence of LPs
while alternately fixing the bilinear variables. This ap-
proach has been used to solve various machine learning
formulations, for instance Bennett & Bredensteiner
(1997), and also used to solve RRSVMs. We solve
the LPs arising from alternatingly fixing the sources
of bilinearity: (Fi, f

i)m
i=1 and {ui}m

i=1.

• (Estimation Step) When (F̂ t
i , f̂ i,t)m

i=1, are fixed
we solve a KBSVM to find a data-estimate of the
advice vectors with respect to the current refine-
ment of advice: (Dj − F̂ t

j )x ≤ (dj − f̂ j,t).

• (Refinement Step) When {ûi,t}m
i=1 are fixed,

the resulting LP attempts to further refine the
advice regions based on estimates from data com-
puted in the previous step.

Algorithm 1 describes the above approach.

3.2. Successive Quadratic Programming

Algorithm 2 arkSVM via SQP (arkSVM-sqp)

1: initialize: F̂ 1
i = 0, f̂ i,1 = 0

2: while
∑

j

(

‖F t
j − F t+1

j ‖ + ‖f t
j − f t+1

j ‖
)

> ǫ do

3: solve for {ûi,t+1}m
i=1

min
Fi,fi,(ui≥0)

w,b,(ξ,ηi,ζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

+ ν
∑m

i=1

(

‖Fi‖1 + ‖f i‖1

)

s.t. Y (Xw − be) + ξ ≥ e,

eqns (10–12)

i = 1, . . . , m, j = 1, . . . , n

4: end while

Denote the j-th components of w and ηi to
be wj and ηi

j respectively. Now, consider the j-th con-

straint of (7), which can be rewritten as D′
iju

i+ziwj−

ηi
j − F ′

iju
i ≤ 0. A general bilinear term r′s, which is

non-convex, can be written as the difference of two
convex terms: 1

4‖r + s‖2 − 1
4‖r − s‖2, and we have

D′
iju

i +ziwj −ηi
j +

1

4
‖Fij −ui‖2 ≤

1

4
‖Fij +ui‖2, (9)

and both sides of the constraint above are now con-
vex and quadratic. We now linearize the right-hand
side of (9) around some current estimate of the bilin-
ear variables (F̂ t

ij , ûi,t). This produces the following
constraint

D′
iju

i + ziwj − ηi
j + 1

4‖Fij − ui‖2 ≤ 1
4‖F̂

t
ij + ûi,t‖2

+ 1
2 (F̂ t

ij + ûi,t)′
(

(Fij − F̂ t
ij) + (ui − ûi,t)

)

.

(10)
Similarly, the constraint −(Dij −Fij)

′ui−ziwj −ηi
j ≤

0, can be replaced by

−D′
iju

i − ziwj − ηi
j + 1

4‖Fij + ui‖2 ≤ 1
4‖F̂

t
ij − ûi,t‖2

+ 1
2 (F̂ t

ij − ûi,t)′
(

(Fij − F̂ t
ij) − (ui − ûi,t)

)

,

(11)

while di′ui + zib + 1 − ζi − f i′ui ≤ 0 is replaced by

di′ui + zib + 1 − ζi + 1
4‖f

i − ui‖2 ≤ 1
4‖f̂

i,t + ûi,t‖2

+ 1
2 (f̂ i,t + ûi,t)′

(

(f i,t − f̂ i,t) + (ui − ûi,t)
)

,

(12)
for i = 1, . . . , m and j = 1, . . . , n. The right-hand
sides in (10–12) are now affine. Replacing the original
bilinear constraints of (8) with the convexified relax-
ations results in a quadratically-constrained linear pro-
gram (QCLP), which we call the the restricted prob-

lem. Now, we can iteratively solve the resulting QCLP.
At the t-th iteration, the restricted problem uses the
current estimate to construct a new feasible point and
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Figure 2. Advice refinement for the polyhedral regions of the toy data set described in Section 4.1 using (left) RRSVM
(center) arkSVM-sla (right) arkSVM-sqp. The orange and green unhatched regions show the originally supplied advice.
The dark line shows the learned model and the dashed lines, the margin. For each method, we show the refined advice
after learning (vertically hatched for Class +1, and diagonally hatched for Class −1).

iterating this procedure produces a sequence of feasi-
ble points with decreasing objective values. The full
algorithm is shown in Algorithm 2.

This approach is essentially the constrained
concave-convex procedure described in the context of
machine learning approaches by Yuille & Rangarajan
(2001), and Smola & Vishwanathan (2005), who also
derived conditions under which the algorithm con-
verges to a local solution.

4. Experiments
We present the results of several experiments

that compare the performance of three algorithms:
RRSVMs, arkSVM-SLP and arkSVM-sqp. The LPs
were solved using QSOPT2, while the QCLPs were
solved using SDPT-3 (Tütüncü et al., 2003).

4.1. Synthetic Experiment

In this experiment, we consider a simple two-
dimensional data set with shown in Figure 2. The data
set consists of 200 points separated by the hyperplane
x1 + x2 = 2. There are two advice sets, which es-
sentially span the the positive and negative half quad-
rants of R

2 {S1 : (x1, x2) ≥ 0 ⇒ class = +1},
{S2 : (x1, x2) ≤ 0 ⇒ class = −1}. The final (w, b)
as well as the margin ‖w‖∞ are shown. Both of the
arkSVMs are able to refine the knowledge sets such
that the no part of S1 lies on the wrong side of the
final hyperplane. In addition, the refinement terms al-
low for sufficient modification (extension) of the advice
sets Dx ≤ d so that they fill the input space as much as
possible, without violating the margin. Comparing to
the RRSVM, we see that refinement is very restrictive
owing to corrections applied only to the right-hand-
side terms of the polyhedral advice sets, rather than
fully correcting the advice.

2http://www2.isye.gatech.edu/∼wcook/qsopt/

4.2. USPS Data Sets

The well-known USPS data consists of 9298
data points described by 16 × 16 pixel greyscale im-
ages to represent handwritten digit images. We inves-
tigated 1-vs-rest classification for each of the 10 digits.
The digit data sets were rescaled to 8 × 8. In prior
experiments using this data set (Keysers et al., 2000),
it was observed that the performance of various classi-
fiers improved statistically significantly when the data
set was augmented with up to 2, 400 machine-printed
digits. We exploit the ability of KBSVMs to accept
advice that covers regions of input space rather than
providing examples directly.

To create rules for each digit, rather than aug-
menting the data sets, we hand drew ten images for
each of the digits (more specifically, our view of what
the canonical digits should look like) and then per-
formed a blurring of the images together using princi-
pal components analysis. We took the principal com-
ponents of the resulting image and used them as tem-
plates for rules based on matching expected and ob-
served pixels. This is done by computing thresholds
at which the digit’s pixels that are on are exceeded
for the correct digit and not, for all others (see Figure
3). While the advice provided thus for each digit is
reasonable, it is far from perfect and can be refined.

For each of the 10 digits, 10 data sets with
a very small amount of labeled data (100 examples)
were randomly drawn, with positive examples being
the digit, while the negative examples being randomly
and uniformly drawn from all other digits. The rest of
the examples are held out for testing. The parameters
for the methods were selected using 10-fold cross val-
idation and the test errors for each of the 10 tasks is
shown in Figure 4. It is clear that for most of the clas-
sification tasks, either one of the arkSVM approaches
is able to improve the test-set error compared to KB-
SVMs or standard SVMs. Furthermore, compared to
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Figure 4. Results for the USPS data set for each digit vs the rest averaged over 10 runs.

Figure 3. Advice in the form Dx ≤ d from principal com-
ponents of hand-written digits (left). The advice tem-
plates for all possible digits x ∈ R

64×1 are the rows of D

while the thresholds, d, are the number of bits that should
be on for each digit.

RRSVMs, which only refine thresholds of the advice,
arkSVMs perform significantly better for every task as
they are able to refine the advice comprehensively.

5. Conclusions and Future Work
In this work, we have presented two

knowledge-discovery methods: arkSVM-sla and
arkSVM-sqp that allow support vector methods to not
only make use of advice provided by human experts
but to refine that advice using labeled data to improve
the advice. These methods are an advance over previ-
ous knowledge-based SVM methods which either did
not refine advice (Fung et al., 2003a) or could only re-
fine simple aspects of the advice (Maclin et al., 2007).

Experimentally, the resulting methods outper-
form SVMs, KBSVMs and RRSVMs. This allows the
approaches to learn in domains using only a small
amount of labeled data and imperfect advice.
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