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Abstract

An ensemble consists of a set of independently
trained classifiers (such as neural networks or
decision trees) whose predictions are combined
when classifying novel instances. Previous re-
search has shown that an ensemble as a whole is
often more accurate than any of the single classi-
fiers in the ensemble. Bagging (Breiman 1996a)
and Boosting (Freund & Schapire 1996) are two
relatively new but popular methods for produc-
ing ensembles. In this paper we evaluate these
methods using both neural networks and decision
trees as our classification algorithms. Our results
clearly show two important facts. The first is that
even though Bagging almost always produces a
better classifier than any of its individual com-
ponent classifiers and is relatively impervious to
overfitting, it does not generalize any better than
a baseline neural-network ensemble method. The
second is that Boosting is a powerful technique
that can usually produce better ensembles than
Bagging; however, it is more susceptible to noise
and can quickly overfit a data set.

Introduction

Many researchers have investigated the technique of
combining the predictions of multiple classifiers to pro-
duce a single classifier (Breiman 1996¢; Clemen 1989;
Perrone 1993; Wolpert 1992). The resulting classifier
(hereafter referred to as an ensemble) is generally more
accurate than any of the individual classifiers making
up the ensemble. Two popular methods for creating
ensembles are Bagging (Breiman 1996a) and Boosting
(or Arcing) (Freund & Schapire 1996). These meth-
ods rely on “resampling” techniques to obtain differ-
ent training sets for each of the classifiers. While pre-
vious work has demonstrated that these two methods
are very effective for decision trees (Drucker & Cortes
1996; Breiman 1996a; 1996b; Quinlan 1996), there has
been little empirical testing with neural networks (es-
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pecially with the new Boosting algorithm). In this pa-
per we present a comprehensive evaluation of Bagging
and Boosting as methods for creating ensembles of neu-
ral networks and compare these results with similar
tests for decision trees.

We tested these algorithms with 23 data sets and
find many interesting results. The first is that Bag-
ging produces more accurate ensembles than any of its
component classifiers, and is relatively impervious to
overfitting. On the other hand, with neural networks a
simple ensemble technique where the component net-
works differ only in their initial random weight settings
surprisingly does about the same as Bagging. Boost-
ing has more varied results. Sometimes it shows little
to no gain in performance over individual classifiers,
while other times showing significant gains even over
Bagging. In further tests we demonstrate that the var-
ied performance of Boosting can be partially explained
by its sensitivity to noise in the set of training exam-
ples, thus Boosting may be susceptible to overfitting.

Classifier Ensembles

Figure 1 illustrates the basic framework for a classifier
ensemble. In this example, neural networks are the ba-
sic classification method, though conceptually any clas-
sification method can be substituted in place of the net-
works. Each network in Figure 1’s ensemble (network
1 through network N in this case) is trained using the
training instances for that network. Then, for each ex-
ample, the predicted output of each of these networks
(0; in Figure 1) is combined to produce the output of
the ensemble (6 in Figure 1). Many researchers (Al-
paydin 1993; Breiman 1996¢; Krogh & Vedelsby 1995;
Lincoln & Skrzypek 1989) have demonstrated that an
effective combining scheme is to simply average the
predictions of the network.

Combining the output of several classifiers is useful
only if there is disagreement. Obviously, combining
several identical classifiers produces no gain. Hansen
and Salamon (1990) proved that if the average error
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Figure 1: A classifier ensemble of neural networks.

rate for an example is less than 50% and the com-
ponent classifiers in the ensemble are independent in
the production of their errors, the expected error for
that example can be reduced to zero as the number of
classifiers combined goes to infinity; however, such as-
sumptions rarely hold in practice. Krogh and Vedelsby
(1995) later proved that the ensemble error can be di-
vided into a term measuring the average generalization
error of each individual classifier and a term measur-
ing the disagreement among the classifiers. What they
formally showed was that an ideal ensemble consists
of highly correct classifiers that disagree as much as
possible. Opitz and Shavlik (1996a,1996b) empirically
verified that such ensembles generalize well.

As a result, methods for creating ensembles center
around producing classifiers that disagree on their pre-
dictions. Generally, these methods focus on altering
the training process in the hope that the resulting clas-
sifiers will produce different predictions. For example,
neural network techniques that have been employed
include methods for training with different topolo-
gies, different initial weights, different parameters, and
training only on a portion of the training set (Alpay-
din 1993; Drucker et al. 1994; Hansen & Salamon 1990;
Maclin & Shavlik 1995). In this paper we concentrate
on two popular methods (Bagging and Boosting) that
try to generate disagreement among the classifiers by
altering the training set each classifier sees.

Bagging Classifiers

Bagging (Breiman 1996a) is a “bootstrap” (Efron &
Tibshirani 1993) ensemble method that creates indi-
viduals for its ensemble by training each classifier on
a random redistribution of the training set. Each clas-
sifier’s training set is generated by randomly drawing,
with replacement, N examples — where N is the size
of the original training set; many of the original ex-
amples may be repeated in the resulting training set
while others may be left out. Each individual classifier
in the ensemble is generated with a different random
sampling of the training set.

Boosting Classifiers

Boosting (Freund & Schapire 1996) encompasses a
family of methods. The focus of these methods is to
produce a series of classifiers. The training set used
for each member of the series is chosen based on the
performance of the earlier classifier(s) in the series. In
Boosting, examples that are incorrectly predicted by
previous classifiers in the series are chosen more of-
ten than examples that were correctly predicted. Thus
Boosting attempts to produce new classifiers for its
ensemble that are better able to correctly predict ex-
amples for which the current ensemble performance is
poor. (Note that in Bagging, the resampling of the
training set is not dependent on the performance of
the earlier classifiers.)

In this work we examine two new and powerful
forms of Boosting: Arcing (Breiman 1996b) and Ada-
Boosting (Freund & Schapire 1996). Like Bagging,
these methods choose a training set of size NV for clas-
sifier K 4 1 by probabilistically selecting (with replace-
ment) examples from the original N training examples.
Unlike Bagging, however, the probability of selecting
an example is not equal across the training set. This
probability depends on how often that example was
misclassified by the previous K classifiers.

Both methods initially set the probability of picking
each example to be 1/N. These methods then recal-
culate these probabilities after each trained classifier is
added to the ensemble. For Ada-Boosting, let €, be the
sum of the misclassified instance probabilities of the
currently trained classifier Cy. The probabilities for
the next trial are generated by multiplying the prob-
abilities of C}’s incorrectly classified instances by the
factor By, = (1 — €)/er and then renormalizing these
probabilities so that their sum equals 1. Ada-Boosting
combines the classifiers C1, . .., Cy using weighted vot-
ing where C}, has weight log(3y). We use the revision
described by Breiman (1996b) where we reset all the
weights to be equal and restart if either € is not less
than 0.5 or € becomes 0.

Arcing updates these probabilities somewhat differ-
ently. For the ith example in the training set, the value
my; refers to the number of times that example was mis-
classified by the previous K classifiers. The probability
p; for selecting example i to be part of classifier K +1’s
training set is defined as

1+ m,-4
Pi = N (1)
2= (1 +m;t)
Breiman chose the value of the power (4) empirically
after trying several different values (Breiman 1996b).
Unlike Ada-Boosting, Arcing combines its classifiers by
unweighted voting.



Table 1: Summary of the data sets used in this paper. Shown are the number of examples in the data set; the
number of output classes; the number of continuous and discrete features describing the examples; the number of
input, output, and hidden units used in the networks; and how many epochs each network was trained.

Features Neural Network
Dataset Cases Classes Continuous Discrete Inputs Outputs Hiddens Epochs
breast-cancer-w 699 2 9 - 9 1 5 20
credit-a 690 2 6 9 47 1 10 35
credit-g 1000 2 7 13 63 1 10 30
diabetes 768 2 9 - 8 1 5 30
glass 214 6 9 - 9 6 10 80
heart-cleveland 303 2 8 5 13 1 5 40
hepatitis 155 2 6 13 32 1 10 60
house-votes-84 435 2 - 16 16 1 5 40
hypo 3772 5 7 22 55 5 15 40
ionosphere 351 2 34 - 34 1 10 40
iris 159 3 4 - 4 3 5 80
kr-vs-kp 3196 2 - 36 74 1 15 20
labor 57 2 8 8 29 1 10 80
letter 20000 26 16 - 16 26 40 30
promoters-936 936 2 - 57 228 1 20 30
ribosome-bind 1877 2 - 49 196 1 20 35
satellite 6435 6 36 - 36 6 15 30
segmentation 2310 7 19 - 19 7 15 20
sick 3772 2 7 22 55 1 10 40
sonar 208 2 60 - 60 1 10 60
soybean 683 19 - 35 134 19 25 40
splice 3190 3 - 60 240 2 25 30
vehicle 846 4 18 - 18 4 10 40
Results and weights are initialized randomly to be between -0.5

To evaluate the performance of Bagging and Boost-
ing we performed experiments on a number of data
sets drawn from the UCI data set repository (Murphy
& Aha 1994). We report Bagging and Boosting error
rates for each data set for both neural network and
decision tree ensembles along with the error rate for
simply using a single network or single decision tree.
We also report results for a very simple network ensem-
ble approach — creating an ensemble of networks where
each network varies only by randomly initializing the
weights of the network.

Methodology

All results are averaged over five standard 10-fold
cross validation experiments. For each 10-fold cross
validation the data set is first partitioned into 10 equal-
sized sets, then each set is in turn used as the test set
while the classifier trains on the other nine sets. For
each fold an ensemble of 10 networks is created (for
a total of 100 networks for each 10-fold cross valida-
tion). Parameter settings for the neural networks in-
clude a learning rate of 0.15, a momentum term of 0.9,

and 0.5. The number of hidden units and epochs used
for training are given in the next section. We chose
the number of hidden units based on the number of
input and output units. This choice was based on the
criteria of having at least one hidden unit per output,
at least one hidden unit for every ten inputs, and five
hidden units being a minimum. The number of epochs
was based both on the number of examples and the
number of parameters (i.e., topology) of the network.
For the decision trees we used the C4.5 tool (Quin-
lan 1996) using pruned trees as suggested in Quinlan’s
work (which empirically produce better performance).

Datasets

Our data sets were drawn from the UCI repository with
emphasis on ones that were previously investigated by
other researchers. Table 1 gives the characteristics of
the data sets we chose. The data sets chosen vary
across a number of dimensions including: the type of
the features in the data set (i.e., continuous, discrete,
or a mix of the two); the number of output classes; and
the number of examples in the data set. Table 1 also
shows the architecture and training parameters used



Table 2: Test set error rates for the data sets using (1) a single neural network classifier; (2) an ensemble where
each individual network is trained using the original training set and thus only differs from the other networks
in the ensemble by its random initial weights; (3) an ensemble where the networks are trained using randomly
resampled training sets (Bagging); an ensemble where the networks are trained using weighted resampled training
sets (Boosting) where the resampling is based on the (4) Arcing method and (5) Ada method; (6) a single decision
tree classifier; (7) a Bagging ensemble of decision trees; and (8) a Boosting ensemble of decision trees.

Neural Network C4.5
Boosting Boosting
Dataset Standard Simple Bagging Arcing Ada Standard Bagging Ada
breast-cancer-w 3.3 34 3.3 3.2 3.9 5.0 3.3 3.1
credit-a 14.8 14.0 14.1 14.8 16.2 14.9 12.1 12.6
credit-g 28.3 24.4 24.3 24.8 26.4 29.6 22.8 22.9
diabetes 23.6 22.8 23.2 23.6 22.8 28.3 21.9 22.3
glass 38.5 35.5 33.7 31.5 33.2 30.9 28.4 30.5
heart-cleveland 18.2 17.3 16.7 18.9 19.1 24.3 18.1 17.4
hepatitis 19.9 19.6 18.1 18.9 18.1 21.6 16.5 13.8
house-votes-84 5.0 4.9 4.3 4.7 5.1 3.5 3.6 4.4
hypo 6.4 6.2 6.2 6.4 6.2 0.5 0.4 0.4
ionosphere 10.1 8.0 7.6 7.0 8.0 8.1 6.0 6.0
iris 4.3 4.0 4.3 2.9 3.3 6.0 4.6 5.6
kr-vs-kp 2.3 0.9 0.9 0.6 0.4 0.6 0.5 0.3
labor 5.3 4.2 4.9 3.2 5.0 15.1 13.3 13.2
letter 18.0 12.8 12.5 6.2 4.6 14.0 10.6 6.7
promoters-936 5.0 4.8 4.5 4.7 4.7 12.8 9.5 6.3
ribosome-bind 9.5 8.5 8.4 8.4 8.5 11.2 9.3 9.1
satellite 12.9 11.1 11.0 10.3 10.3 13.8 10.8 10.4
segmentation 6.7 5.6 5.3 3.7 3.7 3.7 2.8 2.3
sick 6.0 5.7 5.8 5.4 4.8 1.3 1.0 0.9
sonar 16.9 16.7 16.5 15.9 12.5 29.0 21.6 19.7
soybean 9.0 6.4 6.8 6.5 6.3 8.0 8.0 7.9
splice 4.7 4.0 3.9 4.0 4.3 5.9 5.7 6.3
vehicle 24.5 21.1 21.7 19.3 19.5 29.4 26.1 24.8

in our neural networks experiments.

Experimental Results

Table 2 shows the neural network and decision tree
error rates for the data sets described in Table 1 for
the five neural network methods and three decision tree
methods discussed in this paper.

Discussion

One conclusion that can be drawn from the results
is that both the Simple Ensemble and Bagging ap-
proaches almost always produces better performance
than just training a single classifier. For some of these
data sets (e.g., glass, kr-vs-kp, letter, segmentation,
soybean, and vehicle) the gains in performance are
quite significant. One aspect many of these data sets
share is that they involve predictions for more than
two classes, which suggests that ensembles may be es-
pecially important for this type of data. Another inter-
esting conclusion is that Bagging produces results sim-

ilar to those of the Simple Ensemble. What this shows
is that simply changing the initial weight settings of
a neural network is nearly as effective at causing nec-
essary changes in a network’s predictions as creating
small changes in the training set.

For Boosting, the results are more varied. Arcing
sometimes produces results that are the same or worse
than using a single classifier; however, other times it
not only significantly outperforms using a single classi-
fier, but significantly outperforms Bagging (e.g., kr-vs-
kp, letter, segmentation, and vehicle). Ada-Boosting’s
results are even more extreme. For certain data sets
(kr-vs-kp, letter, sonar), Ada-Boosting produces a sig-
nificant gain over any other method (including Arcing).
On other data sets Ada-Boosting produces results that
are even worse than using a single classifier (breast-
cancer-wisconsin, credit-a, heart-cleveland). For both
Boosting methods, it seems that when they work, they
are extremely effective; on the other hand, when the
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Figure 2: Simple, Bagging, and Boosting (Arcing and Ada) neural network ensembles reduction in error rate
compared to using a single neural network classifier on four data sets with varying levels of noise introduced into
the data set. Graphed is the percentage point reduction in error (e.g., for 5% noise in the segmentation data set,
if the single network method had an error rate of 15.9% and the Bagging method had an error rate of 14.7%, then
this is graphed as a 1.2 percentage point reduction in the error rate).

Boosting methods fail they can often hinder perfor-
mance. It is also interesting to note that both Boost-
ing methods significantly outperform Bagging on the
letter, segmentation, and vehicle domains, which sug-
gests that their positive effects may be greatest when
multiple classes are predicted.

Freund & Shapire (1996) suggested that the some-
times poor performance of Boosting results from over-
fitting the training set since later training sets may be
over-emphasizing examples that are noise (thus creat-
ing extremely poor classifiers). This argument seems
especially pertinent to Ada-Boosting for two reasons.
The first and most obvious reason is that its method
for updating the probabilities may be over-emphasizing
noisy examples. The second reason is that the clas-
sifiers are combined using weighted voting. Previous
work (Sollich & Krogh 1996) has shown that optimiz-
ing the combining weights can lead to overfitting while
an unweighted voting scheme is generally resilient to
the problems of overfitting.

To evaluate the hypothesis that Boosting may be
prone to overfitting we performed a second set of exper-
iments using the four ensemble neural network meth-
ods. We introduced 5%, 10%, 20%, and 30% noise?
into four different data sets. At each level we created
five different noisy data sets, performed a 10-fold cross
validation on each, then averaged over the five results.
In Figure 2 we show the reduction in error rate for each
of the ensemble methods compared to using a single
neural network classifier. These results demonstrate
that as the noise level grows, the efficacy of the Sim-
ple and Bagging ensembles generally increases while

25% noise indicates that 5% of the features of the ex-
ample, both input and output features, were randomly
changed to other feature values.

the Arcing and Ada-Boosting ensembles gains in per-
formance are much smaller (or may actually decrease).
Note that this effect is more extreme for Ada-Boosting
which supports our hypothesis that Ada-Boosting is
more effected by noise. This suggests that Boost-
ing’s poor performance for certain data sets may be
explained by overfitting noise in those data sets.

Finally, we can compare the results of the neural net-
work approaches with the C4.5 approaches. Here the
results are nearly equivocal. Neural networks perform
significantly better than decision trees for several data
sets but decision trees also outperform neural networks
for several data sets, so no strong conclusions can be
drawn. One interesting thing to note is that the per-
formance of Bagging and Boosting on neural networks
generally correlates with the performance of Bagging
and Boosting on C4.5. This suggests that the advan-
tages and disadvantages of both Bagging and Boosting
are independent of the classifier used and depend only
on the domain on which they are being applied.

Future Work

Though our results do indeed suggest that both Boost-
ing methods are prone to overfitting, we noted that
there are at least two possible explanations for this:
(1) over-emphasizing noisy examples in the later train-
ing sets; and (2) weighted voting of the networks. We
plan to perform further experiments to determine if
the overfitting that occurs is explained by one of these
factors or by a combination of both.

Since the Boosting methods are extremely success-
ful in many domains, we plan to investigate novel ap-
proaches that will retain the benefits of Boosting. The
goal will be to create a learner where you can essen-
tially push a start button and let it run. To do this



we would try to preserve the benefits of Boosting while
preventing overfitting on noisy data sets.

We also plan to compare Bagging and Boosting
methods to other methods introduced more recently.
In particular we intend to examine the use of Stacking
(Wolpert 1992) as a method of training a combining
function, so as to avoid the effect of having to weight
classifiers. We will also compare Bagging and Boosting
to other methods such as Opitz and Shavlik’s (1996b)
approach to creating an ensemble. This approach uses
genetic search to find classifiers that are accurate and
differ in their predictions.

Conclusions

This paper presents an empirical evaluation of Bagging
(Breiman 1996a) and Boosting (Freund & Schapire
1996) for neural networks and decision trees. Our re-
sults demonstrate that a Bagging ensemble nearly al-
ways outperforms a single classifier. Our results also
show that an Arcing ensemble can greatly outperform
both a Bagging ensemble and a single classifier. How-
ever, for some data sets Arcing only shows a small or
zero gain in performance over a single classifier. Sim-
ilarly, we show that an Ada-Boosting ensemble can
outperform all of the other methods (including Arc-
ing), but that Ada-Boosting can also actually produce
worse performance than using a single classifier. Fur-
ther tests demonstrate that the performance of both
methods of Boosting declines as the amount of noise
in a data set increases, and that this result is more
extreme in Ada-Boosting. In conclusion, as a general
technique, Bagging is probably appropriate for most
problems, but when properly applied, Boosting (either
Arcing or Ada) may produce larger gains in accuracy.
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