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ABSTRACT

This paper describes a connectionist method for refining algorithms represented as
generalized finite-state automata. The method translates the rule-like knowledge in an
automaton into a corresponding artificial neural network, and then refines the
reformulated automaton by applying backpropagation to a set of examples. This
technique for translating an automaton into a network extends the KBANN algorithm, a
system that translates a set of propositional rules into a corresponding neural network.
The extended system, FSKBANN, allows one to refine the large class of algorithms that
can be represented as state-based processes. As a test, FSKBANN is used to improve the
Chou-Fasman algorithm, a method for predicting how globular proteins fold. Empirical
evidence shows that the multistrategy approach of FSKBANN leads to a statistically
significantly more accurate solution than both the original Chou-Fasman algorithm and a
neural network trained using the standard approach. Extensive statistics report the types
of errors made by the Chou-Fasman algorithm, the standard neural network, and by the
FSKBANN network.

This paper appears in the Machine Learning Journal, Volume 11, 1993, pp. 195-215.
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1. INTRODUCTION
As machine learning has been applied to complex real-world problems, many researchers

have found themselves turning to systems that combine knowledge from multiple sources. A
standard approach is to incorporate existing knowledge about a domain into an empirical
learning system, so as to produce a more accurate solution. Artificial neural networks (ANNs)
have been shown to be a powerful technique for empirical learning, but until recently ANNs
were largely unable to take advantage of existing problem-specific knowledge. This paper
describes an extension to the KBANN system (Towell, Shavlik, & Noordeweir, 1990), a
connectionist system that refines symbolic domain knowledge. The extended system, called
Finite-State KBANN (FSKBANN), translates domain theories that use state information,
represented as generalized finite-state automata (FSAs; Hopcroft & Ullman, 1979), into neural
networks. The system then refines these networks using backpropagation (Rumelhart, Hinton, &
Williams, 1986) with a set of examples.

The application of KBANN to the domain of gene recognition (Towell et al. , 1990;
Noordeweir, Towell, & Shavlik, 1991) showed that domain theories refined by neural networks
can be more accurate than both the unrefined domain knowledge and neural networks trained in
the standard manner. That work demonstrates the promise of a multistrategy approach based on
the combination of the symbolic representation of rules with the numeric representation inherent
to neural networks. By allowing domain theories to express state information, FSKBANN greatly
extends the applicability of the KBANN approach. Researchers outside of machine learning
generally publish algorithms rather than the sets of rules machine learning researchers refer to as
domain theories. Many of these algorithms maintain some sense of state, so this extension
makes it easier to use machine learning to refine existing "real-world" knowledge. We test our
extended system by refining the Chou-Fasman algorithm (Chou & Fasman, 1978) for predicting
(an aspect of) how globular proteins fold, an important and particularly difficult problem in
molecular biology.

State in a domain theory represents the context of the problem. For example, if the
problem is to find a path across a room, the state variables may include whether or not the light
is on. The rules introduced to solve this problem can therefore take into account the state of the
problem — rules to turn on the light would only be considered when the state indicated that the
light was off. In this style of problem solving, the problem is not solved in one step, but instead
as a series of actions, each leading to a new state, that leads to the goal state (turning on the light,
navigating to the couch, etc.).

The protein-folding problem is an open problem that is becoming increasingly critical as
the Human Genome Project (Watson, 1990) proceeds. The Chou-Fasman algorithm is the focus
of this paper because it is one of the best-known and widely-used algorithms in the field. The
protein-folding problem is also of interest because a number of machine learning techniques are
currently being applied to this problem, including neural networks (Holley & Karplus, 1989;
Qian & Sejnowski, 1988), inductive logic programming (Muggleton & King, 1991), case-based
reasoning (Cost & Salzberg, in press), and multistrategy learning (Zhang, 1991). Our work
shows that a multistrategy approach combining the Chou-Fasman algorithm with a neural
network produces a more accurate result than either method alone.

This paper presents and empirically analyzes the FSKBANN approach for problem solving
in domains where prior state-based knowledge exists. Section 2 presents the basic KBANN
algorithm and discusses the extension of the algorithm to handle state information. Section 3
defines the protein-folding problem and reviews previous approaches taken. Following that are
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experiments that investigate the utility of FSKBANN for this problem.

2. Finite-State KBANN
Before describing FSKBANN, we review the basic KBANN (for Knowledge-Based Artificial

Neural Networks) algorithm (Towell et al., 1990). KBANN translates a domain theory
represented as simple rules into a promising initial neural network. This technique allows neural
networks to take advantage of pre-existing knowledge about a problem.

KBANN takes as input a set of propositional, non-recursive rules, such as those shown in
Figure 1a. Figure 1b shows the dependencies among the rules. A dependency is indicated by a
link between two propositions — arcs show conjunctive dependencies. From the set of
dependencies, it is easy to map the rules to a network by replacing each proposition with a
corresponding unit (and adding units where conjunctions are combined into disjunctions).
Figure 1c displays the resulting network. This network has the same behavior as the rules for
each possible input vector. After setting the weights and biases of the units in the network,
KBANN connects each unit to any unconnected units at the next lower level in the network using
a small-weight link (the resulting network appears in Figure 1d). KBANN adds these connections
so that it can learn new dependencies during backpropagation learning. For further details see
Towell (1991).

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 1. The type of problem solving to which FSKBANN is applicable.

Given: a state-dependent domain theory and a goal description.

Repeat
Set input

� �

� � externally-provided information
+

current internal representation of the problem-solving state

Produce, using the domain theory and goal description,

output
� �

� � results specific to this problem solving step
+

next internal representation of the problem-solving state

Until a Termination Criterion is met.

To handle a wider class of problems, this work extends KBANN to translate domain theories
represented as generalized FSAs1. The main extension for FSKBANN is the type of network onto
which the domain theory is mapped. FSKBANN maps domain theories onto a variant of simple
recurrent networks (Jordan, 1986; Elman, 1990), where a subset of the network output is copied
back as input to the network in the next step. This copied output represents the current state
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calculated by the network and can be used in calculating the succeeding state.

Table 1 describes the class of problem solvers to which FSKBANN is applicable. Consider a
problem solver that determines the next state on the basis of both externally-provided input and
its internal representation of the current state of the problem solution. The externally-provided
input may involve a description of the initial state or the changing measurements of sensors (as
in a reactive planner). The task of the problem solver is to produce the appropriate output for
this step in the problem solution (e.g., the operator to apply), as well as to choose its internal
representation of the next state of the problem solution. This process repeats until a termination
condition is met (e.g., a goal state is reached).

The description in Table 1 is essentially a definition of state-based problem solving. The
contribution of FSKBANN is a mechanism for using neural networks to improve a state-
dependent domain theory. The inputs and outputs in Table 1 directly map to input and output
units in a neural network, and the basic KBANN algorithm uses the domain theory to determine
the number and connectivity of the hidden units. Figure 2 shows a diagram of the type of
network produced by FSKBANN.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

The FSKBANN approach requires that the user provide sample input/output pairs which can
be used to train the network with backpropagation. It also requires that the inputs and outputs be
of bounded size, which means the domain theory can only store a finite amount of state
information. Finally, FSKBANN requires the domain theory be propositional, since no good
mechanism exists for dealing with predicate calculus variables in neural networks. Despite these
current limitations, it is likely that many "real-world" algorithms can be adequately represented
in this finite-state framework. It is an open empirical question whether and where our neural-
based approach generalizes better than inductive logic programming approaches (Muggleton,
1990; Quinlan, 1990), which learn a larger class of languages.

3. THE PROTEIN-FOLDING PROBLEM
This section describes the protein-folding problem, an open problem in the field of

molecular biology which is being examined by researchers in both the biological and the
machine learning community. Following that is an outline of a standard algorithm used by the
biological community to solve this problem, along with a description of how this algorithm can
be mapped into Section 2’s framework.

Proteins are long strings of amino acids, several hundred elements long on average. There
are 20 amino acids in all (represented by different capital letters). The string of amino acids
making up a given protein constitutes the primary structure of the protein. Once a protein forms,
�����������������������������������������������������������������������

1The notion of FSA in FSKBANN is generalized in that rather than taking a single input value at each step, the FSA may
take a set of input values.
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it folds into a three-dimensional shape which is known as the protein’s tertiary structure.
Tertiary structure is important because the form of the protein strongly influences its function.

At present, determining the tertiary structure of a protein in the laboratory is costly and
time consuming. An alternative solution is to predict the secondary structure of a protein as an
approximation. The secondary structure of a protein is a description of the local structure
surrounding each amino acid. One prevalent system of determining secondary structure divides
a protein into three different types of structures: (1) α-helix regions, (2) β-strand regions, and
(3) random coils (all other regions). Figure 3 shows the tertiary structure of a protein and how
the shape is divided into regions of secondary structure. For our purposes, the secondary
structure of a protein is simply a sequence corresponding to the primary sequence. Table 2
shows a sample mapping between a protein’s primary and secondary structures.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 2. Primary and secondary structures of a sample protein.
�������������������������������������������������������������������������������������������������������������������������������������

Primary
(20 possible amino acids)

P S V F L F P P K P ...
�������������������������������������������������������������������������������������������������������������������������������������

Secondary
(three possible local structures)

c c β β β β c c c α ...
�������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Table 3 contains predictive accuracies of some standard algorithms from the biological
literature for solving the secondary-structure problem (Chou & Fasman, 1978; Garnier &
Robson, 1989; Lim, 1974). In the data sets used to test the algorithms, 54-55% of the amino
acids in the proteins are part of coil structures, so 54% accuracy can be achieved trivially by
always predicting coil. It is important to note that many biological researchers believe that
algorithms which only take into account local information can only achieve limited accuracy
(Wilson et al., 1985), generally believed to be at most 80-90% (Cohen & Presnell, personal
communication).

Table 3. Accuracies of various (non-learning) prediction algorithms.
� ���������������������������������������������������������������������������������������������������������������������������������

Method Accuracy Comments� ���������������������������������������������������������������������������������������������������������������������������������
Chou & Fasman (1978) 58% data from Qian & Sejnowski (1988)
Lim (1974) 50% from Nishikawa (1983)
Garnier & Robson (1989) 58% data from Qian & Sejnowski (1988)� ���������������������������������������������������������������������������������������������������������������������������������

�
�
�
�
�

�
�
�
�
�

Another approach to the secondary-structure problem is to use a learning method such as
neural networks (Holley & Karplus, 1989; Qian & Sejnowski, 1988). The neural networks in
these efforts have as input a window of amino acids consisting of the central amino acid being
predicted, plus some number of the amino acids before and after it in the sequence (similar to
NETTALK networks, Sejnowski & Rosenberg, 1987). The output of the network is the secondary
structure for the central amino acid. Figure 4 shows the general structure of this type of
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network; Table 4 presents results from these studies.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Our approach is to combine the knowledge from biological methods with a neural learning
method in the hopes of achieving a better solution. We chose the Chou-Fasman algorithm (Chou
& Fasman, 1978) as our domain theory because it is widely used. The Chou-Fasman approach is
to find amino acids that are likely to be part of α-helix and β-strand regions, and then to extend
these predictions to neighboring amino acids. Figure 5 provides a schematic overview of the
algorithm. The first step of the process is to find nucleation sites. Nucleation sites are amino
acids that are likely to be part of α-helix or β-strand structures, based on their neighbors and
according to the conformation probabilities and rules reported by Chou and Fasman. From these
sites, their algorithm extends the structure both forward and backward along the protein, as long
as the probability of being part of a α-helix structure remains sufficiently high. After predicting
both α-helix and β-strand regions, the Chou-Fasman algorithm compares the relative
probabilities of regions to resolve predictions that overlap.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 5. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

This algorithm cannot be easily represented using propositional rules, since the prediction
for an amino acid may depend on the predictions for its neighbors. However, one can represent
the algorithm with a generalized FSA (see Figure 6). The start state of the FSA is coil. To make
predictions for a protein, the protein is scanned2, with the input at each step the amino acid being
classified plus its neighbors (a window). Each prediction is based on the last prediction (or state)
and depends on which "transitions" are valid for the current input window. The notion of

Table 4. Neural network results for the secondary-structure prediction task.
�������������������������������������������������������������������������������������������������������������������������

Number ofMethod Accuracy
Hidden Units

Window Size
�������������������������������������������������������������������������������������������������������������������������

Holley & Karplus (1989) 63.2% 2 17
Qian & Sejnowski (1988) 62.7 40 13�������������������������������������������������������������������������������������������������������������������������

�
�
�
�
�

�
�
�
�
�

�����������������������������������������������������������������������
2FSKBANN actually scans each protein twice: from left-to-right and from right-to-left. It then sums the results so as to

simulate extending nucleation sites in both directions.
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transition in Figure 6’s automata is complex. Each transition is actually a set of rules dependent
on the input window and the current state. For example, in the FSA there is a transition from
state helix to state coil on break-helix. This is represented by the rule:

coil
i ← helix

i-1 ∧ break-helix.

The term break-helix is not an input to the network, but is instead itself a predicate derived from
the input. Break-helix is defined in terms of two other rules:

break-helix ← helix-break@0 ∧ helix-break@1.
break-helix ← helix-break@0 ∧ helix-indiff@1.

The terms helix-break@0, helix-break@1, and helix-indiff@1 are further defined by other rules
(see the Appendix for the full set of rules defining the FSA).

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 6. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 5 shows how this algorithm fits into the FSKBANN framework of Table 1. The
resulting network appears in Figure 7 (although not shown, recall that the network also contains
low-weighted links into hidden units). This network is similar to the one in Figure 4, but with
two major differences. One, the input to the network includes a copy of the past prediction made
by the network — this represents the state of the network. Two, the topology of the hidden units
is determined by the rules implementing the Chou-Fasman algorithm.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 7. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 5. Mapping the Chou-Fasman algorithm into the FSKBANN framework.

domain theory
� �

� � the Chou-Fasman algorithm

goal
� �

� � assign a secondary structure to each amino acid

external input
� �

� � a sliding window of amino acids

current state
� �

� � the predicted secondary structure for the previous amino acid

results
� �

� � the predicted secondary structure for the current amino acid

next state
� �

� � ditto
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4. EXPERIMENTAL STUDY
This section reports several experiments on the protein-folding problem that evaluate

FSKBANN. They demonstrate that FSKBANN has a small, but statistically significant, gain in
accuracy over both standard artificial neural networks (ANNs) and over the non-learning Chou-
Fasman algorithm. This section also contains an in-depth empirical analysis of the strengths and
weaknesses of the different methods.

4.1. Experimental Details
The experiments use the data set from Qian and Sejnowski (1988). Their data set consists

of 128 segments from 106 proteins with a total of 21,623 amino acids, for an average length of
169 amino acids per segment. Of these amino acids, 54.5% are part of coil structures, 25.2%
part of α-helix structures, and 20.3% part of β-strand structures. We randomly divided the
proteins ten times into disjoint training and test sets, which contained two-thirds (85 proteins)
and one-third (43 proteins) of the original proteins, respectively.

We use backpropagation to train the neural networks in the two approaches (FSKBANN and
standard ANNs). Training is terminated using patience3 as a stopping criterion (Fahlman &
Lebiere, 1990). During training, we divided the proteins used for training into two portions — a
training set and a tuning set. We employ the training set to train the network and the tuning set
to estimate the generalization of the network. For each epoch, the system trains the network on
each of the amino acids in the training set; it then assesses accuracy on the tuning set. We retain
the set of weights achieving the highest accuracy for the tuning set and use this set of weights to
measure test set accuracy.

FSKBANN randomly chooses a "representative" tuning set; it considers a tuning set
representative if the percentages of each type of structure (α, β, and coil) in the tuning set
roughly approximate the percentages of all the training proteins. Note that the system does not
consider the testing set when comparing the percentages. Through empirical testing (not
reported here), we found that a tuning set size of five proteins achieves the best results for both
FSKBANN and ANNs. It is important to note that this style of training is different than that
reported by Qian and Sejnowski. They tested their network periodically and retained the
network that achieved the highest accuracy for the test set.

FSKBANN uses 28 hidden units to represent the Chou-Fasman domain theory. Qian and
Sejnowski report that their networks generalized best when they had 40 hidden units. Using the
methodology outlined above, we compared standard ANNs containing 28 and 40 hidden units.
We found that networks with 28 hidden units generalized slightly better; hence, for this paper’s
experiments we use 28 hidden units in our standard ANNs. This has the added advantage that
the FSKBANN and standard networks contain the same number of hidden units.

4.2. Results and Analysis
Table 6 contains results averaged over the 10 test sets. The statistics reported are the

percent accuracy overall, the percent accuracy by secondary structure, and the correlation
coefficients for each structure4. The correlation coefficient is good for evaluating the
�����������������������������������������������������������������������

3The patience criterion states that training should continue until the error rate has not decreased for some number of
training cycles. For this study we set the number of epochs to be four (a value determined by empirical testing).
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effectiveness of the prediction for each of the three classes separately. The resulting gain in
overall accuracy for FSKBANN over both ANNs and the non-learning Chou-Fasman method is
statistically significant at the 0.5% level (i.e. with 99.5% confidence) using a t-test.

The apparent gain in accuracy for FSKBANN over ANN networks appears fairly small (only
1.6 percentage points), but this number is somewhat misleading. The correlation coefficients
give a more accurate picture. They show that the FSKBANN does better on both α-helix and coil
prediction, and much better on β-strand prediction. The reason that the ANN solution still does
fairly well in overall accuracy is that it predicts a large number of coil structures (the largest
class) and does very well on these predictions.

The gain in accuracy for FSKBANN over the Chou-Fasman algorithm is fairly large and
exhibits a corresponding gain in all three correlation coefficients. It is interesting to note that the
FSKBANN and Chou-Fasman solutions produce approximately the same accuracy for β-strands,
but the correlation coefficients demonstrate that the Chou-Fasman algorithm achieves this
accuracy by predicting a much larger number of β-strands.

Also shown in Table 6 are results for ANNs that included state information — networks
similar to Qian and Sejnowski’s but where the previous output forms part of the current input
vector. These results show that state information alone is not enough to increase the accuracy of
the network prediction.

To evaluate the usefulness of the domain theory as a function of the number of training
examples and to allow us to estimate the value of collecting more proteins, we performed a
second series of tests. We divided each of the training sets into four subsets: the first contained
the first 10 of the 85 proteins; the second contained the first 25; the third contained the first 50;
and the fourth had all 85 training proteins. This process produced 40 training sets. Each of these
training sets was then used to train both the FSKBANN and ANN networks. Figure 8 contains the
results of these tests. FSKBANN shows a gain in accuracy for each training set size (statistically
significant at the 5% level, i.e. with 95% confidence).

Table 6. Results from different prediction methods.
�������������������������������������������������������������������������������������������������������������������������������������������������

Testset Accuracy Correlation Coefficients
Method Total Helix Strand Coil Helix Strand Coil�������������������������������������������������������������������������������������������������������������������������������������������������

Chou-Fasman 57.3% 31.7% 36.9% 76.1% 0.24 0.23 0.26
ANN 61.8 43.6 18.6 86.3 0.35 0.25 0.31

FSKBANN 63.4 45.9 35.1 81.9 0.37 0.33 0.35
ANN (w/state) 61.7 39.2 24.2 86.0 0.32 0.28 0.31�������������������������������������������������������������������������������������������������������������������������������������������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�����������������������������������������������������������������������
4The following formula defines the correlation coefficient for the secondary structure problem (Mathews, 1975):

C =
√� ���������������������������������������������������(P + F)(P + M)(N + F)(N + M)

P * N − F * M� �������������������������������������������������������

where C is calculated for each structure separately, and P, N, F, and M are the number of true positives, true negatives, false
positives, and misses for each structure, respectively.
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Figure 8. About Here
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The results in Figure 8 demonstrate two interesting trends. One, the FSKBANN networks do
better no matter how large the training set, and two, the shape of the curve indicates that
accuracy might continue to increase if more proteins were used for training. The one anomaly
for this curve is that the gain in accuracy for the 10 training proteins is not very large. One
would expect that when the number of training instances is very small, the domain knowledge
would be a big advantage. The problem here is that for a small training set it is possible to
obtain random sets of proteins that are not very indicative of the overall population. Individual
proteins generally do not reflect the overall distribution of secondary structures for the whole
population; many proteins have large numbers of α-helix regions and almost no β-sheets, while
others have large numbers of β-sheet regions and almost no α-helices. Thus in trying to learn to
predict a very skewed population, the network may produce a poor solution. This is mitigated as
more proteins are introduced, causing the training population to more closely match the overall
population.

Finally, to analyze the detailed performance of the various approaches, we gathered a
number of additional statistics concerning the FSKBANN, ANN, and Chou-Fasman solutions.
These statistics analyze the results in terms of regions. A region is a consecutive sequence of
amino acids with the same secondary structure. We consider regions because the measure of
accuracy obtained by comparing the prediction for each amino acid does not adequately capture
the notion of secondary structure as biologists view it (Cohen, Presnell, Cohen & Langridge,
1991). For biologists, knowing the number of regions and the approximate order of the regions
is nearly as important as knowing exactly the structure within which each amino acid lies.
Consider the two predictions in Figure 9 (adapted from Cohen et al., 1991). The first prediction
completely misses the third α-helix region, so it has four errors. The second prediction is
slightly skewed for each α-helix region and ends up having six errors, even though it appears to
be a better answer. The statistics we have gathered try to assess how well each solution does on
predicting α-helix regions (Table 7) and β-strand regions (Table 8).

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 9. About Here

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 7 and Table 8 give a picture of the strengths and weakness of each approach. Table 7
shows that the FSKBANN solution overlaps slightly fewer actual α-helix regions than the ANNs,
but that these overlaps tend to be somewhat longer. On the other hand, the FSKBANN networks
overpredict fewer regions than ANNs (i.e. predict fewer α-helix regions that do not intersect
actual α-helix regions). Table 7 also indicates that FSKBANN and ANNs more accurately predict
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Table 7. Region-oriented statistics for αα-helix prediction.

Occurrence Description Chou−Fasman

Actual

α−helixPredicted

other
36%a predicted helix region

does  not overlap  an
actual helix region.

Percentage of time

α−helixActual
10.17

(1825)

Average length of an
actual  helix region
(number of regions).

α−helixPredicted
Average length of a
predicted helix region
(number of regions).

8.00
(1491)

Predicted α−helix

Actual α−helix an actual helix region
is overlapped by a
predicted helix region
(length of overlap).

Percentage of time

FS KBANN

34%

10.17
(1825)

8.52
(1774)

67%
(6.99)

ANN

39%

10.17
(1825)

7.79
(2067)

70%
(6.34)

56%
(5.76)

Table 8. Region-oriented statistics for ββ-strand prediction.

Occurrence Description Chou−Fasman

44%a predicted strand  region
does  not overlap  an
actual strand  region.

Percentage of time
Actual

Predicted

other
β−strand

an actual strand  region
is overlapped by a
predicted strand  region
(length of overlap).

Percentage of time

Predicted

Actual 46%
(4.01)

Average length of a
predicted strand region
(number of regions).

Predicted

β−strand

β−strand

6.02
(2339)

Average length of an
actual  strand region
(number of regions).

Actual β−strand
5.00

(3015)

ANN

37%

35%
(2.65)

2.83
(1673)

5.00
(3015)

FS KBANN

37%

54%
(3.23)

3.80
(2545)

5.00
(3015)

β−strand

the occurrence of regions than Chou-Fasman does.

Table 8 demonstrates that FSKBANN’s predictions overlap a much higher percentage of
actual β-strand regions than either the Chou-Fasman algorithm or ANNs alone. The overall
accuracy for β-strand predictions is approximately the same for FSKBANN and the Chou-Fasman
method, because the length of overlap for the Chou-Fasman method is much longer than for
FSKBANN (at the cost of predicting much longer regions). The ANN networks do extremely
poorly at overlapping actual β-strand regions. The FSKBANN networks do as well as the ANNs
at not overpredicting β-strands, and both do better than the Chou-Fasman method. Taken
together, these results indicate that the FSKBANN solution does significantly better than the ANN
solution on predicting β-strand regions without having to sacrifice much accuracy in predicting
α-helix regions.
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Overall, the results suggest that more work needs to be done on developing methods of
evaluating solution quality. A simple position-by-position count of correct predictions does not
capture adequately the desired behavior. Solutions that find approximate locations of α-helix
and β-strand regions and those that accurately predict all three classes should be favored over
favored over solutions that only do well at predicting the largest class. Most importantly, the
results show that for difficult problems, such as the protein-folding problem, the FSKBANN
approach of using neural learning to refine an existing algorithm can be worthwhile.

5. FUTURE WORK
FSKBANN uses a domain theory to give a network a "good" set of initial weights, since

search starts from that location in weight space. Therefore augmenting the Chou-Fasman
domain theory with other information may increase the solution’s accuracy, because training
will start from a "better" location. Information in Tables 7 and 8 indicate the weaknesses of the
present system. With this knowledge, we plan to develop domain-theory extensions addressing
these weaknesses by studying the biological literature.

A second method of augmenting the knowledge is to use a more complex encoding scheme.
At present each amino acid is represented by a single input unit. Hunter (1991) suggests a more
complex encoding scheme that encodes a number of properties of each of the amino acids. Our
preliminary tests with this encoding scheme on standard neural networks showed promising
results. More recent domain theories (Garnier & Robson, 1989; Prevelige & Fasman, 1989) also
include knowledge about a fourth type of secondary structure, β-turns, which in our data set are
classified as random coils. This knowledge can be added to the present networks as a partial
domain theory for coils, or in networks trying to predict the four different classes.

One interesting property of FSKBANN’s networks is that the magnitude of the each output
is correlated with how accurate the prediction is. We plan to use this information in a more
complex method: instead of predicting all of the protein’s structure in one scan, predict only the
strongest activated areas first, then feed these predictions back into the network for the next scan.
In the first pass over the protein the system could mark those amino acids with the largest
predictions, and then these could be used in predicting for the next step. This is different from
the existing method in that during the second pass the system would not only know the structure
for the previous amino acid, but also might know what the structure is for the next amino acid,
the amino acid two positions ahead, etc.

A basic problem with the KBANN approach is extracting information in a human-readable
form from trained networks (Giles et al., in press; Towell & Shavlik, 1992). We plan to address
rule extraction for the augmented networks of FSKBANN by extending the existing method for
extracting rules from KBANN networks (Towell & Shavlik, 1992). Our extension will extract
refined FSAs rather than rules.

Jacobs, Jordan, Nowlan, and Hinton (1991) proposed a method for learning how to
combine knowledge from a number of neural networks to produce a better solution. Since a
number of different approaches to protein structure prediction have been investigated, we are
working on a method to combine these strategies into a single prediction method. The combined
solution will aggregate predictions from a number of different neural networks, plus the output
of other machine learning approaches and biological approaches.

Another important area of focus is applying FSKBANN in other domains. We plan to apply
FSKBANN to problems in molecular biology, such as the splice-junction problem (Noordewier et

11



USING NEURAL NETWORKS TO IMPROVE ALGORITHMS

al., 1991), where the states of the network are intron and exon. Also of interest is evaluating this
approach for problems in other fields, such as natural language (as in Elman, 1990). The task
could involve learning to recognize simple sentences involving a simple (regular) grammar
where some information about the grammar is known, but some is missing or incorrect.

6. RELATED RESEARCH
Our work shares similarities with research in three areas: algorithms for predicting protein

structure, neural networks that use state information, and systems that combine strategies for
solving problems.

6.1. Methods of Predicting Protein Secondary Structure
There have been a number of algorithms proposed for predicting protein secondary

structure. These can loosely be divided into ones that use biological knowledge (and are non-
learning methods) and those that use a learning mechanism.

Non-Learning Methods
The three most widely used approaches in the biological literature (Fasman, 1989) for

predicting protein secondary structure are the Chou-Fasman (Chou & Fasman, 1978; Prevelige
& Fasman, 1989), Robson (Garnier & Robson, 1989; Robson & Suzuki, 1976), and Lim (1974)
algorithms. The Robson and Suzuki (1976) and the later GorII and GorIII (Garnier & Robson,
1989) solutions are based on information theory. These approaches, like neural networks, base
prediction on a window of information around a central amino acid (from position -8 to +8
around the central amino acid). For every window position, the Robson algorithm determines
the relevance of the amino acid for predicting each type of secondary structure. The
computerized versions of the Chou-Fasman and Robson techniques that we implemented and
tested on the Qian and Sejnowski test data exhibit 58% accuracy (see Table 3). The Lim (1974)
method is the only one that tries to account for long-range interactions; it uses a stereochemical
theory of the secondary structure of globular proteins. Later solutions (Garnier & Robson, 1989;
Prevelige & Fasman, 1989) include theories of a fourth type of secondary structure, β-turns,
which usually are classified as coils. The main advantage of FSKBANN over these algorithms is
that while FSKBANN contains biological information, it also has a mechanism for learning.

Learning Methods
A number of investigators have used learning algorithms and sample folded proteins to try

to predict secondary structure of new proteins. Holley and Karplus (1989) and Qian and
Sejnowski (1988) use simple one hidden-layer neural networks to try to predict secondary
structure. Both studies focus on varying the hidden unit size and window size, achieving very
different results (as shown in Table 4) for these parameters, though both report test set
accuracies around 63%. Qian and Sejnowski also use a cascaded architecture which produces a
1.6 percentage point improvement in accuracy over their single network results. Stolorz,
Lapedes and Xia (1991) use a perceptron architecture to evaluate a different error function,
mutual information, which produces a one percentage point gain in accuracy over a standard
perceptron. The interesting thing about the Stolorz measure is that it improves helix and strand
prediction at the expense of coil prediction, a desirable effect since coil (making up 54% of the
training data), tends to be overpredicted in many other neural-network techniques.
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Zhang (1991) also uses machine learning. Their method combines information from a
statistical technique, a memory-based reasoning algorithm, and a neural network. They divide
the training set into halves, where each of the three components is trained on one half of the
training set. Further training is done using the other half of the training set to learn to combine
results from the three different components, using a second neural network. The best results
they report are 66.4% for a training set of 96 proteins (Zhang, personal communication).

Another learning technique applied to this problem is the nearest-neighbor algorithm
PEBLS (Cost & Salzberg, in press). They report accuracy of approximately 64% for a training
set similar in size to the one we used. Work by Muggleton and King (1991) applying inductive
logic programming produced test set results of 81% accuracy for proteins containing only α-
helix and coil regions. Kneller, Cohen, and Langridge (1990) produced similar results (79%
accuracy) on proteins consisting of α-helices and coils. Our domain theory, trained to solve a
similar problem (predicting either α-helix or not), also showed approximately 81% accuracy.

The major difference between these learning approaches and FSKBANN is that only
FSKBANN incorporates a complete algorithm. FSKBANN also differs from the above approaches
in that the neural networks used in our studies incorporate state information.

6.2. Methods of Representing State Information in Neural Networks
Several researchers have proposed neural-network architectures for incorporating

information about state. The idea of retaining a state or context across training patterns occurs
primarily in work addressing natural language problems (Cleeremans, Servan-Schreiber, &
McClelland, 1989; Elman, 1990). These approaches provide a mechanism for preserving one or
more of the past activations of some units, to use in processing of the next input.

Jordan (1986) and Elman (1990) introduced the particular recurrent network topology we
use in FSKBANN. Their networks have a set of hidden units called context units which preserve
the state of the network. At each time step the previous value of the context units are copied
back as input to the system. These networks allow for the possibility of keeping multiple past
contexts as input to the system.

The idea of using the type of network introduced by Jordan to represent a finite-state
automaton was first discussed by Cleeremans et al. (1989). They show that this type of network
can perfectly learn to recognize a grammar derived from a finite-state automaton. Giles et al. (in
press) used a more complex recurrent network to both learn an FSA and to extract the learned
FSA. The major difference between our research and that of Cleeremans et al. and Giles et al. is
that we focus on using an initial domain theory expressed as a finite-state automaton, rather than
attempting to learn it from scratch.

6.3. Methods of Multistrategy Learning
A number of researchers have recently addressed the problem of blending different

strategies to produce more effective learners. Ourston and Mooney’s (1990) EITHER system
uses a domain theory to focus the corrections that an inductive learning system performs. Tecuci
(this issue) describes a system that includes a number of different mechanisms such as induction,
deduction, analogy, and abduction to correct a domain theory. In Pazzani’s (this issue) Theory-
Driven Learning system, the search for rules to explain incorrect examples is constrained by
regularities observed between rules in the domain theory. Saitta and Botta (this issue) developed
a system that combines abductive learning based on a domain model with inductive learning
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based on sample instances. The major difference between the above work and FSKBANN is that
the above systems only use symbolic reasoning to learn. Each of these systems works directly
on rules in some form. FSKBANN allows the integration of a symbolic representation with neural
learning to take advantage of the generality and power of this type of learning.

7. CONCLUSION
This paper presents and evaluates FSKBANN, a system that provides a mechanism for

combining the knowledge from domain theories represented as generalized finite-state automata
into neural networks. These networks can be further trained, using backpropagation, to refine
the initial domain knowledge. The extension of KBANN to domain theories that include
knowledge about state significantly enhances the power of the KBANN approach; rules expressed
in the domain theory can take into account the current problem-solving context (i.e. the state of
the solution).

We tested FSKBANN by refining the non-learning Chou-Fasman algorithm for predicting
protein secondary structure, a task that is becoming a "challenge problem" in the machine
learning and computational biology communities. The FSKBANN multistrategy approach of
combining domain knowledge with a neural network proved to be more accurate than either a
standard neural network approach or the non-learning Chou-Fasman algorithm. The FSKBANN
solution proved even more effective when considered in terms of how well it does for each class
of secondary structure.

The success of FSKBANN on the secondary-structure problem suggests it can be a useful
tool for addressing other tasks that include state information. However, work must be done both
in improving the neural-network refinement process and the extraction of symbolic knowledge
from trained networks.
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Appendix. The Chou-Fasman domain theory.
The Chou-Fasman algorithm (Chou & Fasman, 1978) involves three activities: (1)

recognizing nucleation sites, (2) extending sites, and (3) resolving overlapping predictions. This
appendix provides more details of these three steps and describes the representation of their
algorithm as a collection of rules.

To recognize nucleation sites, Chou and Fasman assign two conformation values to each of
the 20 amino acids. The conformation values represent how likely an amino acid is to be part of
either a helix or strand structure, with higher values being more likely. They also group the
amino acids into classes of similar conformation value. The classes for helix are formers, high-
indifferent, indifferent, and breakers; those for strand are formers, indifferent, and breakers.
Table 9 defines the values for the various types of breakers and formers.

Table 10 contains the rules that represent the Chou-Fasman algorithm; x@N is true if x is
the amino acid N positions from the one whose secondary structure the algorithm is predicting.
The rules predict an α-helix nucleation site if for some consecutive set of six amino acids, at
least four are helix formers and fewer than two are helix breakers. (Two helix high-indifferent
amino acids count as a helix former.) A rule to determine if a location is a nucleation site simply
adds the helix-former and helix-breaker values for a window six amino acids wide. If the totals
are greater than four and less than two respectively, the rule predicts a helix nucleation site
(proposition init-helix in the rules). Nucleation of β-strands is similar to α-helix
nucleation, except that the window is only five amino acids wide and a strand nucleation site is
predicted if there are at least three strand formers and fewer than two strand breakers.

The third step of the algorithm — resolving overlaps — is the reason we use the numbers in
Table 9 rather than making the formers and breakers Boolean properties. Chou and Fasman
suggest that the conformation values of regions be compared to resolve overlaps. This is done in
FSKBANN’s networks by weighting the links from various amino acids according to the numbers
in Table 9. For example, a combination of four alanines (A’s) will produce a higher activation of
the init-helix unit than a combination of four phenylalanines (F’s).

The Chou-Fasman algorithm continues to predict α-helix as long as the predicate cont-
helix is true. The rules define cont-helix mostly in terms of helix-breaking rules — a
helix continues as long as a break region is not encountered. An α-helix break region occurs
when an helix-breaker amino acid is immediately followed by either another helix-breaker or a
helix-indifferent amino acid. A helix is also broken when encountering the amino acid proline
(P). The process of extending β-strand structures works similarly. The algorithm predicts coil
as the default.

17



USING NEURAL NETWORKS TO IMPROVE ALGORITHMS

Table 9. Former and breaker values‡ for the amino acids.

helix-former(E)
� �

� � 1.37 helix-former(A)
� �

� � 1.29 helix-former(L)
� �

� � 1.20
helix-former(H)

� �

� � 1.11 helix-former(M)
� �

� � 1.07 helix-former(Q)
� �

� � 1.04
helix-former(W)

� �

� � 1.02 helix-former(V)
� �

� � 1.02 helix-former(F)
� �

� � 1.00
helix-former(K)

� �

� � 0.54 helix-former(I)
� �

� � 0.50
helix-former(others)

� �

� � 0.00

helix-breaker(N)
� �

� � 1.00 helix-breaker(Y)
� �

� � 1.20 helix-breaker(P)
� �

� � 1.24
helix-breaker(G)

� �

� � 1.38
helix-breaker(others)

� �

� � 0.00

strand-former(M)
� �

� � 1.40 strand-former(V)
� �

� � 1.39 strand-former(I)
� �

� � 1.34
strand-former(C)

� �

� � 1.09 strand-former(Y)
� �

� � 1.08 strand-former(F)
� �

� � 1.07
strand-former(Q)

� �

� � 1.03 strand-former(L)
� �

� � 1.02 strand-former(T)
� �

� � 1.01
strand-former(W)

� �

� � 1.00
strand-former(others)

� �

� � 0.00

strand-breaker(K)
� �

� � 1.00 strand-breaker(S)
� �

� � 1.03 strand-breaker(H)
� �

� � 1.04
strand-breaker(N)

� �

� � 1.14 strand-breaker(P)
� �

� � 1.19 strand-breaker(E)
� �

� � 2.00
strand-breaker(others)

� �

� � 0.00

�����������������������������������������������������������������������

‡ We produced these values using the tables reported by Chou and Fasman [.chou fasman {, pg. 51}.]. We normalized the
values for formers by dividing the conformation value of the given former by the conformation value of the weakest former. So
for example, the helix former value of alanine (A) is 1.29, since the helix conformation value of alanine is 1.45 and the
conformation value of the weakest helix former phenylalanine (F) is 1.12. Breaker values work similarly except that the value
used to calculate the breaker value is the multiplicative inverse of the conformation value.

We did not directly use the values of Chou and Fasman for two reasons. One, we wanted smaller values, to decrease the number
of times three very strong helix-formers would add up to more than 4 (and similarly for strands). Two, breaker conformation
values tend to be numbers between 0 and 1 with the stronger breakers being close to 0. We wanted the breaker value to be larger
the stronger the breaker, so we used the inverse of the breaker’s conformation value (restricting the result to not exceed 2).
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Table 10. The Chou-Fasman algorithm expressed as inference rules.

Rules for recognizing nucleation sites.

init-helix ←

��
�

position =0
Σ
5

helix −former (amino −acid@position )

���
� > 4

∧

��
�
position =0

Σ
5

helix −breaker (amino −acid@position )

���
� < 2

init-strand ←

��
�

position =0
Σ
4

strand −former (amino −acid@position )

���
� > 3

∧

��
�
position =0

Σ
4

strand −breaker (amino −acid@position )

���
� < 2

Rules for pairs of amino acids that terminate helix structures.

helix-break@0 ← N@0 ∨ Y@0 ∨ P@0 ∨ G@0
helix-break@1 ← N@1 ∨ Y@1 ∨ P@1 ∨ G@1
helix-indiff@1 ← K@1 ∨ I@1 ∨ D@1 ∨ T@1 ∨ S@1 ∨ R@1 ∨ C@1

break-helix ← helix-break@0 ∧ helix-break@1
break-helix ← helix-break@0 ∧ helix-indiff@1

Rules for pairs of amino acids that terminate strand structures.

strand-break@0 ← K@0 ∨ S@0 ∨ H@0 ∨ N@0 ∨ P@0 ∨ E@0
strand-break@1 ← K@1 ∨ S@1 ∨ H@1 ∨ N@1 ∨ P@1 ∨ E@1
strand-indiff@1 ← A@1 ∨ R@1 ∨ G@1 ∨ D@1

break-strand ← strand-break@0 ∧ strand-break@1
break-strand ← strand-break@0 ∧ strand-indiff@1

Rules for continuing structures.

cont-helix ← ¬ P@0 ∧ ¬ break-helix
cont-strand ← ¬ P@0 ∧ ¬ E@0 ∧ ¬ break-strand

Rules for predicting αα-helix: either by nucleation or propagating from the last state.

helix
i ← init-helix

helix
i ← helix

i-1
∧ cont-helix

Rules for predicting ββ-strand: either by nucleation or propagating from the last state.

strand
i ← init-strand

strand
i ← strand

i-1
∧ cont-strand

Rules for predicting coil (the default).

coil
i ← helix

i-1 ∧ break-helix

coil
i ← strand

i-1 ∧ break-strand

coil
i ← coil

i-1
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D E F G

CB

A

C :− F,G.

B :− E,not F.

B :− D,E.

A :− B,C.

(a) (b)

A

B C

D E F G
(c)

A

B C

D E F G
(d)

Figure 1. Sample of KBANN: a) a set of rules, b) dependencies among the
rules, and c) the corresponding neural network.
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current inputcurrent  state

current outputnext state

hidden unit topology
determined by domain theory

system boundary

Figure 2. A schematic view of an FSKBANN network.

21



USING NEURAL NETWORKS TO IMPROVE ALGORITHMS

Figure 3. Ribbon drawing of the three-dimensional structure of a protein (from
(Richardson & Richardson, 1989). The areas resembling springs are αα-helix
structures, the flat arrows represent ββ-strands, and the remaining regions are
random coils.

22



USING NEURAL NETWORKS TO IMPROVE ALGORITHMS

I L G D Q F L K Q Q Y V V F D R N G I RD L A P V A..... .....

Input Units

Input WindowPrimary Structure

Output Units

Hidden Units

α−helix β−strand coil

Predicted Secondary Structure

c

Figure 4. Neural network architecture used by Qian and Sejnowski (1988).

23



USING NEURAL NETWORKS TO IMPROVE ALGORITHMS

Primary Structure

Predict
Nucleation
Sites

Step 1. 

Step 2. Extend
Regions

Step 3. Resolve
Overlaps

α α α

β β β

α α α

β β β

α β α β α

Figure 5. Steps of the Chou-Fasman algorithm.
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init−helix init−strand

init−strand

init−helix

break
helix

break
strand

continue
helix

continue
strand

otherwise

helix strand

coil

Figure 6. The finite-state automaton interpretation of the Chou-Fasman algorithm.
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Figure 7. General neural-network architecture used to represent the Chou-Fasman algorithm.
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Figure 8. Percent correctness on test proteins as a function of training-set size.
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α α αPrediction 2

ααPrediction 1

α α αSecondary Structure

Primary Structure

Figure 9. Two possible predictions for secondary structure.
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