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Abstract 

We propose a novel method for reinforcement 
learning in domains that are best described using 
relational (“first-order”) features.  Our approach 
is to rapidly sample a large space of such 
features, selecting a good subset to use as the 
basis for our Q-function.  Our Q-function is 
created via a regression model that combines the 
collection of first-order features into a single 
prediction.  To control the effect of the random 
predictions we use an ensemble approach for our 
predictions, generating multiple Q-function 
models and then combining the results of these 
models into a single prediction.  Experiments 
with our technique on an interesting 
reinforcement learning problem, the Keep-Away 
subtask of RoboCup, suggest that our method 
can learn to effectively predict Q-values for a 
challenging reinforcement-learning task. 

1.  Introduction 

Many reinforcement-learning tasks involve domains that 
are inherently relational, often involving arbitrary 
numbers of interacting objects.  These range from the 
number of blocks in a classical blocks-world problem to 
the number of players in a robotic soccer match to the 
number of interacting proteins in a regulatory network of 
a cell.  A promising approach to reinforcement learning in 
such domains is to represent situations using an arbitrarily 
sized set of predicate-calculus facts, rather than 
engineering the world description into the more 
traditional fixed-length feature vector. We are 
investigating learning algorithms that can approximate the 
real-valued Q-functions used in reinforcement learning 
from these world-state descriptions expressed in predicate 
calculus.  
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One previously investigated approach (Dzeroski, De 
Raedt, & Blockeel, 1998) for accomplishing this task is to 
use relational regression trees (Kramer, 1996; Blockeel 
& De Raedt, 1998).  This approach partitions the space of 
possible state descriptions into discrete regions and 
assigns a constant to each region; for all future states 
falling into a region, their Q-value is estimated by this 
constant value. Another proposed approach is built on 
instance-based learning (Driessens & Ramon, 2003).  In 
our new project, we are investigating the alternate 
approach of stochastically sampling the extremely large 
space of possible conjunctions of the predicate-calculus 
facts (e.g., on(X, Y) ∧ color(Y, blue) ∧ above(Y, Z) ∧ 
color(Z, red) - “some block is on a blue block that is 
above a red block”).  

Our approach is to rapidly sample a large space of such 
compound features, selecting a good subset to use as the 
basis for our Q-function. Our Q-function will then be a 
weighted combination of these conjunctive features; we 
choose these weights by using optimization methods that 
perform regularized linear regression (Shanno & Rocke, 
1986) or regularized kernel regression (Vapnik, 
Golowich, & Smola, 1997) using a Gaussian kernel. 

In Section 2 we present our approach for rapidly creating 
relational features and then creating a Q-function using 
these first-order features.  In Section 3 we present our test 
domain, the Keep-Away subtask of RoboCup (Stone & 
Sutton, 2001).  Section 4 presents our initial results 
demonstrating that our proposed approach can indeed 
learn a Q function.  We then present conclusions and 
future directions for this work. 

2.  Our Approach 

Table 1 shows our algorithm for generating a Q-function 
as an ensemble of predictors using stochastically 
generated first-order-logic features. Our approach is based 
on Srinivasan’s (2000) method for stochastically 
generating random predicates for a search space.  
Srinivasan’s method defines the set of possible predicates 
that could be created up to a given length L, and he 
presents a simple method for instantiating a random 

Appears in the Proceedings of the ICML-04 Workshop on Relational Reinforcement Learning, Banff, Canada.



 

member of that set of predicates.  In our approach we 
generate an ensemble of P predictors of the Q-value for 
each action, where each predictor is made up of a 
weighted set of M randomly generated first-order logic 
features. 

 

 

Table 1. Algorithm for creating a Q-function as a weighted 
ensemble of predictors where each predictor is made up of a 
weighted set of randomly generated first order logic 
features.  Parameters of the algorithm include P, the number 
of members in the ensemble, M, the number of features used 
in each predictor, L, the maximum number of predicates in a 
feature, K, the minimum number of differences between 
feature truth values, and the low and high percentages of 
examples covered to accept a feature. 

 

Given:  A training set of state/action/Q-value triples of the  
Q-function to be learned 

For each distinct action a, create an ensemble of P 
predictors by repeating the following P times: 

• Select M features for this predictor by repeating the 
following M times: 

1. Stochastically create a feature consisting of at most L 
conjuncts of predicates, using a technique introduced 
by Srinivasan (2000).  

2. Reject the current feature and return to step 1 if the 
feature covers too small a percentage or too large a 
percentage of the states from the training set (e.g., if 
the feature is true in less than 25% of the training 
cases or true in more than 75% of the training cases). 

3. Reject the current feature and return to step 1 if the 
feature is not significantly different from any of the 
previous features for this predictor.  This is 
determined by requiring that the feature, when 
compared to each of the features collected so far, 
have a different truth value in at least K of the states 
in the training set.  That is, if we apply each feature 
to all of the states we will get a vector of truth values 
(one element for each state) for that feature.  A new 
feature’s vector must differ from each of the previous 
feature’s vectors in at least K places. 

4. Accept the current feature and add it to the current 
predictor. 

• Build a model using the M input features using an 
appropriate regression method (such as regularized 
linear regression or kernel regression using a Gaussian 
kernel). 

 

 

To predict the Q-value of each action for a new state, we 
calculate a Q-value for each of the P predictors in the 
ensemble for that action and then take the average of the 
four middle predictions (e.g., if there are ten predictions, 
1, 3, 40, 50, 70, 80, 80, 95, 356 and 1012 we would 
predict a Q value of 70, the average of 50, 70, 80 and 80).  
This approach allows us to avoid outliers that could easily 
skew an averaged prediction.  The resulting predicted Q-
value for each action would then be compared and the 
action with the highest Q-value chosen (during 
“exploitation” – when “exploring” reinforcement learners 
can choose suboptimal actions). 

Our hypothesis is that, compared to relational tree 
regression, we can more rapidly create Q-functions that 
are more accurate.  Randomly sampling the space of 
predicate-calculus conjuncts previously has been shown 
useful on classification tasks (Srinivasan, 2000), as has 
using weighted combinations of complex features 
generated from relational features (Popescul, et al., 2003).  

Another advantage of our approach is that it is relatively 
easy to convert it to a semi-incremental version, since the 
model created in the last step can be incrementally 
adjusted using, say, gradient descent as each new training 
example arrives. Periodically a complete “batch” (i.e., 
non-incremental) learning run will be performed, for 
example, when the error over the last several predictions 
exceeds a threshold.  Alternatively, this batch learning can 
be continually done in a parallel process that runs in the 
background.  

Note that the algorithm in Table 1 could be varied in a 
number of ways.  In the step where features are generated, 
we could use a local search based on how well the feature 
matches the data to look for a more effective feature, an 
approach similar to that explored by Zelezny, Srinivasan, 
and Page (2003).  We could also explore other methods 
for building the regression model using the M input 
features. We expect that the family of methods based on 
our algorithm could produce fast and effective learning 
methods. 

3.  The Task:  Keep-Away 

We evaluate our approach on the Keep-Away subtask of 
simulated RoboCup soccer (Stone & Sutton, 2001).  In 
this task, the goal of the N  “keepers” is to keep the ball 
away from N-1 “takers” as long as possible, receiving a 
reward of 1 for each time step they keep the ball (the 
keepers learn, while the takers follow a hand-coded 
policy).  Figure 1 gives an example of a Keep-Away game 
snapshot involving three keepers and two takers. 

To simplify the learning task, currently learning occurs 
only in the specific situation where a keeper holds the 
ball.  When no player has the ball, the nearest keeper 
pursues the ball and the others perform moves to “get 
open” (to be available for a pass).  If a keeper is holding 
the ball, the other keepers perform the “get open” move.   

 



 

 

Figure 1. A sample Keep-Away game in progress where there 
are three keepers (light gray with black outlines), two takers 
(black with gray outlines), and the ball (currently being held 
by the keeper in the upper right).  A game continues until 
one of the takers holds the ball for at least 5 time steps or if 
the ball goes out of bounds (beyond the white lines).  

The learnable action choice then is whether to hold the 
ball or to pass it to one of the other keepers.  Note that the 
passing steps require multiple actions in the simulation 
(orienting the player body then performing multiple steps 
of actual kicking), but these low-level actions are 
managed by the simulator and are not addressed in our 
experiments. 

The policy of the takers is also fairly simple; if there are 
only two takers they both pursue the ball.  When there are 
more than two takers, two pursue the ball and the others 
“cover” one of the keepers. 

The Keep-Away task has been explored in other 
reinforcement-learning research (Stone & Sutton, 2001; 
Kuhlmann, Stone, Mooney, & Shavlik, 2004).  One 
interesting question we intend to explore is whether the 
relational approach will make it easy for keeper behavior 
to scale from simpler problems (e.g., a “3 keepers vs. 2 
takers” game) to a more complex game (e.g., 5 keepers 
and 4 takers). 

4.  Testing 

The goal of our initial testing is to demonstrate that a Q 
function can be accurately learned using the method 
discussed in the previous section.  To do this, we focus on 
predicting the expected TD(1) values of a set of hand-
coded players playing “3 keeper, 2 taker” Keep-Away.  In 
our experiments we demonstrate that our method learns a 
predictive model that is more accurate than a naïve 
predictor of the Q values. 

4.1  Methodology 

To generate training data for evaluation we record the 
states, actions taken, and Q values from a single agent, 
which we call the learner.  To simulate exploration during 
initial reinforcement learning, the learner uses a random 
policy and plays the game with two “smart” keepers.  The 
policy of the “smart” keepers is discussed below.  The 

two takers playing the game follow the policy discussed 
in Section 3. 

The learner receives as input the state described using the 
predicates described in Table 2.  We also provide as 
background knowledge a set of derived predicates based 
on the facts of a state, shown in Table 3.   

The hand-coded policy of the two “smart” keepers 
attempts to choose an appropriate action to perform using 
the following rules: 

1.  If no taker is within a fixed distance, hold the ball.  

2. Otherwise, calculate the widest passing lane to each 
of the other keepers and pass to the one with the 
widest passing lane. 

3. If all passing lanes are zero width, randomly choose 
an action to perform. 

Table 2. Each state is described by a set of predicates 
capturing what the player can see about the world. 

 
keeper(P1) – the player is a keeper 

taker(P1) – the player is a taker 

dist_to(P1,P2,Dist,Game,Step) – the distance from player 
1 to player 2 during a step of a game.  There is one of 
these for each pair of players (takers and keepers). 

dist_to_ball(P1,Dist,Game,Step) – distance from a player 
to the ball.  One for each player. 

controls_ball(P1) - whether a player controls the ball. 
One for each player. 

x_position(P1,XPos,Game,Step) – the X position of the 
player on the field.  One for each player. 

y_position(P1,YPos,Game,Step) – the Y position of the 
player on the field.  One for each player. 

dist_to_top(P1,Dist,Game,Step) – distance of the player 
to the top border.  One for each player. 

dist_to_bottom(P1,Dist,Game,Step) – distance of player 
to bottom border.  One for each player. 

dist_to_left(P1,Dist,Game,Step) – distance of player to 
left border.  One for each player. 

dist_to_right(P1,Dist,Game,Step) – distance of player to 
right border.  One for each player. 

angle_between(P1,P2,Ang,Game,Step) – the angle 
between players 1 and 2 from the point of view of the 
player viewing the world.  There is one of these for 
each pair of players other than the player whose view 
this describes. 

 
 

 



 

Table 3. The set of derived features that are used to 
describe a state.  Each of these derived features is 
derived from the base facts of Table 2. 

 
teammate_dist_less_than(P1,P2,Dist,Game,Step)  

 true if the distance from player P1 to P2 is less than 
the fixed value Dist.  We calculate a similar predicate to 
test than the distance is greater than the fixed value 
Dist, and do the same thing for the opponents. 

teammate_dist_in_range(P1,P2,MinD,MaxD,Game,Step) 
true if the distance from P1 to P2 is in the range MinD 
to MaxD.  We also calculate a similar predicate for 
opponents. 

some_teammate_dist_less_than(P1,Dist,Game,Step) 
determines if there is some teammate closer than Dist. 
We also calculate a predicate that there is some 
teammate farther than the Dist and predicates that 
check the same thing for opponents.  We further 
calculate predicates that test whether these conditions 
are true for all teammates or all opponents. 

all_players_dist_greater_than(P1,Dist,Game,Step) 
the player is at least Dist far from all players.  

border_dist_less_than(P1,Border,Dist,Game,Step) 
true if the given border is less than Dist away.  We 
calculate a similar predicate that is true if the border is 
greater than that distance away. 

some_border_dist_less_than(P1,Dist,Game,Step) 
true if some border is less than Dist away.  We 
calculate a similar predicate for greater than, and 
similar predicates to check if all the borders meet these 
distance requirements. 

angle_btwn_teammates_less_than(P1,P2,Ang,Game,Step) 
true if the angle between teammates is less than some 
angle Ang.  We calculate a similar predicate for the 
greater than check, and these predicates for opponents 
and for any pair of players. 

angle_btwn_tmtes_range(P1,P2,MinA,MaxA,Game,Step) 
true if the angle between teammates is in the range 
between MinA and MaxA.  We calculate a similar 
predicate for the greater than check, and these 
predicates for opponents and for any pair of players. 

Distances are chosen from {1, 2, 3, 5, 7, 10, 15} and 
angles from {15, 30, 45, 60, 90, 120, 150 degrees}.  The 
field size is 20x20. 

 
 

We define the passing lane’s width to be the base of an 
isosceles triangle with the apex at the position of the 
passing player, the midpoint of the base at the position of 
the receiver, and no takers contained in the area of the 
triangle.  The widest passing lane is the lane with the 
widest possible base. 

Using the random learner agent, two “smart” agents, and 
the standard takers, we generated several hundred games 
to be used as a training, tuning, and testing sets (as further 
explained below).  In each game we record the state using 
the predicates described in Table 2 and focus on 
predicting the log of the TD(1) (Monte Carlo) estimate of 
the Q-value.  We focus on the logarithm of the Q value 
because we noticed that the distribution of the log of the 
Q values closely approximates a normal distribution. 

In order to measure the effect of having different amounts 
of data for training, we divided the training data into 3 
groups of 100 games and then performed training using 
the first 100 games, the first 200, and the first 300 games.  
For this work, we focus on learning for the two pass 
actions rather than the hold action, since the passes are 
more interesting in most cases (a hold action generally 
does not change the state situation much since the player 
simply keeps the ball where it is).  On average, there are 
about 3 passes in a game; for 300 games there are 
therefore about 1200 training examples. 

Since we have several parameters that must be determined 
as part of the learning, we employ a tuning-set 
methodology.  We collected the results from 200 
additional games to (a) tune parameters and (b) estimate 
predictive accuracy.  In our experiments, we divide this 
additional data into two groups of 100 games and then in 
one run used one group of 100 games as the tuning set 
and the other 100 games as the testing set. In the next run 
we use the second group of 100 games as the tuning set 
and the first as the testing set.  Note that our use of tuning 
sets means that the total size of our training sets during 
our experimentation is actually 200, 300, and 400 (the 
training set plus the tuning set). 

In our experiments we arbitrarily set the number of 
features (M) to be 50, the number of members of the 
ensemble (P) to 6, the maximum number of predicates in 
a feature (L) to 3, the minimum number of differences a 
new feature should have from a previously accepted 
feature (K) to 5, and the low and high percentage of 
examples that a feature must cover to 40% and 80%, 
respectively.  We use the tuning set to choose the method 
to be used for combining our first-order features into a Q-
value prediction.  

In order to select the weights used to combine the features 
for a predictor, we use a regularized kernel regression 
method from Mangasarian and Musicant (2002).  In their 
method, a regression problem is phrased as a support 
vector problem.  The main parameters of their method are 
C, the value used to penalize the support-vector’s “slack 
variables” (the larger this value, the higher the cost of 
mis-predicting training points), and µ, a term that is used 
to determine how much leeway is allowed in precisely 
fitting each point (the µ term is a global parameter that 
specifies a “tube” of leeway around the learned solution; 
training points that fall within this tube are not penalized 
in the expression being optimized).  Since the problem is 

 



 

phrased as a kernel problem, we can investigate different 
kernels for producing a final model. 
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In our experiments we use both a linear kernel and a 
Gaussian kernel.  Since the Gaussian kernel has a 
parameter (the σ term indicating the width of the 
Gaussian), we also investigated different values of this 
parameter.  In our experiments we look at four kernels: a 
linear kernel and three Gaussian kernels with σ values of 
0.05, 0.5, and 5, respectively. For each of these four 
kernels, we built models using µ values of 0 or 0.5 and C 
values of 0.1, 1, or 10.  The µ values are suggested by 
Mangasarian and Musicant (2002), while we chose the 
other values in an ad-hoc manner. The combination of 
parameter values and kernels leads to 24 different 
possible combinations.  The tuning set of 100 games is 
then used to select the best model and the test set of 100 
games is used to test generalization. 

For testing, we measure how closely the learned model is 
able to approximate the actual Q values measured in our 
sample games.  To determine this we are interested in the 
mean error of the overall test set and how it relates to the 
overall prediction.  For this reason we calculate the mean 
of the absolute value of the errors and normalize it by 
dividing by the average value of the measurement we are 
predicting.  For example, if we are predicting an item with 
values of 10 and 20, and predict 15 both times, the 
average error is 5, and the percentage difference obtained 
is 33% (5 as compared to an average predicted value of 
15).  For our experiments below, we calculate the average 
percentage difference and plot this as a function of the 
amount of training data. 

As a baseline for comparison, we also compare to the 
simple “baseline” algorithm that merely always predicts, 
for each action, the average Q value in the training data 
for that action. 

4.2  Results 

Figure 2 shows the results of our initial experiments.  
Although not much better than our simple baseline 
algorithm, our proposed method does show a small but 
steady decrease in the error as the size of the training set 
grows.    It takes less than a minute on average to select a 
set of relational features (using Prolog) and learn one 
regularized regression model (using Matlab). 

5.  Future Directions 

There are several directions related to our approach that 
we plan to pursue in the future.  First we plan to pursue 
methods to increase the accuracy of the Q-function 
estimates.  To accomplish this, we plan to look at 
developing an enhanced feature-selection algorithm.  

 

Figure 2. Normalized error results for training our 
proposed Q-function learning method and the baseline 
method (see text).   Results are shown for training set sizes of 
200, 300, and 400 (where 100 of the training games are used 
for tuning).  

 

 

Enhanced feature selection could be accomplished in a 
many ways.  Currently we use all the features that we 
generate, if they are non-redundant and cover between 
40% and 80% of the training examples.  This could be 
improved by generating more features and performing a 
local greedy search over those features to continually 
improve the accuracy of the Q-function estimate. 

Once we have improved the accuracy of the Q-function 
estimate, we plan to perform traditional Q-learning using 
our relational algorithms.  We plan to test the learning 
speed of the algorithm (as a function of the number of 
games played) and the rewards received.  It is our hope 
that our relational method outperforms traditional non-
relational methods, in terms of both training time and 
received rewards, especially as the size of the task (i.e., 
number of players on each team) increases. 

After establishing the viability of our Q-learning, we will 
determine how well our algorithm scales to more complex 
problems.  Due to the relational nature of our algorithm, 
we expect it to scale readily to larger Keep-Away field 
sizes with an increased number of keepers and takers with 
little or no retraining.  We also hope that we can move 
from large fields to smaller, with little retraining.   

We also plan to empirically compare to propositional 
learners, as well as other approaches for relational 
reinforcement learning (e.g., decision trees and instance-
based methods), for on this test bed. 

 

 

 

 



 

6.  Conclusions 

We presented a novel method for reinforcement learning 
in domains that constructs first-order features to describe 
the state of the environment. This approach has the 
advantage that learning can be scaled to larger problems 
and that generalization can occur across tasks with 
structural similarities.  Our approach involves rapidly 
sampling a large space of first-order features and then 
selecting a good subset to use as the basis for our Q-
function.  Our Q-function is created by producing a 
regression model that combines the collection of first-
order features into a single Q-value prediction.  To 
prevent extreme predictions resulting from the possibility 
of generating skewed sets of random features, we 
generate an ensemble of models and then combine the 
predictions of the resulting models by taking the median 
prediction of the middle four models. Experimenting with 
our technique on an interesting reinforcement learning 
problem, the Keep-Away subtask of RoboCup, shows a 
small gain in accuracy in predicting Q values compared to 
a simple model, indicating that our proposed method 
could lead to effectively reinforcement learning. 
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