
Relational Reinforcement Learning via Sampling the Space
of First-Order Conjunctive Features

Trevor Walker TWALKER@CS.WISC.EDU
Jude Shavlik SHAVLIK@CS.WISC.EDU
Richard Maclin RMACLIN@D.UMN.EDU
Computer Sciences Department, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706 USA

Abstract

We propose a novel method for reinforcement
learning in domains that are best described using
relational (“first-order”) features. Our approach
is to rapidly sample a large space of such
features, selecting a good subset to use as the
basis for our Q-function. Our Q-function is
created via a regression model that combines the
collection of first-order features into a single
prediction. To control the effect of the random
predictions we use an ensemble approach for our
predictions, generating multiple Q-function
models and then combining the results of these
models into a single prediction. Experiments
with our technique on an interesting
reinforcement learning problem, the Keep-Away
subtask of RoboCup, suggest that our method
can learn to effectively predict Q-values for a
challenging reinforcement-learning task.

1. Introduction

Many reinforcement-learning tasks involve domains that
are inherently relational, often involving arbitrary
numbers of interacting objects. These range from the
number of blocks in a classical blocks-world problem to
the number of players in a robotic soccer match to the
number of interacting proteins in a regulatory network of
a cell. A promising approach to reinforcement learning in
such domains is to represent situations using an arbitrarily
sized set of predicate-calculus facts, rather than
engineering the world description into the more
traditional fixed-length feature vector. We are
investigating learning algorithms that can approximate the
real-valued Q-functions used in reinforcement learning
from these world-state descriptions expressed in predicate
calculus.

—————
 Appearing in Proceedings of the ICML’04 workshop on Relational
Reinforcement Learning, Banff, Canada, 2004.

One previously investigated approach (Dzeroski, De
Raedt, & Blockeel, 1998) for accomplishing this task is to
use relational regression trees (Kramer, 1996; Blockeel
& De Raedt, 1998). This approach partitions the space of
possible state descriptions into discrete regions and
assigns a constant to each region; for all future states
falling into a region, their Q-value is estimated by this
constant value. Another proposed approach is built on
instance-based learning (Driessens & Ramon, 2003). In
our new project, we are investigating the alternate
approach of stochastically sampling the extremely large
space of possible conjunctions of the predicate-calculus
facts (e.g., on(X, Y) ∧ color(Y, blue) ∧ above(Y, Z) ∧
color(Z, red) - “some block is on a blue block that is
above a red block”).

Our approach is to rapidly sample a large space of such
compound features, selecting a good subset to use as the
basis for our Q-function. Our Q-function will then be a
weighted combination of these conjunctive features; we
choose these weights by using optimization methods that
perform regularized linear regression (Shanno & Rocke,
1986) or regularized kernel regression (Vapnik,
Golowich, & Smola, 1997) using a Gaussian kernel.

In Section 2 we present our approach for rapidly creating
relational features and then creating a Q-function using
these first-order features. In Section 3 we present our test
domain, the Keep-Away subtask of RoboCup (Stone &
Sutton, 2001). Section 4 presents our initial results
demonstrating that our proposed approach can indeed
learn a Q function. We then present conclusions and
future directions for this work.

2. Our Approach

Table 1 shows our algorithm for generating a Q-function
as an ensemble of predictors using stochastically
generated first-order-logic features. Our approach is based
on Srinivasan’s (2000) method for stochastically
generating random predicates for a search space.
Srinivasan’s method defines the set of possible predicates
that could be created up to a given length L, and he
presents a simple method for instantiating a random

Appears in the Proceedings of the ICML-04 Workshop on Relational Reinforcement Learning, Banff, Canada.

member of that set of predicates. In our approach we
generate an ensemble of P predictors of the Q-value for
each action, where each predictor is made up of a
weighted set of M randomly generated first-order logic
features.

Table 1. Algorithm for creating a Q-function as a weighted
ensemble of predictors where each predictor is made up of a
weighted set of randomly generated first order logic
features. Parameters of the algorithm include P, the number
of members in the ensemble, M, the number of features used
in each predictor, L, the maximum number of predicates in a
feature, K, the minimum number of differences between
feature truth values, and the low and high percentages of
examples covered to accept a feature.

Given: A training set of state/action/Q-value triples of the
Q-function to be learned

For each distinct action a, create an ensemble of P
predictors by repeating the following P times:

• Select M features for this predictor by repeating the
following M times:

1. Stochastically create a feature consisting of at most L
conjuncts of predicates, using a technique introduced
by Srinivasan (2000).

2. Reject the current feature and return to step 1 if the
feature covers too small a percentage or too large a
percentage of the states from the training set (e.g., if
the feature is true in less than 25% of the training
cases or true in more than 75% of the training cases).

3. Reject the current feature and return to step 1 if the
feature is not significantly different from any of the
previous features for this predictor. This is
determined by requiring that the feature, when
compared to each of the features collected so far,
have a different truth value in at least K of the states
in the training set. That is, if we apply each feature
to all of the states we will get a vector of truth values
(one element for each state) for that feature. A new
feature’s vector must differ from each of the previous
feature’s vectors in at least K places.

4. Accept the current feature and add it to the current
predictor.

• Build a model using the M input features using an
appropriate regression method (such as regularized
linear regression or kernel regression using a Gaussian
kernel).

To predict the Q-value of each action for a new state, we
calculate a Q-value for each of the P predictors in the
ensemble for that action and then take the average of the
four middle predictions (e.g., if there are ten predictions,
1, 3, 40, 50, 70, 80, 80, 95, 356 and 1012 we would
predict a Q value of 70, the average of 50, 70, 80 and 80).
This approach allows us to avoid outliers that could easily
skew an averaged prediction. The resulting predicted Q-
value for each action would then be compared and the
action with the highest Q-value chosen (during
“exploitation” – when “exploring” reinforcement learners
can choose suboptimal actions).

Our hypothesis is that, compared to relational tree
regression, we can more rapidly create Q-functions that
are more accurate. Randomly sampling the space of
predicate-calculus conjuncts previously has been shown
useful on classification tasks (Srinivasan, 2000), as has
using weighted combinations of complex features
generated from relational features (Popescul, et al., 2003).

Another advantage of our approach is that it is relatively
easy to convert it to a semi-incremental version, since the
model created in the last step can be incrementally
adjusted using, say, gradient descent as each new training
example arrives. Periodically a complete “batch” (i.e.,
non-incremental) learning run will be performed, for
example, when the error over the last several predictions
exceeds a threshold. Alternatively, this batch learning can
be continually done in a parallel process that runs in the
background.

Note that the algorithm in Table 1 could be varied in a
number of ways. In the step where features are generated,
we could use a local search based on how well the feature
matches the data to look for a more effective feature, an
approach similar to that explored by Zelezny, Srinivasan,
and Page (2003). We could also explore other methods
for building the regression model using the M input
features. We expect that the family of methods based on
our algorithm could produce fast and effective learning
methods.

3. The Task: Keep-Away

We evaluate our approach on the Keep-Away subtask of
simulated RoboCup soccer (Stone & Sutton, 2001). In
this task, the goal of the N “keepers” is to keep the ball
away from N-1 “takers” as long as possible, receiving a
reward of 1 for each time step they keep the ball (the
keepers learn, while the takers follow a hand-coded
policy). Figure 1 gives an example of a Keep-Away game
snapshot involving three keepers and two takers.

To simplify the learning task, currently learning occurs
only in the specific situation where a keeper holds the
ball. When no player has the ball, the nearest keeper
pursues the ball and the others perform moves to “get
open” (to be available for a pass). If a keeper is holding
the ball, the other keepers perform the “get open” move.

Figure 1. A sample Keep-Away game in progress where there
are three keepers (light gray with black outlines), two takers
(black with gray outlines), and the ball (currently being held
by the keeper in the upper right). A game continues until
one of the takers holds the ball for at least 5 time steps or if
the ball goes out of bounds (beyond the white lines).

The learnable action choice then is whether to hold the
ball or to pass it to one of the other keepers. Note that the
passing steps require multiple actions in the simulation
(orienting the player body then performing multiple steps
of actual kicking), but these low-level actions are
managed by the simulator and are not addressed in our
experiments.

The policy of the takers is also fairly simple; if there are
only two takers they both pursue the ball. When there are
more than two takers, two pursue the ball and the others
“cover” one of the keepers.

The Keep-Away task has been explored in other
reinforcement-learning research (Stone & Sutton, 2001;
Kuhlmann, Stone, Mooney, & Shavlik, 2004). One
interesting question we intend to explore is whether the
relational approach will make it easy for keeper behavior
to scale from simpler problems (e.g., a “3 keepers vs. 2
takers” game) to a more complex game (e.g., 5 keepers
and 4 takers).

4. Testing

The goal of our initial testing is to demonstrate that a Q
function can be accurately learned using the method
discussed in the previous section. To do this, we focus on
predicting the expected TD(1) values of a set of hand-
coded players playing “3 keeper, 2 taker” Keep-Away. In
our experiments we demonstrate that our method learns a
predictive model that is more accurate than a naïve
predictor of the Q values.

4.1 Methodology

To generate training data for evaluation we record the
states, actions taken, and Q values from a single agent,
which we call the learner. To simulate exploration during
initial reinforcement learning, the learner uses a random
policy and plays the game with two “smart” keepers. The
policy of the “smart” keepers is discussed below. The

two takers playing the game follow the policy discussed
in Section 3.

The learner receives as input the state described using the
predicates described in Table 2. We also provide as
background knowledge a set of derived predicates based
on the facts of a state, shown in Table 3.

The hand-coded policy of the two “smart” keepers
attempts to choose an appropriate action to perform using
the following rules:

1. If no taker is within a fixed distance, hold the ball.

2. Otherwise, calculate the widest passing lane to each
of the other keepers and pass to the one with the
widest passing lane.

3. If all passing lanes are zero width, randomly choose
an action to perform.

Table 2. Each state is described by a set of predicates
capturing what the player can see about the world.

keeper(P1) – the player is a keeper

taker(P1) – the player is a taker

dist_to(P1,P2,Dist,Game,Step) – the distance from player
1 to player 2 during a step of a game. There is one of
these for each pair of players (takers and keepers).

dist_to_ball(P1,Dist,Game,Step) – distance from a player
to the ball. One for each player.

controls_ball(P1) - whether a player controls the ball.
One for each player.

x_position(P1,XPos,Game,Step) – the X position of the
player on the field. One for each player.

y_position(P1,YPos,Game,Step) – the Y position of the
player on the field. One for each player.

dist_to_top(P1,Dist,Game,Step) – distance of the player
to the top border. One for each player.

dist_to_bottom(P1,Dist,Game,Step) – distance of player
to bottom border. One for each player.

dist_to_left(P1,Dist,Game,Step) – distance of player to
left border. One for each player.

dist_to_right(P1,Dist,Game,Step) – distance of player to
right border. One for each player.

angle_between(P1,P2,Ang,Game,Step) – the angle
between players 1 and 2 from the point of view of the
player viewing the world. There is one of these for
each pair of players other than the player whose view
this describes.

Table 3. The set of derived features that are used to
describe a state. Each of these derived features is
derived from the base facts of Table 2.

teammate_dist_less_than(P1,P2,Dist,Game,Step)

 true if the distance from player P1 to P2 is less than
the fixed value Dist. We calculate a similar predicate to
test than the distance is greater than the fixed value
Dist, and do the same thing for the opponents.

teammate_dist_in_range(P1,P2,MinD,MaxD,Game,Step)
true if the distance from P1 to P2 is in the range MinD
to MaxD. We also calculate a similar predicate for
opponents.

some_teammate_dist_less_than(P1,Dist,Game,Step)
determines if there is some teammate closer than Dist.
We also calculate a predicate that there is some
teammate farther than the Dist and predicates that
check the same thing for opponents. We further
calculate predicates that test whether these conditions
are true for all teammates or all opponents.

all_players_dist_greater_than(P1,Dist,Game,Step)
the player is at least Dist far from all players.

border_dist_less_than(P1,Border,Dist,Game,Step)
true if the given border is less than Dist away. We
calculate a similar predicate that is true if the border is
greater than that distance away.

some_border_dist_less_than(P1,Dist,Game,Step)
true if some border is less than Dist away. We
calculate a similar predicate for greater than, and
similar predicates to check if all the borders meet these
distance requirements.

angle_btwn_teammates_less_than(P1,P2,Ang,Game,Step)
true if the angle between teammates is less than some
angle Ang. We calculate a similar predicate for the
greater than check, and these predicates for opponents
and for any pair of players.

angle_btwn_tmtes_range(P1,P2,MinA,MaxA,Game,Step)
true if the angle between teammates is in the range
between MinA and MaxA. We calculate a similar
predicate for the greater than check, and these
predicates for opponents and for any pair of players.

Distances are chosen from {1, 2, 3, 5, 7, 10, 15} and
angles from {15, 30, 45, 60, 90, 120, 150 degrees}. The
field size is 20x20.

We define the passing lane’s width to be the base of an
isosceles triangle with the apex at the position of the
passing player, the midpoint of the base at the position of
the receiver, and no takers contained in the area of the
triangle. The widest passing lane is the lane with the
widest possible base.

Using the random learner agent, two “smart” agents, and
the standard takers, we generated several hundred games
to be used as a training, tuning, and testing sets (as further
explained below). In each game we record the state using
the predicates described in Table 2 and focus on
predicting the log of the TD(1) (Monte Carlo) estimate of
the Q-value. We focus on the logarithm of the Q value
because we noticed that the distribution of the log of the
Q values closely approximates a normal distribution.

In order to measure the effect of having different amounts
of data for training, we divided the training data into 3
groups of 100 games and then performed training using
the first 100 games, the first 200, and the first 300 games.
For this work, we focus on learning for the two pass
actions rather than the hold action, since the passes are
more interesting in most cases (a hold action generally
does not change the state situation much since the player
simply keeps the ball where it is). On average, there are
about 3 passes in a game; for 300 games there are
therefore about 1200 training examples.

Since we have several parameters that must be determined
as part of the learning, we employ a tuning-set
methodology. We collected the results from 200
additional games to (a) tune parameters and (b) estimate
predictive accuracy. In our experiments, we divide this
additional data into two groups of 100 games and then in
one run used one group of 100 games as the tuning set
and the other 100 games as the testing set. In the next run
we use the second group of 100 games as the tuning set
and the first as the testing set. Note that our use of tuning
sets means that the total size of our training sets during
our experimentation is actually 200, 300, and 400 (the
training set plus the tuning set).

In our experiments we arbitrarily set the number of
features (M) to be 50, the number of members of the
ensemble (P) to 6, the maximum number of predicates in
a feature (L) to 3, the minimum number of differences a
new feature should have from a previously accepted
feature (K) to 5, and the low and high percentage of
examples that a feature must cover to 40% and 80%,
respectively. We use the tuning set to choose the method
to be used for combining our first-order features into a Q-
value prediction.

In order to select the weights used to combine the features
for a predictor, we use a regularized kernel regression
method from Mangasarian and Musicant (2002). In their
method, a regression problem is phrased as a support
vector problem. The main parameters of their method are
C, the value used to penalize the support-vector’s “slack
variables” (the larger this value, the higher the cost of
mis-predicting training points), and µ, a term that is used
to determine how much leeway is allowed in precisely
fitting each point (the µ term is a global parameter that
specifies a “tube” of leeway around the learned solution;
training points that fall within this tube are not penalized
in the expression being optimized). Since the problem is

phrased as a kernel problem, we can investigate different
kernels for producing a final model.

0%

5%

10%

15%

20%

25%

0 100 200 300 400 500
Number of Games in Training Set

N
or

m
al

iz
ed

 A
ve

ra
ge

 E
rr

or

Baseline

Our Method

In our experiments we use both a linear kernel and a
Gaussian kernel. Since the Gaussian kernel has a
parameter (the σ term indicating the width of the
Gaussian), we also investigated different values of this
parameter. In our experiments we look at four kernels: a
linear kernel and three Gaussian kernels with σ values of
0.05, 0.5, and 5, respectively. For each of these four
kernels, we built models using µ values of 0 or 0.5 and C
values of 0.1, 1, or 10. The µ values are suggested by
Mangasarian and Musicant (2002), while we chose the
other values in an ad-hoc manner. The combination of
parameter values and kernels leads to 24 different
possible combinations. The tuning set of 100 games is
then used to select the best model and the test set of 100
games is used to test generalization.

For testing, we measure how closely the learned model is
able to approximate the actual Q values measured in our
sample games. To determine this we are interested in the
mean error of the overall test set and how it relates to the
overall prediction. For this reason we calculate the mean
of the absolute value of the errors and normalize it by
dividing by the average value of the measurement we are
predicting. For example, if we are predicting an item with
values of 10 and 20, and predict 15 both times, the
average error is 5, and the percentage difference obtained
is 33% (5 as compared to an average predicted value of
15). For our experiments below, we calculate the average
percentage difference and plot this as a function of the
amount of training data.

As a baseline for comparison, we also compare to the
simple “baseline” algorithm that merely always predicts,
for each action, the average Q value in the training data
for that action.

4.2 Results

Figure 2 shows the results of our initial experiments.
Although not much better than our simple baseline
algorithm, our proposed method does show a small but
steady decrease in the error as the size of the training set
grows. It takes less than a minute on average to select a
set of relational features (using Prolog) and learn one
regularized regression model (using Matlab).

5. Future Directions

There are several directions related to our approach that
we plan to pursue in the future. First we plan to pursue
methods to increase the accuracy of the Q-function
estimates. To accomplish this, we plan to look at
developing an enhanced feature-selection algorithm.

Figure 2. Normalized error results for training our
proposed Q-function learning method and the baseline
method (see text). Results are shown for training set sizes of
200, 300, and 400 (where 100 of the training games are used
for tuning).

Enhanced feature selection could be accomplished in a
many ways. Currently we use all the features that we
generate, if they are non-redundant and cover between
40% and 80% of the training examples. This could be
improved by generating more features and performing a
local greedy search over those features to continually
improve the accuracy of the Q-function estimate.

Once we have improved the accuracy of the Q-function
estimate, we plan to perform traditional Q-learning using
our relational algorithms. We plan to test the learning
speed of the algorithm (as a function of the number of
games played) and the rewards received. It is our hope
that our relational method outperforms traditional non-
relational methods, in terms of both training time and
received rewards, especially as the size of the task (i.e.,
number of players on each team) increases.

After establishing the viability of our Q-learning, we will
determine how well our algorithm scales to more complex
problems. Due to the relational nature of our algorithm,
we expect it to scale readily to larger Keep-Away field
sizes with an increased number of keepers and takers with
little or no retraining. We also hope that we can move
from large fields to smaller, with little retraining.

We also plan to empirically compare to propositional
learners, as well as other approaches for relational
reinforcement learning (e.g., decision trees and instance-
based methods), for on this test bed.

6. Conclusions

We presented a novel method for reinforcement learning
in domains that constructs first-order features to describe
the state of the environment. This approach has the
advantage that learning can be scaled to larger problems
and that generalization can occur across tasks with
structural similarities. Our approach involves rapidly
sampling a large space of first-order features and then
selecting a good subset to use as the basis for our Q-
function. Our Q-function is created by producing a
regression model that combines the collection of first-
order features into a single Q-value prediction. To
prevent extreme predictions resulting from the possibility
of generating skewed sets of random features, we
generate an ensemble of models and then combine the
predictions of the resulting models by taking the median
prediction of the middle four models. Experimenting with
our technique on an interesting reinforcement learning
problem, the Keep-Away subtask of RoboCup, shows a
small gain in accuracy in predicting Q values compared to
a simple model, indicating that our proposed method
could lead to effectively reinforcement learning.

Acknowledgments
The research is partially supported by DARPA grant
HR0011-04-1-0007.

References
Blockeel, H. and De Raedt, L. (1998). Top-down

induction of first-order logical decision trees. Artificial
Intelligence: 101, 285-297.

Driessens, K. and Ramon, R. (2003). Relational instance-
based regression for relational reinforcement learning.
Proceedings of the 20th International Conference on
Machine Learning (ICML ’03), Washington, DC.

Dzeroski, S., and De Raedt, L. and Blockeel, H. (1998).
Relational reinforcement learning. Proceedings of the
15th International Conference on Machine Learning
(ICML'98), Madison, WI.

Kramer, S. (1996). Structural regression trees.
Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI'96), Portland, Oregon. G.

Kuhlmann, P. Stone, R. Mooney, and J. Shavlik (2004).
Guiding a reinforcement learner with natural language
advice: Initial results in RoboCup soccer. Proceedings
of the AAAI’04 Workshop on Supervisory Control of
Learning and Adaptive Systems, San Jose, CA.

Mangasarian, O., and Musicant, D. (2002). Large scale
kernel regression via linear programming. Machine
Learning, 46: 255-269.

Popescul, A., Unger, L., Lawrence, S., and Pennock, D.
(2003). Statistical relational learning for document
mining. Proceedings of the 3rd International
Conference on Data Mining, Melbourne, FL.

Shanno, D., and Rocke, D. (1986). Numerical methods
for robust regression: Linear models. SIAM J. Sci. Stat.
Comput. 7: 86-97.

Srinivasan, A. (2000). A study of two probabilistic
methods for searching large spaces with ILP. Technical
Report PRG-TR-16-00. Oxford Univ. Computing Lab.

Stone, P. and Sutton, R. (2001). Scaling reinforcement
learning toward RoboCup Soccer. Proceedings of the
18th International Conference on Machine Learning,
Williams, Massachusetts.

Vapnik, V., Golowich, S. and Smola, A. (1997). Support
vector method for function approximation, regression
estimation, and signal processing. In M. Mozer, M.
Jordan, and T. Petsche, (eds.), Advances in Neural
InformationProcessing Systems 9, pages 281-287.

Zelezny, F., Srinivasan, A. and Page, D. (2003). Lattice-
search runtime distributions may be heavy-tailed.
Proceedings of the 12th International Conference on
Inductive Logic Programming (ILP'02), Sydney,
Australia.

