

MACHINE LEARNING METHODS FOR THE

DETECTION OF RWIS SENSOR MALFUNCTIONS

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

ADITYA POLUMETLA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

JULY 2006

UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of Master's thesis by

Aditya Polumetla

and have found it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

___________Dr. Richard Maclin__________

Name of Faculty Advisor(s)

Signature of Faculty Advisor(s)

Date

GRADUATE SCHOOL

Abstract

Mn/DOT uses meteorological information obtained from Road Weather Information

System (RWIS) sensors for the maintenance of roads and to ensure safe driving

conditions. It is important that these sensors report accurate data in order to make

accurate forecasts, as these forecasts are used extensively by Mn/DOT. Real time

detection of sensor malfunctions can reduce the expense incurred in performing routine

maintenance checks and re-calibrations of the sensors, while guaranteeing accurate data.

In this work we predict RWIS sensor values using weather information from nearby

RWIS sensors and other sensors from the AWOS network. Significant and/or systemic

deviations from the predicted values are used to identify malfunctions. Based on

historical data collected from the sensor and its nearby locations, we construct statistical

models that can be used to predict current values. We use machine learning (ML)

methods to build these models. We employ three types of ML models: classification

algorithms, regression algorithms and Hidden Markov Models (HMMs). We use

classification algorithms such as J48 decision trees, Naive Bayes and Bayesian Networks,

regression algorithms such as Linear Regression, Least Median Square (LMS), M5P

regression trees, MultiLayer Perceptron, RBF Networks and Conjunctive Rule, and

HMMs to predict the variables temperature, precipitation type and visibility.

We selected a representative sample of the RWIS sites in Minnesota. We employed

different representations of the data to try improve the model efficiency. To use

temperature in regression algorithms and HMMs, we developed a method to discretize

temperature. The Viterbi algorithm used in HMM was modified to obtain the symbol

observed along the most probable path.

From the results, we observed that LMS and M5P are highly accurate in predicting

temperature and visibility. Predicting precipitation works well with J48 decision trees and

 i

Bayesian Belief Networks. HMMs can predict temperature class values accurately but

fail in case of precipitation type. Our experiments suggest hese methods can be efficiently

used to detect malfunctions of the sensors that report these variables.

 ii

Acknowledgements

I would like to take this opportunity to acknowledge all those who helped me during this

thesis work. I would like to thank my advisor Dr. Richard Maclin for introducing me to

the world of machine learning, his valuable suggestions and guidance during the course

of this thesis work, and his patience in reviewing my thesis.

I would like to thank my committee members Dr. Donald Crouch and Dr. Robert

McFarland for evaluating my thesis and for their suggestions.

I would like to thank the Northland Advanced Transportation Systems Research

Laboratories for providing the funding for this research and its members Dr. Richard

Maclin, Dr. Donald Crouch and Dr. Carolyn Crouch for their ideas and feedback. I would

especially like to thank my team members at various times during the project including

Saiyam Kohli, Ajit Datar, Jeff Sharkey and Jason Novek for their help in the research

work.

I would also like to thank all the faculty and staff at the Computer Science Department at

the University of Minnesota Duluth for their assistance during my master’s course-work.

My fellow graduate students who offered great help during my study and stay in Duluth, I

would like to thank them all.

Finally, I would like to thank my parents and grandparents for their endless support and

encouraging me to do my best.

 iii

Contents

Abstract . i
Acknowledgements . iii
1 Introduction . 1
 1.1 Building Models for Sensor Data using Machine Learning Methods 3
 1.2 Thesis Statement . 4
 1.3 Thesis Outline . 4

2 Background . 6
 2.1 Description of Sensors . 6
 2.1.1 The Road Weather Information System 7
 2.1.1.1 Data from RWIS Sensors . 9
 2.1.2 The Automated Weather Observing System 12
 2.1.2.1 Data from AWOS Sensors 13
 2.2 Machine Learning . 15
 2.2.1 Classification Algorithms 19
 2.2.1.1 The J48 Decision Tree Algorithm 19
 2.2.1.2 Naive Bayes . 23
 2.2.1.2 Bayes Nets . 25
 2.2.2 Regression Algorithms . 28
 2.2.2.1 Linear Regression . 28
 2.2.2.2 LeastMedSquare . 30
 2.2.2.3 M5P . 30
 2.2.2.4 MultiLayer Perceptron . 33
 2.2.2.5 RBF Network . 35
 2.2.2.6 The Conjunctive Rule Algorithm 37
 2.3 Predicting Time Sequence Data – Hidden Markov Models 38
 2.3.1 The Forward Algorithm and the Backward Algorithm 42
 2.3.2 The Baum-Welch Algorithm . 45
 2.3.3 The Viterbi Algorithm . 47

 iv

3 Machine Learning Methods for Weather Data Modeling 49
 3.1 Choosing RWIS - AWOS Sites . 50
 3.2 Features Used . 53
 3.2.1 Transformation of the Features . 53
 3.2.2 Discretization of the Features . 56
 3.3 Feature Vectors . 58
 3.4 Feature Symbols for HMMs . 59
 3.5 Methods Used for Weather Data Modeling 60
 3.5.1 Cross-Validation . 61
 3.5.2 General Classification Approach 62
 3.5.2 General Regression Approach . 64
 3.5.4 General HMM Approach .

65

4 Experiments and Results . 71
 4.1 Using ML Algorithms to Predict Weather Variables 71
 4.1.1 Predicting Temperature . 72
 4.1.1.1 Experiment 1: Temperature using regression methods 72
 4.1.1.2 Experiment 2: Temperature using regression methods, with
 precipitation type included as inputs

75

 4.1.1.3 Experiment 3: Temperature class using classification methods. 77
 4.1.2 Predicting Precipitation Type . 79
 4.1.2.1 Experiment 4: Precipitation type using classification methods . 80
 4.1.3 Predicting Visibility . 84
 4.1.3.1 Experiment 5: Visibility using regression methods 84
 4.2 Using HMMs to Predict Weather Variables 86
 4.2.1 Predicting Temperature . 88
 4.2.1.1 Experiment 6: Comparison of two methods for training HMM . 88
 4.2.1.2 Experiment 7: Temperature class using HMMs 91
 4.2.1.3 Experiment 8: Site independent prediction of temperature class
 using HMMs .

93

 4.2.2 Predicting Precipitation Type . 96
 4.2.2.1 Experiment 9:Precipitation type using HMMs

96

 v

5 Related Work . 100
 5.1 Using RWIS sensors . 100
 5.2 Weather Data Modeling and Forecasting using Machine Learning
 Algorithms .

101

 5.3 Time Series Prediction using HMM .

104

6 Future Work . 105
7 Conclusions . 108
 Bibliography . 110
 Appendix A: RWIS and AWOS Site Locations 115
 Appendix B: Using WEKA . 117
 Appendix C: Detailed Results . 121

 vi

List of Figures

1.1 Predicting temperature value at RWIS site 67 for the time t using weather

data from nearby sensors .

2

2.1 RWIS sites in Minnesota . 9
2.2 AWOS Sites in Minnesota . 13
2.3 Using data from nearby sites to predict temperature for the location C . . . 18
2.4 A Decision Tree to predict the current temperature based on temperature

readings taken from a set of nearby sites

20
2.5 A Bayesian network to predict temperature temp_Ct at a site 26
2.6 A M5 model tree for predicting temperature at a site 31
2.7 A multilayer perceptron with two hidden layers to predict temperature at a

site . .

33
2.8 A sigmoid unit that takes inputs xi, wi the weights associated with the

inputs and sigmoid the resulting output from the unit

34
2.9 An RBF Network with n hidden units to predict temperature at a site 36
2.10 A Hidden Markov Model. A new state is visited when a transition occurs at

a certain duration of time and each state emits a symbol when reached . . . 39
2.11 A HMM with states 1, 2, 3 and 4 that emit a symbol when reached 41
3.1 Predicting temperature value at a site using weather data from nearby

sensors . 49
3.2 Grouping of RWIS and AWOS sites into three sets. This map also shows

the locations of the selected RWIS and AWOS sites across Minnesota . . . 52
4.1 The mean of absolute error and standard deviation obtained from predicting

temperature across all 13 RWIS sites using regression algorithms 74
4.2 The comparison of mean of absolute error and standard deviation obtained

from predicting temperature using Experiment 1 (Section 4.1.1.1) and
Experiment 2 (Sections 4.1.1.2) . 77

4.3 The distance between actual and predicted temperature class obtained from
J48 and Naive Bayes algorithms . 79

4.4 The classification error and standard deviation obtained from predicting
precipitation type across all 13 RWIS sites using classification algorithms . 81

4.5 The percentage of instances with precipitation present and with no
precipitation present predicted correctly and incorrectly using classification
algorithms 82

 vii

4.6 The mean of absolute errors obtained from predicting visibility across the
RWIS sites that report visibility using various algorithms 85

4.7 The percentage of instances with each distance to actual value when the
HMM is trained using the two different methods 91

4.8 Percentage of instances having a certain distance from the actual class
value when predicting temperature class using HMMs 93

4.9 Percentage of instances having a certain distance from the actual class
value when predicting temperature class by applying ten 10-fold cross-
validation on HMMs and using the extended dataset focusing on predicting
class value for an RWIS group . 95

4.10 The percentage of instances with precipitation present and with no
precipitation present predicted correctly using classification algorithms . . 97

C.1 Mean Absolute Errors for different RWIS sites obtained from predicting
temperature using regression algorithms 122

C.2 Mean Absolute Errors for different RWIS sites obtained from predicting
temperature using regression algorithms, with precipitation type
information added to the feature vector 124

C.3 Classification errors for different RWIS sites obtained from predicting
precipitation using classification algorithms 126

C.4 Mean Absolute Errors for different RWIS sites obtained from predicting
visibility using regression algorithms . 129

C.5 Percentage of instances with a certain distances between actual and
predicted class values, obtained by using HMM to predict temperature class 131

 viii

List of Tables

2.1 Codes used for reporting precipitation type and precipitation intensity by
RWIS Sensors . 11

2.2 The Forward Algorithm 43
2.3 The Backward Algorithm . 44
2.4 The Baum-Welch Algorithm . 46
2.5 The Viterbi Algorithm . 47
3.1 Grouping of the selected 13 RWIS sites into three sets, along with their

respective AWOS sites . 53
3.2 The Modified Viterbi Algorithm . 67
A.1 Latitude and longitude coordinates for RWIS sites in Minnesota 115
A.2 Latitude and longitude coordinates for AWOS sites in Minnesota 116
B.1 Format of an arff file 118
C.1 Results obtained from using regression algorithms to predict temperature at

an RWIS site (Experiment 1) . 121
C.2 Results obtained from using regression algorithms to predict temperature at

an RWIS site (Experiment 2) . 123
C.3 Results obtained from using classification algorithms to predict

precipitation type at an RWIS site (Experiment 4) 125
C.4 Precentage of instances predicted correctly using classification algorithms

(Experiment 4) . 127
C.5 Results obtained from using regression algorithms to predict visibility at an

RWIS site . 129
C.6 Percentage of instances with a certain distance between actual and predicted

temperature class values, obtained by using HMM to predict temperature
class (Experiment 7) . . 130

C.7 Percentage of instances with a certain distance between actual and predicted
temperature class values, obtained using extended dataset focusing on
predicting value for an RWIS set rather than for an RWIS site (Experiment
8) . 132

C.8 Results obtained from predicting precipitation type using HMM
(Experiment 9) . 133

 ix

Chapter 1

Introduction

Many state transportation departments, such as the Minnesota Department of

Transportation (Mn/DOT), have Road Weather Information System (RWIS) units located

along major roadways. Each RWIS unit employs a set of sensors that collect weather and

pavement condition information. The information from these sensors is used to determine

the current conditions on and near the roads. This information is used to conduct roadway

related maintenance and for ensuring safe driving conditions. The current weather

information and forecasts based on this data are used for the allocation of resources such

as the timing of operations such as snow removal, the selection of the right amount of

materials such as salt for ice removal from roads, and the mobilization of maintenance

personnel and equipment efficiently. These decisions help in running the organization in

an efficient and cost effective manner.

During the winter months, the condition of the roads may get hazardous if the proper

amount of salt is not applied at the right time. Information about weather and road

conditions is obtained from the data reported by the RWIS sensors. This makes it

important to keep these sensors in working order and ensure the readings are accurate.

The maintenance of RWIS units is expensive and is done manually. Routine re-

calibrations and maintenance checks are needed to ensure the proper working of these

sensors. It would be beneficial if there existed an automated system that could detect

malfunctions in real time and alert the maintenance personnel. We propose to use

Machine Learning (ML) methods to form models to use to create such a system.

 1

Data from the sites
time t-2 , t-1 , t
Temp: 35° , 37° , 38°
Visibility: 1mile, 0.5mile, 1mile

ORB

INL

LYU

19

67

27

temp_67t = ??

Figure 1.1: Predicting temperature value at RWIS site 67 for the time t using

weather data from nearby sensors.

To detect a malfunctioning sensor using ML methods, we propose to observe the sensor's

output over a period of time to determine any significant and/or systemic variations from

the actual conditions present that might indicate a sensor malfunction. Figure 1.1 shows

an overview of our proposed approach. This method works by predicting a sensor value

at a site, for example site 67 from the Figure 1.1, which is then compared with the actual

sensor reading to detect malfunctions. To predict the temperature value for site 67 at a

given time t, we can use the current and a couple of previous hours of weather data, such

as temperature and visibility, obtained from a set of sites that are located close to site 67.

Figure 1.1 shows the nearby sites whose data correlate with the weather conditions at site

67. We attempt to build models for a site using ML methods which are used to predict a

value at the site. To build such a model, ML methods require historical weather data

obtained from the site and its nearby sites to learn the weather patterns. The model for

site 67 uses the temperature and visibility information from the nearby sites to predict the

temperature value that will be seen at site 67 at future times.

 2

1.1 Building Models of Sensor Data using Machine

Learning

Machine Learning (ML) methods build models based on previous observations which can

then be used to predict new data. The model built is a result of a learning process that

extracts useful information about the data generation process of the system using the

previous observations. ML methods take a set of data corresponding to the process (in

this case the weather at a sensor) and construct a model of that process in a variety of

ways to predict that process. The resulting model can be applied to future data to attempt

to predict sensor values. The resulting predictions can then be compared to sensor values

reported and in cases where there are significant deviations, these sensors can be flagged

as possibly malfunctioning.

We propose to use a variety of ML methods such as classification methods (e.g., J48

Decision Trees, Naive Bayes and Bayesian Networks), regression methods (e.g., Linear

Regression, Least Median Squares) and Hidden Markov Models to try to predict this

data. In all cases we are attempting to identify cases where sensors appear to have failed

or are malfunctioning.

Classification algorithms label a given observation into one of a set of possible distinct

categories. For example, we could take information about the recent temperature and

humidity at a site and nearby sites as well as precipitation at the nearby sites and attempt

to predict whether it is raining at that site. Raining or not raining would be the labels for

this problem. Models built might be in the form of decision trees, lists of rules, neural

networks, etc.

Regression algorithms develop a model for a system by finding equations that predict a

continuous-valued result from the measured input values of a given observation. For

example, we might use information about the temperature and humidity at other sites to

 3

try to predict the temperature value at a site.

HMMs predict values that are produced by a system in the form of a sequence generated

over time. For example, the sequence of values of raining or not raining at a site over the

course of a 24 hour period can be viewed as a time sequence. HMMs use the information

from the value observed one step previously to predict the present value. HMMs capture

time sequence information in the form of a graph where states represent information

about the world (possibly including information that cannot be observed) and transitions

between states which can emit the symbols (in this case, raining or not raining) which we

observe. The process of determining the probabilities of emitting symbols and the

probabilities of transitions between states is the basis of HMM learning.

1.2 Thesis Statement

In this thesis we propose to build models that can predict weather conditions at a given

RWIS location using the current information from that location and surrounding locations

(see Figure 1.1). We use ML algorithms including classification, regression and HMM

methods to build the models to predict weather conditions at a selected sample of RWIS

sites in the state of Minnesota. We use these predicted values and compare them with the

values reported by the RWIS sensors to identify possible malfunctions. Of all the weather

conditions reported by RWIS units we focus on predicting temperature, precipitation type

and visibility. We hypothesize that the models we build can accurately detect deviations

in the expected sensor readings that will allow us to identify sensor malfunctions.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the background for this thesis with

a detailed description of the weather data collection systems present and the sensors they

use. It describes the basic concepts of machine learning and presents various ML

 4

algorithms and HMMs used. Chapter 3 discusses the use of ML methods in detecting

RWIS sensor malfunctions. It presents the process of selecting the sites used, feature

representations used by ML algorithms and HMMs, and the general methodology used by

the ML methods in predicting sensor values. Chapter 4 presents the experiments done to

predict temperature, precipitation type and visibility using ML algorithms, and the results

obtained from these experiments. Chapter 5 discusses research related to this work.

Chapter 6 discusses extensions that can be made to the the proposed system. Chapter 7

presents conclusions and summarizes the work done in this thesis.

 5

Chapter 2

Background

This chapter presents the background for this thesis. In the first section we introduce the

two weather data collection systems, the Road Weather Information System (RWIS) and

the Automated Weather Observing System (AWOS). We describe these sensors and the

data format they use for recording values. In the second section we discuss the basic

concepts of machine learning and its use in data mining problems. We then present

various machine learning algorithms used in this thesis.

2.1 Description of Sensors

Two major automated systems are present in the United States that collect, process and

distribute meteorological data, namely the Road Weather Information System (RWIS)

[Aurora; Boselly et al., 1993] and the Automated Weather Observing System (AWOS)

[FAA, 2006]. RWIS units are used by state and local roadway maintenance organizations

for diverse roadway related operations. RWIS units have sensors that collect weather and

pavement condition information. These units are generally installed on highways. The

weather information gathered is used for understanding the current conditions on

roadways at a specific location.

AWOS units are operated and controlled by Federal Aviation Administration (FAA).

AWOS systems are installed at airports across the country. The meteorological sensors

located on AWOS units measure and distribute weather information at the airports that is

used by pilots and airport administrators. This information is used to keep the runways in

proper condition, determine flight plans, and for landing and takeoff of airplanes. At

 6

present, a newer version of AWOS called the Automated Surface Observing System

(ASOS) is also being used. A detailed description of these sensor systems, RWIS and

AWOS, is given in the following sections.

2.1.1 The Road Weather Information System

The Road Weather Information System (RWIS) [Aurora; Boselly et al., 1993] is used for

collection, transmission, model generation, and distribution of weather and road

condition information. An RWIS is a collection of various systems that work together.

The systems that form an RWIS are meteorological sensors, data communication

equipment, weather profiles, site specific models, forecast and prediction algorithms, data

processing systems and display systems to interface with humans.

The component of RWIS that collects weather data is called the Environmental Sensor

Station (ESS) [Manfredi et al., 2005]. The ESS stations are placed at strategic locations in

the road network, usually on state highways, in a grid-wise manner. A typical ESS

consists of a tower, two road sensors embedded in and below the road for measurement

of pavement conditions, an array of weather sensors located on the tower for

meteorological observations, a Remote Processing Unit (RPU) for data collection and

storage, and remote communication hardware that connects the ESS to a central server

which is present at a maintenance center. The road sensors measure road surface

temperature, surface condition (dry, wet and snow), water-film level and freezing

temperature based on residual salt content on the road. The weather sensors measure air

temperature, dew point, precipitation (type, intensity and rate), amount of precipitation

accumulation, wind speed and direction, air pressure, visibility, relative humidity and

solar radiation.

The RPUs are able to collect the raw data sent by the various sensors on the ESS and

store it. They are not designed to process the data that is collected and thus the data is

 7

transmitted to a central server present at the maintenance center using the remote

communication hardware. The communication between the RPU and the central server is

done using radio signals.

The central server located at the highway maintenance centers has processing capabilities

and performs data-related tasks such as communication with the RPUs, and collection,

archiving and distribution of data. A set of site-specific weather models and data

processing algorithms are loaded onto the central server. The central server uses these

models and its data processing capabilities to come up with forecasts. The central server

has a number of displays for human interaction with the RWIS system.

State and local organizations dealing with highway maintenance, such as the Minnesota

Department of Transportation (Mn/DOT1), use RWIS for maintenance of roads and to

ensure safe driving conditions in all seasons. The data collected and forecasts made by

RWIS are used for the allocation of resources, timing of operations such as repairs,

selection of the right amount of materials such as salt in case of ice removal, and

mobilizing personnel and equipment. All of these decisions help in running the

organization in a cost effective manner. The current weather and road conditions are

relayed to motorists to help them in planning their trips and estimating travel times. In

addition to the uses mentioned above, the data is also shared with various government,

commercial and university related sources.

Mn/DOT maintains 93 RWIS sites spread all across the state of Minnesota. Figure 2.1

shows the location of the 79 of the 93 RWIS sites present in Minnesota. The remaining

14 sites added recently are not included in our original map. Each RWIS site has a

specific number, assigned by Mn/DOT, associated with it. The latitude and longitude of

each RWIS site shown in the Figure 2.1 are given in Table A.1 in the appendix.

1. http://www.dot.state.mn.us/

 8

Figure 2.1: RWIS sites in Minnesota

2.1.1.1 Data from RWIS sensors

RWIS sensors report observed values every 10 minutes, resulting in 6 records per hour.

Greenwich Mean Time (GMT) is used for recording the values. The meteorological

conditions reported by RWIS sensors are air temperature, surface temperature, dew point,

visibility, precipitation, the amount of precipitation accumulation, wind speed and wind

direction. Following is a short description of these variables along with the format they

follow.

 9

(i) Air Temperature: Air temperature is recorded in Celsius in increments of one

hundredth of a degree, with values ranging from -9999 to 9999 and a value of 32767

indicating an error. For example, a temperature of 10.5 degree Celsius is reported as

1050.

(ii) Surface Temperature: Surface temperature is the temperature measured near the

road surface. It is recorded in the same format as air temperature.

(iii) Dew Point: Dew point is defined as the temperature at which dew forms. It is

recorded in the same format as air temperature.

(iv) Visibility: Visibility is the maximum distance to which it is possible to see without

any aid. Visibility reported is the horizontal visibility recorded in one tenth of a meter

with values ranging from 00000 to 99999. A value of -1 indicates an error. For example,

a visibility of 800.2 meters is reported as 8002.

(v) Precipitation: Precipitation is the amount of water in any form that falls to earth.

Precipitation is reported using three different variables, precipitation type, precipitation

intensity and precipitation rate. A coded approach is used for reporting precipitation type

and intensity. The codes used and the information they convey are given in Table 2.1.

The precipitation type gives the form of water that reaches the earth's surface.

Precipitation type with a code of 0 indicates no precipitation, a code of 1 indicates the

presence of some amount of precipitation but the sensor fails to detect the form of the

water, a code of 2 represents rain, and the codes 3, 41 and 42 respectively represent

snowfall with an increase in intensity.

The precipitation intensity is used to indicate how strong the precipitation is when

present. When no precipitation is present then intensity is given by code 0. As we move

from codes 1 to 4 they indicate an increase in intensity of precipitation. Codes 5 and 6 are

 10

Table 2.1: Codes used for reporting precipitation type and precipitation intensity by

RWIS Sensors.

Code Precipitation Intensity Code Precipitation Type

0 No precipitation 0 None

1 Precipitation detected, not identified 1 Light

2 Rain 2 Slight

3 Snow 3 Moderate

41 Moderate Snow 4 Heavy

42 Heavy Snow 5 Other

 6 Unknown

used to indicate an intensity that cannot be classified into any of previous codes and in

cases when the sensor is unable to measure the intensity respectively. A value of 255 for

precipitation intensity indicates either an error or absence of this type of sensor.

Precipitation rate is measured in millimeters per hour with values ranging from 000 to

999 except for a value of -1 that indicates either an error or absence of this type of sensor.

(vi) Precipitation Accumulation: Precipitation accumulation is used to report the

amount of water falling in millimeters. Values reported range from 00000 to 99999 and a

value of -1 indicating an error. Precipitation accumulation is reported for the last 1, 3, 6,

12 and 24 hours.

(vii) Wind Speed: Wind speed is recorded in tenths of meters per second with values

ranging from 0000 to 9999 and a value of -1 indicating an error. For example, a wind

speed of 2.05 meters/second is reported as 205.

(viii) Wind Direction: Wind direction is reported as an angle with values ranging from

 11

0 to 360 degrees. A value of -1 indicates an error.

(ix) Air Pressure: Air pressure is defined as the force exerted by the atmosphere at a

given point. The pressure reported is the pressure when reduced to sea level. It is

measured in tenths of a millibar and the values reported range from 00000 to 99999. A

value of -1 indicates an error. For example, air pressure of 1234.0 millibars is reported as

12340.

2.1.2 The Automated Weather Observing System

The Automated Weather Observing System (AWOS) is a collection of systems including

meteorological sensors, data collection system, centralized server and displays for human

interaction which are used to observe and report weather conditions at airports in order to

help pilots in maneuvering the aircraft and airport authorities for proper working of

airports and runways.

AWOS sensors [AllWeatherInc] are placed at strategic locations such as runways at the

airport. These sensors record hourly weather conditions and are capable of reporting air

temperature, visibility, dew point, wind speed and direction, precipitation type and

amount, humidity, air pressure and cloud cover. The sensors are connected to a powerful

computer that analyzes the data gathered and broadcasts weather reports. The information

collected from the AWOS sensors are used by pilots, air traffic control and maintenance

personnel for safe operation of runways and for determining flight routes. The AWOS

system provides update to pilots approaching an airport using a non-directional beacon.

The meteorological information gathered is also used by the National Weather Service

for forecasting and other weather services. There are over 600 AWOS sites located across

the US according to the FAA. The sites are named in accordance with the code assigned

to the airport they are located in, for example the city of Duluth in Minnesota that has an

airport with DLH has its AWOS sensor named KDLH.

 12

Figure 2.2: AWOS Sites in Minnesota

Figure 2.2 shows the location of AWOS sites across the state of Minnesota and Table A.2

gives the latitude and longitude of these sites.

2.1.2.1 Data from AWOS sensors

AWOS sensors report values on an hourly basis. The local time is used in reporting. For

example, the sites in Minnesota use Central Time (CT). AWOS sensors report air

 13

temperature, dew point, visibility, weather conditions in a coded manner, air pressure and

wind information. Following is a description of these variables.

(i) Air Temperature: The air temperature value is reported as integer values in

Fahrenheit ranging from -140 F to 140 F.

(ii) Dew Point: The dew point temperature is reported in the same format as air

temperature.

(iii) Visibility: The visibility is reported as a set of values ranging from 3/16 mile to 10

miles. These values can be converted into floating point numbers for simplicity.

(iv) Weather Code: AWOS uses a coded approach to represent the current weather

condition. 80 different possible codes are listed to indicate various conditions. Detailed

information about these codes is given in the document titled “Data Documentation of

Data Set 3283: ASOS Surface Airways Hourly Observations” published by the National

Climatic Data Center [NCDC, 2005].

(v) Air Pressure: The air pressure is reported in tenth of a millibar increments. For

example, an air pressure of 123.4 millibars is reported as 1234.

(vi) Wind Speed and Wind Direction: AWOS encodes wind speed and direction into a

single variable. Wind speed is measured in knots ranging from 0 knots to 999 knots.

Wind direction is measured in degrees ranging from 0 to 360 in increments of 10. The

single variable for wind has five digits with the first two representing direction and the

last three representing speed. For example, the value for a wind speed of 90 knots and

direction of 80 degrees will be 80090.

In this work we propose to predict malfunctions of a RWIS sensor using other nearby

RWIS and AWOS sensors. A sensor is said to be malfunctioning when the values

 14

reported by it deviate from the actual conditions present. We will be applying various

machine learning algorithms and Hidden Markov Models in order to find a model that

can detect significant variations in the readings obtained from a sensor. The following

section presents a brief description of the fields of machine learning and data mining

along with a description of the machine learning algorithms used in this thesis.

2.2 Machine Learning

Learning can be defined in general as a process of gaining knowledge through

experience. We humans start the process of learning new things from the day we are

born. This learning process continues throughout our life where we try to gather more

knowledge and try to improve what we have already learned through experience and

from information gathered from our surroundings.

Artificial Intelligence (AI) is a field of computer science whose objective is to build a

system that exhibits intelligent behavior in the tasks it performs. A system can be said to

be intelligent when it has learned to perform a task related to the process it has been

assigned to without any human interference and with high accuracy. Machine Learning

(ML) is a sub-field of AI whose concern is the development, understanding and

evaluation of algorithms and techniques to allow a computer to learn. ML intertwines

with other disciplines such as statistics, human psychology and brain modeling. Human

psychology and neural models obtained from brain modeling help in understanding the

workings of the human brain, and especially its learning process, which can be used in

the formulation of ML algorithms. Since many ML algorithms use analysis of data for

building models, statistics plays a major role in this field.

A process or task that a computer is assigned to deal with can be termed the knowledge

or task domain (or just the domain). The information that is generated by or obtained

from the domain constitutes its knowledge base. The knowledge base can be represented

 15

in various ways using Boolean, numerical, and discrete values, relational literals and their

combinations. The knowledge base is generally represented in the form of input-output

pairs, where the information represented by the input is given by the domain and the

result generated by the domain is the output. The information from the knowledge base

can be used to depict the data generation process (i.e., output classification for a given

input) of the domain. Knowledge of the data generation process does not define the

internals of the working of the domain, but can be used to classify new inputs

accordingly.

As the knowledge base grows in size or gets complex, inferring new relations about the

data generation process (the domain) becomes difficult for humans. ML algorithms try to

learn from the domain and the knowledge base to build computational models that

represent the domain in an accurate and efficient way. The model built captures the data

generation process of the domain, and by use of this model the algorithm is able to match

previously unobserved examples from the domain.

The models built can take on different forms based on the ML algorithm used. Some of

the model forms are decision lists, inference networks, concept hierarchies, state

transition networks and search-control rules. The concepts and working of various ML

algorithms are different but their common goal is to learn from the domain they

represent.

ML algorithms need a dataset, which constitutes the knowledge base, to build a model of

the domain. The dataset is a collection of instances from the domain. Each instance

consists of a set of attributes which describe the properties of that example from the

domain. An attribute takes in a range of values based on its attribute type, which can be

discrete or continuous. Discrete (or nominal) attributes take on distinct values (e.g., car =

Honda, weather = sunny) whereas continuous (or numeric) attributes take on numeric

values (e.g., distance = 10.4 meters, temperature = 20ºF).

 16

Each instance consists of a set of input attributes and an output attribute. The input

attributes are the information given to the learning algorithm and the output attribute

contains the feedback of the activity on that information. The value of the output attribute

is assumed to depend on the values of the input attributes. The attribute along with the

value assigned to it define a feature, which makes an instance a feature vector. The model

built by an algorithm can be seen as a function that maps the input attributes in the

instance to a value of the output attribute.

Huge amounts of data may look random when observed with the naked eye, but on a

closer examination, we may find patterns and relations in it. We also get an insight into

the mechanism that generates the data. Witten & Frank [2005] define data mining as a

process of discovering patterns in data. It is also referred to as the process of extracting

relationships from the given data. In general data mining differs from machine learning in

that the issue of the efficiency of learning a model is considered along with the

effectiveness of the learning. In data mining problems, we can look at the data

generation process as the domain and the data generated by the domain as the knowledge

base. Thus, ML algorithms can be used to learn a model that describes the data

generation process based on the dataset given to it. The data given to the algorithm for

building the model is called the training data, as the computer is being trained to learn

from this data, and the model built is the result of the learning process. This model can

now be used to predict or classify previously unseen examples. New examples used to

evaluate the model are called a test set. The accuracy of a model can be estimated from

the difference between the predicted and actual value of the target attribute in the test set.

Predicting weather conditions can also be considered as an example of data mining.

Using the weather data collected from a location for a certain period of time, we obtain a

model to predict variables such as temperature at a given time based on the input to the

model. As weather conditions tend to follow patterns and are not totally random, we can

use current meteorological readings along with those taken a few hours earlier at a

location and also readings taken from nearby locations to predict a condition such as the

 17

temperature at that location. Thus, the data instances that will be used to build the model

may contain present and previous hour's readings from a set of nearby locations as input

attributes. The variable that is to be predicted at one of these locations for the present

hour is the target attribute. The type and number of conditions that are included in an

instance depend on the variable we are trying to predict and on the properties of the ML

algorithm used.

WEKA [Witten & Frank, 2005], for Waikato Environment for Knowledge Analysis, is a

collection of various ML algorithms, implemented in Java, that can be used for data

mining problems. Apart from applying ML algorithms on datasets and analyzing the

results generated, WEKA also provides options for pre-processing and visualization of

the dataset. It can be extended by the user to implement new algorithms.

Suppose that we want to predict the present temperature at a site C (see Figure 2.3). To

do this we use eight input attributes: the previous two hours temperature together with the

present hour temperature at C and two nearby locations A and B. The output attribute is

the present hour temperature at C. Let temp_<site><hour> denote temperature taken at

hour <hour> at location <site>, then the data instance will take the form,
temp_At-2, temp_At-1, temp_At, temp_Bt-2, temp_Bt-1, temp_Bt, temp_Ct-2, temp_Ct-1, temp_Ct

with the last attribute, temp_Ct, being the output attribute. We will refer to this example

as 'our weather example' in the following sections in this chapter.

igure 2.3: Using data from nearby sites to predict temperature for the location C.

A

B

C
temp_Ct = ?

Data available from the sites

time t-2, t-1, t

temp 32°, 33°, 31°

A

B

C
temp_Ct = ?

Data available from the sites

time t-2, t-1, t

temp 32°, 33°, 31°

F

 18

ML algorithms can be broadly classified into two groups, classification and regression

.2.1 Classification Algorithms

lgorithms that classify a given instance into a set of discrete categories are called

o be able to apply classification algorithms on our weather example we need to convert

e describe in detail the classification algorithms that have been used in this thesis in the

.2.1.1 The J48 Decision Tree Algorithm

8 is a decision tree learner based on C4.5 [Quinlan, 1993]. C4.5 is an update of the ID3

algorithms. We describe these two types of classifications and some of the ML

algorithms from each of these groups.

2

A

classification algorithms. These algorithms work on a training set to come up with a

model or a set of rules that classify a given input into one of a set of discrete output

values. Most classification algorithms can take inputs in any form, discrete or continuous

although some of the classification algorithms require all of the inputs also to be discrete.

The output is always in the form of a discrete value. Decision trees and Bayes nets are

examples of classification algorithms.

T

the output attribute into classes. This is generally done by discretization, which is the

process of dividing a continuous variable into classes. Discretization can be done in many

ways, a simple approach would be to divide the temperature into ranges of 5 degrees and

giving each range a name or by using entropy-based algorithms [Fayyad & Irani, 1993;

Dougherty et al., 1995]. Inputs attributes can be left as continuous if the algorithm deals

with them or they can be converted into discrete values depending on the algorithm.

W

sub-sections below.

2

J4

 19

temp_At-2

temp_Ct-1

temp_Bt

temp_At-1

temp_Ct=40-45 temp_Ct=40-45

temp_Ct=40-45temp_Ct=40-45temp_Ct=40-45

>32 <=32

<=30 >25 <=25

>40 <=40

>30

Figure 2.4: A Decision Tree to predict the current temperature at site C based on

temperature readings taken from a set of nearby sites.

algorithm [Quinlan, 1986]. We describe here the ID3 algorithm.

A decision tree classifies a given instance by passing it through the tree starting at the top

and moving down until a leaf node is reached. The value at that leaf node gives the

predicted output for the instance. At each node an attribute is tested and the branches

from the node correspond to the values that attribute can take. When the instance reaches

a node, the branch taken depends on the value it has for the attribute being tested at the

node. A decision tree that can be used to predict the present hour temperature for site C in

our weather example is given Figure 2.4. So if we were to classify an instance in our

weather example with this tree we would start at the root node that tests the attribute

temp_At-2 and based on the value taken by this attribute in the given instance we will take

the left or right branch. When we reach a node after taking a branch, the attribute

associated with it is tested and the corresponding branch taken until we reach a leaf node,

which gives the value taken for the output attribute temp_Ct.

The ID3 algorithm builds a decision tree based on the set of training instances given to it.

It takes a greedy top-down approach for the construction of the tree, starting with the

creation of the root node. At each node the attribute that best classifies all the training

instances that have reached that node is selected as the test attribute. At a node only those

 20

attributes are considered which were not used for classification at other nodes above it in

the tree. To select the best attribute at a node, the information gain for each attribute is

calculated and the attribute with the highest information gain is selected. Information

gain for an attribute is defined as the reduction in entropy caused by splitting the

instances based on values taken by the attribute. The information gain for an attribute A at

a node is calculated using

 ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

)(
)(

||
||

)(),(
AValuesv

v SEntropy
S
S

SEntropyASnGainInformatio ,

where S is the set of instances at that node and |S| is its cardinality, Sv is the subset of S

for which attribute A has value v, and entropy of the set S is calculated as

 ∑
=

−=
numclasses

i
ii ppSEntropy

1
2log)(,

where pi is the proportion of instances in S that have the ith class value as output attribute.

A new branch is added below the node for each value taken by the test attribute. The

training instances that have the test attribute value associated with the branch taken are

passed down the branch, and this subset of training instances is used for the creation of

further nodes. If this subset of training instances has the same output class value then a

leaf is generated at the branch end, and the output attribute is assigned that class value. In

the case where no instances are passed down a branch then a leaf node is added at the

branch end that assigns the most common class value in the training instances to the

output attribute. This process of generating nodes is continued until all the instances are

correctly classified or all the attributes have been used or when its not possible to divide

the examples.

Extensions were added to the basic ID3 algorithm to (1) deal with continuous valued

attributes, (2) deal with instances that have missing attribute values and to (3) prevent

overfitting the data (explained below).

When a discrete valued attribute is selected at a node the number of branches formed is

 21

equal to the number of possible values taken by the attribute. In the case of a continuous

valued attribute two branches are formed based on a threshold value that best splits the

instances into two. For example, in Figure 2.4 the attribute at the root node, temp_At-2,

has a threshold value of 32. The threshold is the selected as the value of the attribute that

maximizes the information gain of the given training instances. Fayyad & Irani [1993]

extended this approach to split a continuous-valued attribute into more than two intervals.

There may arise cases where an instance has no value for an attribute (i.e., missing

values) or has an unknown attribute value. The missing value can be replaced by the most

common value for that attribute among the training instances that reach the node where

this attribute is tested. In C4.5, the probability for each possible value taken by the

attribute with missing value is calculated, based on the number of times it is seen in the

training instances at a node. The probability values are then used for calculation of

information gain at the node.

In the ID3 algorithm, sometimes due to too small of a training set being used, the tree

built correctly classifies the training instances but fails when applied on the entire

distribution of data because it focuses on the spurious correlation in the data when the

remaining amount of data is small; this is know as overfitting. To avoid overfitting, C4.5

uses a technique called rule-post pruning. In rule post-pruning, after the tree is built, it is

converted into a set of rules. For example, the rule generated for leftmost path of the tree

in Figure 2.4 is

 IF (temp_At-2 > 32 AND temp_At > 30 AND temp_Bt > 40)

 THEN temp_Ct= 40-45 .

From each rule generated for the tree, those antecedents are pruned (i.e., removed) which

do not reduce the accuracy of the model. Accuracy is measured based on the instances

present in the validation set, which is a subset of the training set not used for building the

model.

 22

2.2.1.2 Naive Bayes

Naive Bayes [Good, 1965; Langley et al., 1992] is a simple probabilistic classifier based

on Bayes' rule. The naive Bayes algorithm builds a probabilistic model by learning the

conditional probabilities of each input attribute given a possible value taken by the output

attribute. This model is then used to predict an output value when we are given a set of

inputs. This is done by applying Bayes' rule on the conditional probability of seeing a

possible output value when the attribute values in the given instance are seen together.

Before describing the algorithm we first define the Bayes' rule.

Bayes’ rule states that

)(

)()|()|(
BP

APABPBAP = ,

where P(A|B) is defined as the probability of observing A given that B occurs. P(A|B) is

called posterior probability, and P(B|A), P(A) and P(B) are called prior probabilities.

Bayes’ theorem gives a relationship between the posterior probability and the prior

probability. It allows one to find the probability of observing A given B when the

individual probabilities of A and B are known, and the probability of observing B given A

is also known.

The naive Bayes algorithm uses a set of training examples to classify a new instance

given to it using the Bayesian approach. For an instance, the Bayes rule is applied to find

the probability of observing each output class given the input attributes and the class that

has the highest probability is assigned to the instance. The probability values used are

obtained from the counts of attribute values seen in the training set.

In our weather example, for a given instance with two input attributes temp_At and

temp_Bt, with values a and b respectively, the value vMAP assigned by the naive Bayes

algorithm to the the output attribute temp_Ct is the one that has the highest probability

 23

across all possible values taken by output attribute; this is known as the maximum-a-

posteriori (MAP) rule. The probability of the output attribute taking a value vj when the

given input attribute values are seen together is given by

 .),|(bavP j

This probability value as such is difficult to calculate. By applying Bayes theorem on this

equation we get

)()|,(
),(

)()|,(
),|(jj

jj
j vPvbaP

baP
vPvbaP

bavP == ,

where P(vj) is the probability of observing vj as the output value, P(a,b|vj) is the

probability of observing input attribute values a, b together when output value is vj. But if

the number of input attributes (a, b, c, d,) is large then we likely will not have enough

data to estimate the probability P(a, b, c, d, | vj).

The naive Bayes algorithm solves this problem by using the assumption of conditional

independence for the all the input attributes given the value for the output. This means it

assumes that the values taken by an attribute are not dependent on the values of other

attributes in the instance for any given output. By applying the conditional independence

assumption, the probability of observing an output value for the inputs can be obtained by

multiplying the probabilities of individual inputs given the output value. The probability

value P(a, b | vj) can then be simplified as

 ,)

)

|()|()|,(jjj vbPvaPvbaP =

where P(a | vj) is the probability of observing the value a for the attribute temp_At when

output value is vj. Thus the probability of an output value vj to be assigned for the given

input attributes is

 . |()|()(),|(jjjj vbPvaPvPbavP =

Learning in the Naive Bayes algorithm involves finding the probabilities of P(vj) and

P(ai|vj) for all possible values taken by the input and output attributes based on the

training set provided. P(vj) is obtained from the ratio of the number of time the value vj is

 24

seen for the output attribute to the total number of instances in the training set. For an

attribute at position i with value ai, the probability P(ai|vj) is obtained from the number

of times ai is seen in the training set when the output value is vj.

The naive Bayes algorithm requires all attributes in the instance to be discrete.

Continuous valued attributes have to be discretized before they can be used. Missing

values for an attribute are not allowed, as they can lead to difficulties while calculating

the probability values for that attribute. A common approach to deal with missing values

is to replace them by a default value for that attribute.

2.2.1.3 Bayesian Belief Networks (Bayes Nets)

The naive Bayes algorithm uses the assumption that the values of all the input attributes

are conditionally independent given the value of the output attribute. But there may be

cases when assuming conditional independence of all the given inputs, may not lead to

appropriate predictions. Bayesian Belief Networks or Bayes Nets introduce the idea of

applying conditional independence on a certain number of inputs rather than on all of

them. This notion avoids the global assumption of conditional independence while

maintaining some amount of conditional independence among the inputs.

A Bayesian Belief Network [Friedman et al., 1997; Pearl, 1988] is a directed acyclic

graphical network model that gives the joint probability distribution for a set of attributes.

Each attribute in the instance is represented in the network in the form of a node. In the

network a directed connection from node X to node Y is made when X is a parent of Y

which means that there is a dependence relation of Y on X, or in other words X has an

influence on Y. Thus in this network an attribute at a node is conditionally independent of

its non-dependents in the network given the state of its parent nodes. These influences are

represented by conditional probabilities, which gives the probability of a value at a node

that is conditional on the value of its parents. These probability values for a node are

 25

temp_Ct

temp_At-1

temp_At-2 temp_Ct-2

temp_Bt-2 temp_Bt

Figure 2.5: A Bayesian network to predict temperature temp_Ct at a site. The

arrows represent a direct relation between nodes. Each node is associated with a

CPT.

arranged in a tabular form called a Conditional Probability Table (CPT). In the case of

nodes with no parents, the CPT gives the distribution of the attribute at that node.

When a node is connected to a set of nodes, which are one step above in the hierarchy,

these parent nodes have an influence on its behavior. This node is not affected by other

nodes present in the given pool of nodes. It means the node is conditionally independent

of all non-parent nodes when given its parents. The nodes which are more than one step

above in hierarchy, that is parents of parents of a node, are not considered as directly

influencing the node, as these nodes affect the nodes which are parents to the node in

question and thus indirectly influence it. Thus the parents are considered for calculating

the joint probability, as only the direct parents of a node influence the conditional

probabilities at this node. Using conditional independence between nodes, the joint

probability for a set of attribute values y1,y2,..,yn represented by the nodes Y1,Y2,..., Yn is

given by

 ,))(|(),.....,(
1

1 i

n

i
in YParentsyPyyP ∏

=

=

where Parents(Yi) are the immediate parents of node Yi. The probability values can be

obtained directly from the CPTs associated with the node.

 26

A Bayesian network requires that both input and output attributes be discrete. A simple

Bayesian network for predicting temperature at a site in our weather example, using only

a few of the input instances, is shown in Figure 2.5. Each node in the tree is associated

with a CPT. For example, the CPT for the node temp_At-2 will contain the probability of

each value taken by it when all possible values for temp_At-1 and temp_Ct (i.e., its parents)

are seen together. For a given instance, the Bayesian network can be used to determine

the probability distribution of the target class by multiplying all the individual

probabilities of values taken up by the individual nodes. The class value that has the

highest probability is selected. The probability of a class value taken by the output

attribute temp_Ct for the given input attributes, using parental information of nodes from

the Bayesian network in Figure 2.5 is

P(temp_Ct|temp_At-1, temp_At-2, temp_Bt, temp_Bt-2, temp_Ct-2) =

P(temp_Ct)*P(temp_At-1|temp_Ct)*P(temp_At-2|temp_At-1,temp_Ct)*P(temp_Bt|temp_Ct)*

P(temp_Bt-2|temp_At-1,temp_Ct)*P(temp_Ct-2|temp_At-2 ,temp_Ct).

Learning in Bayes' Nets from a given training set involves finding the best performing

network structure and calculating CPTs. To build the network structure, we start by

assigning each attribute a node. Learning the network connections involves moving

though the set of possible connections and finding the accuracy of the network for the

given training set. The accuracy of the network can be determined by using a scoring

criterion such as the Akaike's Information Criterion [Akaike, 1974], the Minimum

Description Criterion [Rissanen, 1978] or the Cross-Validation Criterion. Allen &

Greiner [2000] present a brief description of these scoring criterions along with their

empirical comparisons. For a network, the CPTs are calculated at each node based on the

information obtained from the training set.

The K2 algorithm [Cooper & Herskovits, 1992] can be used to learn the Bayesian

network structure. K2 puts the given nodes in an order and then processes one node at a

time. It adds an edge to this node from previously added nodes only when the network

 27

accuracy is increased after this addition. When no further connections can be added to the

current node that increase the accuracy, the algorithm then moves to another node. This

process continues until all nodes have been processed.

When all variables present in the network are seen in the training data, the probability

values in the CPTs can be filled by counting the required terms. In the case of training

data with missing variables the gradient ascent training [Russel et al., 1995] method can

be used to learn values for the CPTs.

2.2.2 Regression Algorithms

Algorithms that develop a model based on equations or mathematical operations on the

values taken by the input attributes to produce a continuous value to represent the output

are called of regression algorithms. The input to these algorithms can take both

continuous and discrete values depending on the algorithm, whereas the output is a

continuous value. We describe in detail the regression algorithms that have been used in

this thesis below.

2.2.2.1 Linear Regression

The Linear Regression algorithm of WEKA [Witten & Frank, 2005] performs standard

least squares regression to identify linear relations in the training data. This algorithm

gives the best results when there is some linear dependency among the data. It requires

the input attributes and target class to be numeric and it does not allow missing attributes

values. The algorithm calculates a regression equation to predict the output (x) for a set of

input attributes a1,a2,.....,ak. The equation to calculate the output is expressed in the form

of a linear combination of input attributes with each attribute associated with its

respective weight w0,w1,....,wk, where w1 is the weight of a1 and a0 is always taken as the

constant 1. An equation takes the form

 28

 kk awawwx +++=110 .

For our weather example the equation learned would take the form

temp_Ct = w0 + wAt-2 temp_At-2 + wAt-1 temp_At-1 + wAt temp_At + wBt-2 temp_Bt-2 +

 wBt-1 temp_Bt-1 + wBt temp_Bt + wCt-2 temp_Ct-2 + wCt-1 temp_Ct-1 ,

where temp_Ct is value assigned to the output attribute, and each term on the right hand

side is the product of the values of the input attributes and the weight associated with

each input.

The accuracy of predicting the output by this algorithm can be measured as the absolute

difference between the actual output observed and the predicted output as obtained from

the regression equation, which is also the error. The weights must be chosen in such as

way that they minimize the error. To get better accuracy higher weights must be assigned

to those attributes that influence the result the most.

A set of training instances is used to update the weights. At the start, the weights can be

assigned random values or all set to a constant (such as 0). For the first instance in the

training data the predicted output is obtained as

 , ∑
=

=+++
k

j
jjkk awawaww

0

)1()1()1(
110

where the superscript for attributes gives the instance position in the training data. After

the predicted outputs for all instances are obtained, the weights are reassigned so as to

minimize the sum of squared differences between the actual and predicted outcome. Thus

the aim of the weight update process is to minimize

 , ∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

n

i

k

j

i
jj

i awx
1 0

)()(

which is the sum of the squared differences between the observed output for the ith

training instance (x(i)) and the predicted outcome for that training instance obtained from

the linear regression equation.

 29

2.2.2.2 LeastMedSquare

The WEKA LeastMedSquare or Least Median Squares of Regression algorithm

[Rousseeuw, 1984] is a linear regression method that minimizes the median of the

squares of the differences from the regression line. The algorithm requires input and

output attributes to be continuous, and it does not allow missing attribute values.

Standard linear regression is applied to the input attributes to get the predict the output.

The predicted output x is obtained as

 , ∑
=

=+++
k

j
jjkk awawaww

0

)1()1()1(
110

where the ai are input attributes and wi are the weights associated with them.

In the LeastMedSquare algorithm, using the training data, the weights are updated in such

a way that they minimize the median of the squares of the difference between the actual

output and the predicted outcome using the regression equation. Weights can be initially

set to random values or assigned a scalar value. The aim of the weight update process is

to determine new weights to minimize

 , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=

k

j

i
jj

i

i
awxmedian

0

)()(

where i ranges from 1 to the number of instances in the training data that is being used,

x(i) is the actual output for the training instance i, and the predicted outcome for that

training instance is obtained from the regression equation.

2.2.2.3 M5P

The M5P or M5Prime algorithm [Wang & Witten, 1997] is a regression-based decision

tree algorithm, based on the M5 algorithm by Quinlan [1992]. M5P is developed using

M5 with some additions made to it. We will first describe the M5 algorithm and then the

 30

temp_At-2

temp_Ct-1temp_Bt

Model 1 Model 4Model 3Model 2

>32 <=32

<=30 >25 <=25>30

Figure 2.6: A M5 model tree for predicting temperature at a site. The decision taken

at a node is based on the test of the attributes mentioned at that node. Each model at

a leaf takes the form w0+w1a1+ +wkak where k is the number of input attributes.

features added to it in M5P.

M5 builds a tree to predict numeric values for a given instance. The algorithm requires

the output attribute to be numeric while the input attributes can be either discrete or

continuous. For a given instance the tree is traversed from top to bottom until a leaf node

is reached. At each node in the tree a decision is made to follow a particular branch based

on a test condition on the attribute associated with that node. Each leaf has a linear

regression model associated with it of the form

 kko awaww +++11 ,

based on some of the input attributes a1,a2,.....,ak in the instance and whose respective

weights w0,w1,....,wk are calculated using standard regression (2.2.2.1). As the leaf nodes

contain a linear regression model to obtain the predicted output, the tree is called a model

tree. When the M5 algorithm is applied on our weather example, the model tree generated

will take a form as shown in Figure 2.6.

To build a model tree, using the M5 algorithm, we start with a set of training instances.

The tree is built using a divide-and-conquer method. At a node, starting with the root

node, the instance set that reaches it is either associated with a leaf or a test condition is

chosen that splits the instances into subsets based on the test outcome. A test is based on

 31

an attributes value, which is used to decide which branch to follow. There are many

potential tests that can be used at a node. In M5 the test that maximizes the error

reduction is used. For a test the expected error reduction is found using

 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆

i
i

i Sstdev
S
S

Sstdeverror)(
||
||

)(,

where S is the set of instance passed to the node, stdev(S) is its standard deviation, Si is

the subset of S resulting from splitting at the node with the ith outcome for the test. This

process of creating new nodes is repeated until a there are too few instances to proceed

further or the variation in the output values in the instances that reach the node is small.

Once the tree has been built, a linear model is constructed at each node. The linear model

is a regression equation. The attributes used in the equation are those that are tested or are

used in linear models in the sub-trees below this node. The attributes tested above this

node are not used in the equation as their effect on predicting the output has already been

captured in the tests done at the above nodes. The linear model built is further simplified

by eliminating attributes in it. The attributes whose removal from the linear model leads

to a reduction in the error are eliminated. The error is defined as the absolute difference

between the output value predicted by the model and the actual output value seen for a

given instance.

The tree built can take a complex form. The tree is pruned so as to make it simpler

without losing the basic functionality. Starting from the bottom of the tree, the error is

calculated for the linear model at each node. If the error for the linear model at a node is

less than the model sub-tree below then the sub-tree for this node is pruned. In the case of

missing values in training instances, M5P changes the expected error reduction equation

to

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆ ∑

i
i

i Sstdev
S
S

Sstdevi
S
merror)(

||
||

)(*)(*
||
β ,

where m is the number of instances without missing values for that attribute, S is the set

of instances at the node, β(i) is the factor multiplied in case of discrete attributes, j takes

 32

values L and R with SL and SR being the sets obtained from splitting at that attribute.

2.2.2.4 MultiLayer Perceptron

A MultiLayer Perceptron (MLP) [Bishop, 1995] is a neural network that is trained using

backpropagation. MLPs consist of multiple layers of computational units that are

connected in a feed-forward way forming a directed connection from lower units to a unit

in a subsequent layer. The basic structure of MLP consists of an input layer, one or more

hidden layers and one output layer. Units in the hidden layer are termed hidden as their

output is used only in the network and is not seen outside the network. An MLP with two

hidden layers that can be used to predict temperature in our weather example is shown in

Figure 2.7. The output from a unit is used as input to units in the subsequent layer. The

connection between units in subsequent layers has an associated weight.

hn(X)h1(X)h1(X)

temp_Ct-1temp_At-1temp_At-2
…..

…..
Hidden layer

Input layer

temp_CtOutput layer

w1
wn

w2

Figure 2.7: A multilayer perceptron with two hidden layers to predict temperature

at a site. Each connection is associated with a weight. Hidden and output units are

sigmoid units.

 33

x0=1

w1

w2

wn

x0=1

w1

w2

wn

Figure 2.8: A sigmoid unit that takes inputs xi, wi the weights associated with the

inputs and sigmoid the resulting output from the unit.

The hidden and output units are based on sigmoid units. A sigmoid unit calculates a

linear combination of its input and then applies the sigmoid function on the result. The

sigmoid function, for net input x is

)1(

1)(xe
xsigmoid −+
= .

The output of a sigmoid unit, sigmoid(x), is a continuous function of its input (x) and is in

the range of 0 to 1. A sigmoid unit is shown in Figure 2.8. In addition to the inputs

supplied to it, the sigmoid unit also takes in a constant input of 1.

An MLP learns its weights using the backpropagation algorithm [Rumelhart et al., 1986].

The backpropagation algorithm takes a set of training instances for the learning process.

For the given feed-forward network, the weights are initialized to small random numbers.

Each training instance is passed through the network and the output from each unit is

computed. The target output is compared with the output computed by the network to

calculate the error and this error value is fed back through the network. To adjust the

weights, backpropagation uses gradient descent to minimize the squared error between

the target output and the computed output. At each unit in the network, starting from the

 34

output unit and moving down to the hidden units, its error value is used to adjust weights

of its connections so as to reduce the error. The weights are updated using

 jijjiji xww ηδ+= ,

where wji is the weight from unit i to unit j, xij is the input from unit i to unit j, η is the

learning rate and δj is error obtained at unit j. This process of adjusting the weights using

training instances is iterated for a fixed number of times or is continued until the error is

small or cannot be reduced.

To improve the performance of the backpropagation algorithm, the weight-update made

at the nth iteration of the backpropagation is made partially dependent to the amount of

weight changed in the n-1st iteration. The amount by which the n-1st iteration contributes

is determined by a constant term called momentum (α). The new rule used for weight-

update at the nth iteration is

)1()(−∆+=∆ nwxnw jijijji αηδ .

This momentum term is added to achieve faster convergence to a minimum in some

cases.

2.2.2.5 RBF Network

An RBF or Radial Basis Function Network [Buhmann & Albovitz, 2003; Orr, 1996] is

another type of a feed-forward neural network. It has three layers: the input, hidden and

output layer. It differs from an MLP in the way the hidden layer units perform

calculations. An RBF Network can build both regression and classification models. We

will describe the regression model.

In an RBF Network, inputs from the input layer are mapped to each of the hidden units.

The hidden units use radial functions for activation such as Gaussian, multiquadric,

inverse-multiquadric and Cauchy [Orr, 1996]. The RBF Network of WEKA [Witten &

Wang, 2005] uses the bell-shaped Gaussian function. The activation h(x) of the Gaussian

 35

function for a given input x decreases monotonically as the distance between the center c

of the Gaussian and x increases. A Gaussian function is useful in finding the activation at

a hidden unit, as the activation of inputs depends on their closeness to center of the

hidden unit and thus can be used as a effective method to distinguish between inputs. The

Gaussian function is of the form

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
= 2

2)(exp)(
r

cxxh .

The output layer takes in linear combination of outputs from hidden units and is similar

to a regression model. An RBF Network for our weather models will be of the form

shown in Figure 2.9.

AN RBF Network takes the inputs and the hidden units as points in space. The activation

of a hidden unit depends on the distance between the point in space representing the input

values and the point for that hidden unit. The distance is converted

hn(X)h1(X)h1(X)

temp_Ct-1temp_At-1temp_At-2
…..

…..
Hidden layer

Input layer

temp_CtOutput layer

w1
wn

w2

Figure 2.9: An RBF Network with n hidden units to predict temperature at a site. X

is the input vector given to the network and output. temp_Ct is the sum of the

products of activations from the hidden units and the weights associated with them.

Each hidden unit has its own learned center.

 36

into a similarity measure by the Gaussian function. The point in space for the hidden unit

is obtained from the center of the Gaussian for that hidden unit. The width of the

Gaussian is a learned parameter as well.

An RBF Network is trained to learn the centers and widths of the Gaussian function for

hidden units, and then to adjust weights in the regression model that is used at the output

unit. To learn the centers of the Gaussian functions the k-means clustering algorithm can

be used that clusters the training instances to obtain k Gaussian functions for each

attribute in the instance. After the parameters for the Gaussian function at the hidden

units have been found, the weights from these units to the output unit are adjusted using

Linear Regression. The process can be repeated to learn in an EM manner.

2.2.2.6 The Conjunctive Rule Algorithm

The Conjunctive Rule algorithm in WEKA learns a single rule that can predict an output

value. It can predict both discrete and numeric classes. An example of a conjunctive rule

that can be developed from our weather example is

IF temp_At-2 > 30 AND temp_Ct-1 < 90 AND temp_Bt-1 > 40 THEN temp_Ct = 30.

A conjunctive rule consists of a set of antecedents (e.g., temp_At-2 > 30, temp_Ct-1 < 90)

ANDed together to give the consequent (e.g., temp_Ct). Antecedents consist of relations

between relevant attributes and the consequent indicates an output value.

The learning process in the Conjunctive Rule algorithm attempts to come up with a rule

for all relevant attributes based on the training data. The algorithm learns by calculating

the variance reduction for all possible antecedents and then selects the one that reduces

the variance the most. In cases when the learned rule becomes too complex then it is

pruned using reduced error pruning similar to that in the J48 system.

In cases when a test instance is seen that is not covered by the rule, then the attribute

 37

whose value is not included in the rule is assigned the default value for that attribute.

2.3 Predicting Time Sequence Data - Hidden Markov Models

A discrete process taking place in the real world generates what can be viewed as a

symbol at each step. For example, a coin toss can lead to a series of heads and tails.

Another example is the temperature at a certain location that is a result of a number of

weather conditions and the location. These conditions and the location add up to form a

real-world time series. As time goes by and the process keeps running we get a sequence

of symbols generated by the process. Based on the outcome of the process these symbols

can be discrete (e.g., precipitation type) or continuous (e.g., temperature). These

sequences of observed symbols can be used to generate a statistical model that describes

the workings of the process and the generation of symbols over time. This model can be

used to identity or classify other sequences of symbols. One such model that can be used

is the Hidden Markov Model (HMM).

When information gathered from a system is generated in a sequential manner, state

transition networks can be used to represent knowledge about this system. This network

consists of a set of states and transitions between states. Transitions between states are

triggered by events in the domain. HMM state transition networks have an initial state

and an accepting or end state. The network recognizes a sequence of events if these

events start at the initial state and end in the accepting state when all the events have

occurred.

A Markov model is a probabilistic model over a finite set of states, where the probability

of being in a state at a time t depends only on the previous state visited at time t-1. An

HMM (see Figure 2.10 for an example) is a model where the system being modeled is

assumed to be a Markovian process with unknown parameters.

 38

state(t-1) state(t+1)state(t)
t t+1t-1

symbol(t-1) symbol(t) symbol(t+1)

Figure 2.10: A Hidden Markov Model. A new state is visited when a transition

occurs after a certain amount of time. Each state emits a symbol when reached.

In an HMM the states are referred to as hidden because the system we wish to model may

have underlying causes that cannot be observed. For example, factors that determine the

position and velocity of an object when the only information available is the position of

the object are not observable. The hidden or non-observable process taking place in the

system can be determined from the process that generates a sequence of observable

symbols.

HMMs are used in many fields such as natural language processing, bioinformatics,

genomics, optical character recognition and speech recognition. In speech recognition

[Rabiner, 1989] the speech input is broken down into smaller segments which can be

classified into a set of predefined symbols. The long sequences of symbols thus obtained

are used to build a model using HMM learning methods. The generated model is used for

processing sequences in order to identify or recognize the source of speech input.

An HMM can be used in our example of predicting weather conditions such as

temperature. In order to predict temperature at a location, the temperature has to be

converted into classes and each class represented by a unique symbol. For example, if we

take hourly readings then we get a sequence of 24 symbols for a day. The sequences

obtained for a set of days can be used to build an HMM model that predicts the

temperature class value for each hour at that location.

 39

The components that constitute an HMM are a finite set of states, a set of transitions

between these states with a probability value associated with them and a set of output

symbols emitted by the states. After each time interval a new state is entered depending

on the transition probability from the previous state. This follows a simple Markov model

in which the probability of entering a state depends only on the previous state. The state

sequence obtained over time is called the path. The transition probability akm of moving

from a state k to a state m is given by the probability of being in state m at time t when at

time t-1 we were in state k

 akm = P(patht = m | patht-1 = k).

After a transition is made to a new state a symbol is emitted from the new state. Thus as

the state path is followed we get a sequence of symbols (x1, x2, x3, ...). The symbol which

is observed at a state is based on a probability distribution that depends on the state. The

probability that a symbol b is emitted on transition to state k, called the emission

probability (e), is determined by

 eb(k) = P(xt = b | patht = k).

An initial state distribution gives the probability of being in a particular state at the start

of the path. The choice of all these parameters, that is, the transition probabilities,

emission symbols and initial state probabilities, are important in building an efficient

HMM.

In our weather example, let the temperature be broken down into three classes, namely p,

q, and r. Also assume that the HMM built has four states, namely 1, 2, 3 and 4. In this

case our state transition probability matrix will be of size 4 by 4 and the emission

probability matrix will be of size 3 by 4. The model built by an HMM learner will have

these four states and at each state we can observe any of the three symbols p, q and r

based on their respective emission probabilities at that respective state. The transition

from one state to another is associated with the transition probability between the

respective states.

 40

Figure 2.11: A HMM with states 1, 2, 3 and 4 that emit a symbol when reached.

Transitions start at the start state and end at the end state. The arrows represent all

possible state transitions.

The transition probability of moving from state 1 to state 2 is represented by a12. As the

sequence has a length of 24, we will be seeing 24 transitions including a transition from

the start state and always ending at the end state after the 24th symbol is seen. Figure 2.11

shows a HMM with the four states 1, 2, 3 and 4 together with the start state, end state and

all possible transitions between these states. The HMM in the figure allows all possible

state transitions. The transition probability associated with each transition is given along

with the transition. In the figure, symbols p, q and r are emitted at each state, 1, 2, 3 and

4, are given in rectangular blocks. Emission of each symbol at a state is determined by its

emission probability at that state. Transitions always start at the start state and end at the

end state.

According to Rabiner & Juang [1986], for any HMM there are three basic questions that

1

4 3

2

start end

a1e

a22a11as2 p,q,r
a12p,q,r

a21 a23as1 a2e

a32a13

a31 a42a23 a24

a32as3 a4e

a43

a34p,q,r p,q,r
a33 a44

a3eas4

 41

have to be answered for the model to be used effectively,

1. What is the probability that an observed sequence is produced by the given model?

A model can generate many sequences based on the transitions taking place and symbols

emitted each time a state is visited. The probability of the observed sequence being

produced by the model gives an estimate of how good the model is. The Forward

algorithm or the Backward algorithm [Baum & Petrie, 1966] can be used to find the

probability of observing a sequence in a given model.

2. How do we find an optimal state sequence (path) for a given observation sequence?

As there exists many paths that yield a given sequence of symbols, to select the optimal

state path we need to find the path with the highest probability of occurrence. The Viterbi

algorithm [Viterbi, 1967; Forney, 1973] is a procedure that finds the single best path in

the model for a given sequence of symbols.

3. How do we adjust the model parameters, that is, the transition probabilities, emission

probabilities and the initial state probability to generate a model that best represents the

training set?

Model parameters need to be adjusted so as to maximize the probability of the observed

sequence. The Baum-Welch algorithm [Rabiner & Juang, 1986] is a method that uses an

iterative approach to solve this problem. It starts with preassigned probabilities and tries

to adjust them based on the observed sequences in the training set.

The Forward-Backward, the Baum-Welch and the Viterbi algorithms are described in

detail in the following subsections.

2.3.1 The Forward Algorithm and The Backward Algorithm

A sequence of observations can be generated by taking different paths in the model. To

 42

 Table 2.2: The Forward Algorithm

Forward Algorithm

Initialization (i = 0) : () 0 0)0(1,00 >kfor=f=f k

Recursion (i = 1 L) : ∑ −=
k

kmkimm aifxeif)1()()(

Termination : ∑=
k

kk aLfxP 0)()(

 fm(i) - prob. of seeing the symbol at position i in state m

em(xi) - probability of emitting the symbol xi by state m

 akm - probability of transition from state k to state m

 P(x) - probability of observing the entire sequence x

 L - length of the sequence

find the probability of this sequence we need to add up the probabilities that are obtained

for each possible path the sequence can take. The Forward algorithm and the Backward

algorithm uses dynamic programming to calculate this probability instead of having to

enumerate the probabilities observed across all the possible paths.

As HMMs follow the Markovian process, the probability of being in a particular state

depends only on the state that was observed before it. The Forward algorithm uses this

approach to find the probability of the symbol sequence. After having observed i – 1

symbols in a sequence x of length L, let us say the symbol at position i in the sequence is

seen in state m. Then the probability of seeing this symbol at position i in state m can be

found by multiplying the emission probability of this symbol at state m with the sum of

products of the probability of being at any state (with k states in the model) when the last

symbol (i – 1st) was seen with the transition probability of moving from that state to the

present state m. It is called the forward probability and is given by

 ∑ −=
k

kmkimm aifxeif)1()()(.

In case a transition is not possible then the transition probability is taken as 0. Before

 43

starting the sequence we initialize the probability of being in the start state with no

symbols observed to be 1, that is, f0(0) = 1. We calculate fm(i) for each position i in the

sequence as we move through the sequence. The probability of the observing the entire

sequence, P(x), is the probability value obtained after we have seen all the symbols in the

sequence after having reached the end state. The pseudocode for the Forward algorithm

[Durbin et al., 1989] is given in Table 2.2.

The Backward algorithm can also be used to calculate the probability of the observed

sequence. As the name says, it works analogously to the Forward algorithm. Instead of

calculating the probability values from the start state, as is done by the Forward

algorithm, the Backward algorithms starts at the end state and moves towards the start

state. In each backward step, it calculates the probability of being at that state when

considering that the rest of the sequence from that state to the end state has already been

observed. We define the backward probability bk(i) as

)|.....()(1 kpathxxpib iLik == + ,

which is the probability of observing the rest of the sequence when we are in state k after

observing i symbols.

Table 2.3: The Backward Algorithm

Backward Algorithm

Initialization (i = L) : kallforaLb kk)(0=

Recursion (i = L-1 1) : ∑ += +
m

mimkmk ibxeaib)1()()(1

Termination : ∑=
m

mmm bxeaxP)1()()(10

 bk(i) - probability of observing rest of the sequence when in state k and
 having already seen i symbols
em(xi) - is the probability of emitting the symbol xi by state m

 akm - is the probability of transition from state k to state m

 P(x) - is the probability of observing the entire sequence

 44

At the start of the Backward algorithm we initialize the probability of being at a state k

after observing an entire sequence, bk(L), to the transition probability from this state k to

the end state.

The backward probabilities at each position in the symbol sequence are calculated

moving from the end of the sequence to the start. The final probability of the sequence

obtained P(x) by either Forward or Backward algorithm is the same. The pseudocode of

the Backward algorithm [Durbin et al., 1989] is shown in Table 2.3.

2.3.2 The Baum-Welch Algorithm

The Baum-Welch algorithm, also called as the Forward-Backward algorithm, is used to

adjust the HMM parameters when the path taken by each training sequence is not known.

The HMM parameters can be initialized to predetermined values or to a constant before

applying the Baum-Welch algorithm. As the path taken is not known, the Baum-Welch

algorithm uses the counts of number of times each parameter is used when the observed

set of symbols in the training sequence is given to the present HMM. The algorithm

constitutes of two steps, the Expectation step (E Step) and the Maximization step (M

Step). In the Expectation step we first find the forward and backward probability values

at each position in the sequence. When forward and backward probabilities are combined

together to obtain the probability of the entire sequence with symbol k being observed at

state i and is given by

)(

)()(
)|(

Lf
ibif

xkpathP
N

kk
i == .

Using all of the training set of sequences, we can calculate the expected number of times

a symbol c is emitted at state k using

() ()∑ ∑ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

=jx

j
k

cj
ix|i

j
kj

N
ck, ibif

Lf
=n

}{)(
1

 45

Table 2.4: The Baum-Welch Algorithm

Baum-Welch Algorithm

Initialize the parameters of HMM and pseudocounts n'k,c and n'k->l

Iterate until convergence or for a fixed number of times
 - E Step: for each training sequence j = 1 ... n

• calculate the forward probability fk(i) for the sequence j

• calculate the backward probability bk(i) for the sequence j

• add the contribution of sequence j to nk,c and nk->l
 - M Step: update HMM parameters using the expected counts nk,c and nk->l and the
pseudocounts n'k,c and n'k->l.

The number of times a transition from state k to m occurs is given by

 ∑
∑ +

=
+

→
jx

j
N

i

j
ki

j
mkm

j
k

mk Lf

ibxeaif
n

)(

)1()()(1

,

where the superscript j refers to an instance in the training set.

The Maximization step uses the counts of the number of times a symbol is seen at a state

and the number of times a transition occurs between two states which were obtained from

the Expectation step to update the transition and emission probabilities in order to

maximize the performance. The updated emission probability is

∑ +

+
=

'
,,

,,

)'(
'

)(

c
ckck

ckck
k nn

nn
ce .

The transition probability is updated using

∑ →→

→→

+
+

=

m
mkmk

mkmk
km nn

nn
a

)'(
'

.

Pseudocounts n'k,c and n'k→m for emission and transition probabilities respectively are

taken into account because it prevents the numerator or denominator from taking a value

 46

of zero which happens when a particular state is not used in the given set of observed

sequences or a transition does not take place, respectively. Pseudocounts are usually set

to the actual counts plus small decimal values. Table 2.4 shows the pseudocode of the

Baum-Welch algorithm.

2.3.3 The Viterbi Algorithm

The Viterbi algorithm is used to find the most probable path taken across the states in the

HMM. It uses dynamic programming and a recursive approach to find the path. The

algorithm checks all possible paths leading to a state and gives the most probable one.

The calculations are done using induction, in an approach similar to the forward

algorithm, but instead of using a summation, the Viterbi algorithm uses maximization.

Table 2.5: The Viterbi Algorithm

Viterbi Algorithm

Initialization (i = 0) : 0 0)0(,1)0(0 >== kforvv k

Recursion (i = 1 L) :
))1((maxarg)(
))1((max)()(

klkki

klkkimm

aivmptr
aivxeiv

−=
−=

Termination : P(x,path*) = maxk(vk(L)ak0)
 path*L = argmaxk(vk(L)ak0)
Traceback (i = L.....1) : path*i-1 = ptri(path*i)

 vm(i) - probability of the most probable path obtained after observing the first i
 characters of the sequence and ending at state m
ptrm(i) - pointer that stores the state that leads to state m after observing i
symbols
path*i - state visited at position i in the sequence

 47

The probability of the most probable path obtained after observing the first i characters of

the sequence and ending at state m, represented by vm(i) is

 .)

)

)((max)1()1(kmkkmm aivieiv +=+

The algorithm states from the start state and thus v0(0) is initialized to 1. The algorithm

keeps track of the best state used during a transition using pointers. The pointer ptri(m)

stores the state that leads to state m after observing i symbols in the given sequence, it is

found using

 .)((maxarg)(kmkki aivmptr =

The most probable path is found by moving through the pointers backwards starting from

the end state to the start state. Sometimes we may obtain more than one path as the most

probable; in such cases one path is randomly selected. The pseudocode for the Viterbi

Algorithm [Durbin et al., 1989] is shown in Table 2.5.

 48

Chapter 3

ML Methods for Weather Data Modeling

To detect abnormal behavior of an RWIS sensor we build a model that provides us with a

predicted value for a weather condition, which we can compare to the actual value

reported by the sensor and calculate the difference between the two to measure likely

sensor malfunctions. We can build such models using machine learning (ML) methods

that can predict the weather conditions at the RWIS site. To build a weather model, ML

methods require historical weather data obtained from the site and its nearby sites to learn

the weather patterns. By including nearby sites, we provide additional information for the

methods that can be used to indicate current climatic conditions at the site used for

predictions.

To predict the temperature at a given time for site 67, in Figure 3.1, we can use the

current and a couple of previous hour's weather data, such as temperature and visibility,

Data from the sites
time t-2 , t-1 , t
Temp: 35° , 37° , 38°
Visibility: 1mile, 0.5mile, 1mile

ORB

INL

LYU

19

67

27

temp_67t = ??

Figure 3.1: Predicting temperature value at a site using weather data from nearby

sensors.

 49

obtained from a set of sites that are located close to the site 67. Nearby sites to site 67 are

indicated by arrows that point from them to site 67 (the arrows show that the information

from these sites will be used in making predictions about the site they point to). ML

methods are used to build the weather model for site 67 using historical data for the

different variables used for predictions. The model built for site 67 will use the

temperature and visibility information from the nearby sites and predict the temperature

value that will be seen at site 67 at a time

In this chapter we discuss the use of Machine Learning (ML) methods to detect RWIS

sensor malfunctions. In the first section, we describe the process of selecting RWIS and

AWOS sites that can be used for modeling followed by the description of variables in the

weather data collected from the selected sites. In the next section we describe the feature

representation used by ML and HMM methods. In the final section we describe the

general approach followed by these methods to predict weather variables.

3.1 Choosing RWIS - AWOS Sites

To predict weather variables at a site we gather relevant weather information from the

site and this information is used to build a predictive model by using various machine

learning methods. We then use the predictive model to classify new or previously unseen

data. The prediction of values reported by the sensors at a site can be made more accurate

if along with the information for the present site we consider the information obtained

from the sensors located at sites surrounding the present site. Todey et al., [2002] report a

significant improvement in analysis of weather data when using a combined dataset

obtained from the sites in the RWIS and the AWOS network. To predict values reported

by an RWIS sensor at a site we use meteorological data from surrounding RWIS sites and

also data gathered from AWOS sites.

Out of the 76 RWIS sites present in Minnesota, we selected 13 sites to be used to detect

 50

RWIS sensor malfunctions at these locations. The selection of the sites was based on the

climatic conditions and landscape at the locations these sites were situated. Sites in

regions that have micro-climates, such as Duluth and many places in southern Minnesota,

were not selected because of the climatic conditions at these sites do not reflect changes

happening in their surroundings and have their own unique ecosystems. Similarly sensors

located in urban areas, like Minneapolis, were not selected because of drastic climatic

changes that occur in such areas due to human involvement. We further grouped the

selected 13 RWIS sites into three sets in order to prevent macro-climate comparisons. As

Minnesota has a diverse landscape, the climatological conditions in the north do not

always reflect on the conditions in the south regions. The aim of grouping the RWIS sites

into sets was to prevent comparisons between two sites present in totally different

climatological regions. Each set can be compared to a simple climatological regime and

the climatic changes at a site in the set are reflected on other sites, not necessarily at that

instant but after a certain duration of time. Grouping helps in predicting the weather

condition at a site when that condition is known in other sites in the set.

Along with the weather information from the RWIS sites, we use meteorological data

gathered from the AWOS sites to help with the prediction of values at an RWIS site. The

location of the RWIS sites with respect to the site's topography is variable, as these

sensors sit near a roadway and are sometimes located on bridges. AWOS sites are located

at airports on a flat surrounding topography, which leads to better comparability between

weather data obtained from these sites. Thus including surrounding AWOS information

can be beneficial in predicting values at an RWIS site.

We associated each RWIS site, in the 13 selected for prediction, with all the AWOS sites

that were at a distance of at least 30 miles from it. 30 miles is chosen as a measure for

association so as to pair at least one AWOS site with each RWIS site. For distances of

more then 30 miles, it was seen that some RWIS sites were paired with the same AWOS

sites. The distance is calculated using the latitude and longitude coordinates of the

respective RWIS and AWOS sites (Tables A1 and A2). All RWIS sites are paired with

 51

one AWOS site, with the exception of site 20, which is associated with two AWOS sites

namely KAIT and KBRD, with KAIT being the closer one. Due to the comparatively

smaller distance between an RWIS site and its associated AWOS site, we find there is

often a correlation between the values observed at these sites, which we can use as the

basis of our models. Figure 3.2 shows the the locations of the RWIS and AWOS sites that

we grouped together and Table 3.1 lists these groups.

Figure 3.2: Grouping of RWIS and AWOS sites into three sets. This map also shows

the locations of the selected RWIS and AWOS sites across Minnesota.

 52

Table 3.1: Grouping of the selected 13 RWIS sites into three sets, along with their

respective AWOS sites.

Set RWIS Sites AWOS Sites

Set 1 19, 27, 67 KLYU, KINL, KORB

Set 2 14, 20, 35, 49, 62 KFFM, KAIT, KBRD, KLXL, KPKD, KDTL

Set 3 25, 56, 60, 68, 78 KROX, KTVF, KCKN, KFSE, KBDE

3.2 Features Used

Of all the available features reported by RWIS sensors, we decided to focus on predicting

air temperature, precipitation type and visibility. These three features were selected

because they represent critical aspects of weather data for Mn/DOT.

All of these variables (temperature, precipitation type and visibility) are also reported by

the AWOS sites. However, the data format used for reporting these variables by RWIS

and AWOS sensors differs (refer to Sections 2.1.1.1 and 2.1.2.1 for details). To make the

data from these two sources usable in ML algorithms and HMMs, and for comparisons,

the data needs to be transformed into a common format and in some cases pre-processing

of the variables may be required based on the requirements of the algorithms used.

3.2.1 Transformation of the Features

To use data from RWIS and AWOS together, for predictions and comparisons, we

converted the data reported by them to follow a common format. It is also the case that

RWIS reported data every 10 minutes whereas AWOS provides hourly reports. Thus, the

RWIS data needs to be averaged if used along with AWOS data. The changes that were

made to the features reported by RWIS sites to arrive at a common format are

 53

● RWIS uses Greenwich Mean Time (GMT) and AWOS uses Central Time (CT)

when reporting data. The reporting time in RWIS is changed from GMT to CT.

● Variables like air temperature, surface temperature and dew point that are

reported in Celsius by RWIS are converted to Fahrenheit, which is the format

used by AWOS. To convert six readings per hour to a single hourly reading in

RWIS, a simple average is taken.

● Distance, which is measured in kilometers by RWIS for visibility and wind speed

is converted into miles, the format used by AWOS. A single hourly reading is

obtained through a simple average in RWIS.

● In order to obtain hourly averages for precipitation type and intensity reported by

RWIS, we use the most frequently reported code for that hour. While for

precipitation rate a simple average is used. RWIS sites report precipitation type

and intensity as separate variables, whereas AWOS combines them into a single

weather code [NCDC, 2005]. Mapping precipitation type and intensity reported

by RWIS to the AWOS weather codes is not feasible and needs some

compromises to be made. We thus keep these variables in their original format.

Of the three features selected for use in predictions, precipitation type is the one whose

direct comparison between RWIS and AWOS values cannot be done because each uses a

different format for reporting it. For broader comparison, we combine all the codes that

report different forms of precipitation, in both RWIS and AWOS, into a single code

which indicates the presence of some form of precipitation.

Apart from using the features obtained from the RWIS and AWOS sites, we also made

use of historical information to represent our training data. This increases the amount of

weather information we have for a given location or region. We collected hourly

temperature values for the AWOS sites mentioned in the three sets (refer to Table 3.1),

for a duration of seven years ranging from 1997 to 2004, from the Weather Underground

 54

website2. For many locations, the temperature was reported more than once an hour, in

such cases the average of the temperature across the hour was taken. As we already have

readings for temperature from two different sources, RWIS and AWOS, we use the

information gathered from the website to adjust our dataset by deriving values such as the

projected hourly temperature. To calculate the projected hourly temperatures for an

AWOS site we use past temperature information obtained from the website for this

location. The projected hourly temperature for an hour of a day is defined as the sum of

the average temperature reported for that day in the year and the monthly average

difference in temperature of that hour in the day for the respective month.

The steps followed to calculate the projected hourly temperature for an AWOS site are

1. Obtain the hourly temperatures from the data collected from wunderground.com for

the respective AWOS site.

2. The average temperature for a day was calculated as the mean of the hourly readings

across a day.

3. The hourly differences for each hour was calculated as the difference between the

average daily temperature and actual temperature seen at that hour.

4. The average difference in temperature for a particular month (monthly average

difference) per hour was calculated as the average of all hourly differences in a

month for that hour obtained from all the years in the data collected.

5. The projected hourly temperature for a day is obtained from the sum of the average

temperature for that day and the monthly average difference of that hour in the day.

For example, let the temperature value seen at the AWOS site KORB for the first hour

for January 1st for year 1997 is 32ºF. The temperature values for all 24 hrs seen on

January 1st are averaged and let this value be 30ºF. The hourly difference for this day for

the first hour will be 2ºF. Let the averages of all the first hour values for the month of

January seen in the data for KORB from years 1997 to 2004 be 5ºF. Then the projected

2. http://www.wunderground.com/

 55

temperature value for the first hour in January 1st, 1997 will be 35ºF, which is the sum of

the average temperature seen on January 1st 1997 and the monthly average difference for

the first hour in the month of January.

The projected hourly temperature was used as a feature in the datasets used for predicting

weather variables at an RWIS site and is also used in the process of discretization of

temperature, which will be discussed in the following section.

3.2.2 Discretization of the Features

Continuous features need to discretized when used in HMMs and classification

algorithms. HMMs require all of the features to be discrete. Classification algorithms

need the output attributes to be discrete and also the inputs attributes in case the

algorithm cannot deal with continuous inputs. Regression algorithms can take inputs with

discrete attributes. Discretization of features involves finding a set of values that split the

continuous sequence into intervals and each interval is given a single discrete value.

Discretization can be done using unsupervised or supervised methods. In unsupervised

discretization, the attribute is divided into a fixed number of equal intervals, without any

prior knowledge of the target (the output attributes) class values of instances in the given

dataset. In supervised discretization, the splitting point is determined at a location which

increases the information gain with respect to the given training dataset [Quinlan, 1986].

Dougherty et al., [1995] give a brief description of the process and a comparison of

unsupervised and supervised discretization. WEKA provides a wide range of options to

discretize any continuous variable, using supervised and unsupervised mechanisms.

In this thesis we propose a new method for discretization of temperature values obtained

from RWIS sensors using temperature information obtained from other sources. Using

the projected hourly temperature (refer to Section 3.2.1) for an AWOS site along with the

current reported temperature for the closest RWIS site, we determine the class value for

 56

the current RWIS temperature value.

To determine the class value, the actual reported temperature at a RWIS site is subtracted

from the projected hourly temperature for the AWOS site closest to it for that specific

hour. This difference is then divided by the standard deviation of the projected hourly

temperature for that AWOS site. The result indicates how much the actual value deviates

above or below the projected value, that is, the number of standard deviation from the

projected value (or the mean).

 num_stdev = (actual_temp – proj_temp) / std_dev

The classes are divided according to the number of standard deviations from the mean,

For example

Class Value Class Value

1 num_stdev < -2 6 0.25 < num_stddev ≤ 0.5

2 -2 ≤ num_stdev ≤ -1 7 0.5 < num_stddev ≤ 1

3 -1 < num_stdev ≤ -0.5 8 1 < num_stddev ≤ 2

4 -0.5 < num_stdev ≤ -0.25 9 num_stdev > 2

5 -0.25 < num_stdev ≤ 0.25

Thus the number of standard deviations from the mean obtained for a given temperature

value is mapped to one of the ranges and the temperature is assigned the respective class

value. The ranges and the number of splits can be determined by the user or based on

requirements of the algorithm.

For example, to convert the actual temperature 32ºF at an RWIS site we calculate the

projected temperature for that hour at the associated AWOS site KORB, which might be

30ºF, and the standard deviation of projected temperatures at KORB for the year, which

might be 5.06. Then our new representation for 32ºF is calculated as 0.396, which means

 57

temperature 32ºF is 0.396 standard deviations above from the mean at site KORB. 0.396

maps to class 6 in the split example given above. We thus arrive at the class value of 6 for

the temperature 32ºF. Such a representation has an advantage as the effect of season and

time of day is at least partially removed from the data.

3.3 Feature Vectors

To build a predictive model, using ML algorithms, that can predict the values reported by

an RWIS sensor, we require a training set that contains data related to the weather

conditions. A test set is used to evaluate the performance of the model built. ML

algorithms require the feature vector for the dataset to consist of a set of input attributes

and an output attribute, with the output attribute being the predicted variable. ML

algorithms use the information from the feature vector in the training set to build the

model. The input attributes for a feature vector in the test set are applied on the model

built from the training set to predict the output attributes value and this predicted value is

compared with the actual value to estimate the model performance. The feature vector for

ML algorithms takes the form

 input1,, inputn, output

where inputi is an input attribute and output is the output attribute.

For example, to predict temperature at time t for the RWIS site 67 denoted as temp67t,

from the Figure 3.1, we will be using the temperature values at time t and t -1 for all the

associated RWIS sites which are 27 and 67. The feature vector for this example will be

 temp19t-1, temp27t-1,temp67t-1, temp19t, temp27t, temp67t

where temp67t is the output attribute or dependent variable (and is therefore only

available during the process of building the model as this is what we are predicting) and

the rest form the input attributes or independent variables.

Predicting a value reported by a RWIS sensor corresponds to predicting that weather

 58

condition reported by the sensor. As variations in a weather condition, like air

temperature, are not completely independent but depend on other conditions such as

wind, precipitation, and air pressure, all these variables can be used to predict that

condition at a location. The previous hour's readings (or further back) from a sensor can

be used to predict present conditions, as changes in weather conditions follow a pattern

and are not totally random. The RWIS-AWOS sets include sites from locations that do

not belong to any micro-climatic regions, and thus the climatic conditions at a location

have some correlation to the condition at another location in the set. Using this

information we include data obtained from the nearby sites, both AWOS and RWIS, to

predicted variables at an RWIS site. This can be done by including all the sites in the

RWIS-AWOS set that a particular RWIS site belongs to.

In brief, to predict a value for an RWIS sensor we use other weather variables such as the

previous hour's readings (or further back) for these variables and these respective

readings from nearby RWIS and AWOS sites (see Figure 3.1).

3.4 Feature Symbols for HMMs

The instance in a dataset used by HMM for predicting a class value of a variable consists

of a string of symbols that form the feature symbol. The symbols that constitute the

feature symbol are unique and are generated from the training set.

For predicting a weather variable value at an RWIS site, taking hourly readings for a day

of the variable's value into consideration we get a string of length 24. This string forms

the feature symbol which is used in the dataset. When information from a single site is

used for predictions, the class values taken by the variables form the symbol set.

When the variable information from two of more sites are used together, a string of class

values is obtained by appending the variable's value from each site together. For example,

to predict temperature class of site 19, we include temperature data from sites 27 and 67,

 59

which belong to the first set of RWIS sites. The combination of class values from these

three sites seen at a particular hour will form a class string. For example if at sites 19, 27

and 67 the temperature class values seen are 3, 5 and 4 respectively then the class string

formed by appending the class values in the order their sites were listed in this example

will be 354.

The sequence of hourly class strings for a day form an instance in the dataset. All unique

class strings that are seen in the training set are arranged in ascending order, if possible,

and each class string is assigned a symbol. For hourly readings taken during a day we

arrive at a string which is 24 symbols long, which forms the feature symbols used by

HMM.

3.5 Methods Used for Weather Data Modeling

To be able detect RWIS sensor malfunctions, we need to check for significant variations

and/or deviations between the values reported by this sensor and the actual weather

conditions present at the location of this site. To determine the actual weather condition

at a location, we try to predict a value for that weather variable. Based on the difference

between the predicted value and the value reported by the RWIS sensor we can detect

sensor malfunctions. To predict a variable's value a function is derived that can explain

the system of weather variations. We use ML methods to build such a function, in other

words a predictive model, using the weather data collected from the past. This model is

used to predict present values for a weather variable. Both classification and regression

algorithms and HMMs are used for modeling the weather data.

Malfunctions in a sensor are easily detected if the predicted values are highly accurate.

This makes the accuracy of the prediction made by ML methods a key factor in detecting

sensor malfunctions. The performance of an algorithm on the data provided is evaluated

using the cross-validation technique.

 60

We will first describe cross-validation and then present the general approach taken by the

ML methods for prediction of weather variables at the RWIS sites.

3.5.1 Cross-Validation

Cross-validation is a technique that is used to evaluate the performance of a model built

by an algorithm. In cross-validation, a subset of the data provided is kept aside and the

remaining data, the training set, is used by the algorithm to build a model. The part of

dataset not used in training, the test set, is then used to evaluate the performance of the

model by measuring the accuracy with which the model classifies the test set instances.

In n-fold cross-validation, the dataset is divided into n subsets of equal size. One subset

is used as a test set and the remaining n-1 subsets are used for training. The cross-

validation is performed n times with each of the subsets being used as a test set exactly

once. The performance of the model on each of the subset used as test set is averaged to

calculate the overall performance of the algorithm. The advantage of using n-fold cross-

validation is that each instance of the dataset gets to be in the test set once and it can be

used to evaluate the performance of the model within a single dataset. Kohavi [1995]

suggests using 10 or 20-fold cross-validations for better estimates.

Multiple n-fold cross-validations can be performed on a single dataset by randomizing

the data in the dataset before splitting the it into n subsets. This method puts different

data into the n subsets created each time. Data can be randomized using a random number

generator and a different random order can be obtained each time by changing the seed

value given to the generator.

 61

3.5.2 General Classification Approach

The classification algorithms are used to classify the given instance into a set of discrete

categories. Discrete variables like precipitation type and discretized temperature values

are predicted using this approach. The classification algorithms described in Section

2.2.1, namely J48 decision trees, Naive Bayes and Bayesian Networks were used to

predict these variables. As all these classification algorithms allow continuous input

attributes, the feature vector used included the current and a couple of previous hour's

temperature readings for various RWIS - AWOS sites along with the variable we are

trying to predict.

Each dataset was built according to a feature vector format we derived based on the

weather data available for the RWIS and the AWOS sites. The dataset is then split into a

training set and a test set using the cross-validation method. The classification algorithms

use the training set to build a model and the test set is used to evaluate the performance of

the model. Multiple n-fold cross-validation are performed to obtain a better estimate of

the model performance.

Classification algorithm predict the class value taken by the output attribute, in our case

precipitation type and temperature class value, for a given instance in the test set. The

prediction results are represented in form of a confusion matrix, with rows corresponding

to actual values and columns corresponding to predicted values for the output attributes.

Each block in the confusion matrix gives the number of times the actual class is predicted

as the class given by the column. The numbers in the diagonal blocks give the number of

time the predicted class value was equal to the actual class value. Thus, the sum of entries

along the diagonals divided by the total number of instances present in the test set, gives

percentage of the number of correctly classified instances. In the case of multiple n-fold

cross-validations, the confusion matrices obtained for each test set seen are averaged to

obtain a confusion matrix with the mean values.

 62

For example, for the two confusion matrices Matrix 1 and Matrix 2, their Average Matrix

can be obtained by averaging the values in their respective blocks. Foe example, the

value at row 1 and column 1 in the Average Matrix is obtained by averaging the row 1

and column 1 values in the matrices A and B, that is, average of 10 and 15 is 12.5.

Matrix 1 Matrix 2
 Predicted Predicted

 Class A Class B Total Class A Class B Total
Class A 10 20 30 Class A 15 15 30

A
ct

ua
l

Class B 30 40 70 A
ct

ua
l

Class B 30 40 70
 Total 40 60 100 Total 45 55 100

Average Matrix
 Predicted

 Class A Class B Total
Class A 12.5 17.5 35

A
ct

ua
l

Class B 30 40 65
 Total 42.5 57.5 100

The error in the results is obtained from predicting the class value for the discretized

temperature is determined by using the absolute distance between actual and predicted

class values. A distance between two adjacent classes is taken as 1. In case of the actual

and predicted class values being the same the distance is 0, which represents a correctly

classified instance. The greater the distance the poorer the prediction.

We can use the percentage of instances that were classified correctly when no

precipitation was present and when precipitation was present to determine the accuracy of

the model built. This method is particularly important for determining the accuracy for

precipitation because for most of the time no precipitation is reported, and thus in cases

when precipitation is reported the algorithm may try to classify it as no precipitation by

assuming the data is noise.

For the classification model built for an RWIS site using historical data, we can provide

the current weather information for the attributes present in the feature vector and the

 63

model will predict a class value for that output at an RWIS site. For the discretized

temperature the absolute distance between the predicted and actual values is used as a

measure to detect sensor malfunctions, while for precipitation type we need to compare

the performance ratios for detecting precipitation and no precipitation present for a

misclassification to be able to identify a sensor malfunction.

3.5.2 General Regression Approach

Regression algorithms are used to determine the value taken by the output attribute in the

given instance, based on an equation or mathematical operations. Continuous variables

like temperature and visibility can be predicted using this approach. The regression

algorithms described in section 2.2.2, namely Linear Regression, Least Median Square,

M5P, MultiLayer Perceptron, RBF Nets and Conjunctive Rule are used to predict these

variables. The feature vector for these regression attributes includes the current and a

couple of previous hour's temperature readings for various RWIS - AWOS sites along

with other information, with one sites temperature being the output attribute.

Each dataset is built according to the feature vector produced from the weather data

available for the RWIS and AWOS sites. The dataset is split into a training set and a test

set. The regression algorithms use the training set to build a model and the test set is used

to evaluate the performance of the model. Multiple repetitions of n-fold cross-validation

is used to obtain a better estimate of the model performance.

For a given set of input attributes the model will predict a value for the output. The

performance of regression algorithms can be determined by the difference between the

actual value and predicted value, which gives the amount of error in the prediction made.

For example, the mean absolute error when actual temperature value is 32ºF and the

predicted values is 35ºF is 3ºF. The mean of the absolute errors across all instances in the

test set gives the performance of the algorithms on the test set. In the case of multiple

 64

n-fold cross-validations, the error value is averaged across all the test sets seen.

To the regression model built for an RWIS site using historical data, we can provide the

current weather information for the attributes present in the feature vector and the model

will predict a value for the concerned output at the RWIS site. The closeness of the

predicted value to the actual value depends on the efficiency of the model. For a model

whose prediction accuracy is high a slight difference may indicate sensor malfunction.

Even if the model is not efficient in predicting accurately, its consistency can be used to

determine variations in values reported.

3.5.4 General HMM Approach

HMMs can be used to predict the class value of the weather variables seen at an RWIS

site in a set. As HMMs require the variables to be discrete, precipitation type and

discretized temperature can be predicted using HMMs. Each instance in the training set

and the test set used in HMM consists of a string of symbols. For a given hour, the

symbol string generated consists of a variable's class value seen at the RWIS site we are

trying to predict. The class values seen at other RWIS sites that belong to a set can also

be included. When a variable's information from two or more sites is used, the variable

value from each site is appended to form a class string and all the unique class strings

seen in training data are assigned a symbol. Thus for each day we get a symbol string of

length 24 in the dataset.

To build the model from a given number of states and symbols emitted at a state, the

Baum-Welch algorithm is applied on the training set to determine the initial state,

transmission and emission probabilities. Each symbol present in the symbol set that was

generated using the training set is emitted by a state. Instances from the test set are then

passed to the Viterbi algorithm which gives the most probable state path.

 65

To predict a variables class value, we need the symbol that would be observed across the

most probable state path found by the Viterbi algorithm. We modified the Viterbi

algorithm (described in Section 2.3.3), which we call the modified Viterbi algorithm, to

obtain the most probable symbol that will be observed at each state visited across the

most probable state path. Table 3.2 shows the modified Viterbi.

The symbol with the highest probability at a state is the one that has the highest emission

probability at that state. As we are trying to predict the class value of a variable at a site,

which forms one part in the class string that was converted into a symbol and the

predicted value can be any of the class values taken by the variable, the predicted

variable's class values in the class string is replaced with all possible values taken by the

variable to get a set of possible symbols for the given symbol. Of the set of possible

symbols we consider only those symbols that are seen in the training set. The symbol

with the highest emission probability at the concerned state is predicted at that state. For

example, if a variable took class values 1, 2 and 3 and the class string is of the from '1AB'

with A and B being class values of other variables. Then all possible class strings for this

variable would be 1AB, 2AB and 3AB.

We calculate the error in prediction as the absolute distance between the actual class

value reported and the predicted class value. For calculating the error we find the distance

with respect to the class value of the site being predicted. The distances between class

values of other sites added to the class string are not taken in to account. For example, the

class string for predicting temperature value at site 19 using sites 27 and 67 temperature

class information has class values arranged as value of 19 followed by the values at 27

and 67. If the predicted class string for a given time is 345 and the actual class string seen

for the time is 435, we get the error as a distance of 1, which is the difference between

class values of the first position in the class strings.

Table 3.2 The Modified Viterbi Algorithm

 66

Modified Viterbi Algorithm

Initialization (i = 0) : 0 0)0(,1)0(0 >== kforvv k

Recursion (i = 1 L) :

))((maxarg)(
))1((maxarg)(

))((max*))1((max)(
)(

smsi

klkki

smskmkkm

i

symbolsetembestsymbol
aivmptr

symbolseteaiviv
xesymbolsallpossiblsymbolset

=
−=

−=
=

Termination : P(x,path*) = maxk(vk(L)ak0)
 path*L = argmaxk(vk(L)ak0)
Traceback (i = L.....1) : path*i-1 = ptri(path*i)
Symbol Observed (i = 1 ... L): symbol(i) = bestsymboli (path*i)

vm(i) - probability of the most probable path obtained after observing the first i
 characters of the sequence and ending at state m
ptrm(i) - pointer that stores the state that leads to state m after observing i symbols
path*i - state visited at position i in the sequence
bestsymboli(m) - the most probable symbol seen at state m at position in
 the sequence
symbolsets – the set of all possible symbols that can be emitted from a state when a
 certain symbol is actually seen
allpossibesymbols(xi) – function that generates all possible symbols for the given
 symbol xi.
symbol(i) – symbol observed ith position in the string.

The modified Viterbi algorithm works similarly to the Viterbi algorithm. The Viterbi

algorithm calculates the probability of the most probable path obtained after observing

the first i characters of the given sequence and ending at state m using

))1((max)()(kmkkimm aivxeiv −= ,

where em(xi) is the emission probability of the symbol at state m and akm is the transition

probability of moving from state k to state m. In the modified Viterbi algorithm, in place

of em(xi) we use the value of emission probability value that is maximum of all of the

possible symbols that can be seen at state m when the symbol xi which is present in the

 67

actual symbol sequence. We calcualte vm(i) in the modified Viterbi algorithm as

))((max*))1((max)(smskmkkm symbolseteaiviv −= .

The actual symbol seen in the symbol string for that respective time is taken and all its

possible symbols are found. Of all of the possible symbols or class strings, only those that

are seen in the training instances are considered in the set of possible symbols. The

symbol from the set of possible symbols that has the highest emission probability is

selected as the symbol observed for the given state. To remember the symbol that was

observed at a state the modified Viterbi algorithm uses the pointer bestsymboli(m) which

contains the position of the selected symbol in the set of possible symbols seen at state m

for a position i in the sequence. It is given by

 .))((maxarg)(smsi symbolsetembestsymbol =

The most probable path generated by the algorithm is visited from the start and by

remembering the symbols, using bestsymboli(m), that were observed at the state for a

particular time we can find the symbols that were with the highest emission probability at

each state in the most probable state path. This new symbol sequence gives the observed

sequence for that given input sequence, in other words, it is the predicted sequence for

the given actual sequence.

To predict the class values for a variable at a RWIS site for a given instance, we pass the

instance through the modified Viterbi algorithm which then gives the symbols that have

the highest emission probabilities along the most probable path. The symbol found is then

converted back into class string and the class value for the concerned RWIS sites is

regarded as the predicted value.

For example, to predict temperature class values at site 19 we use the class string has

temperature class values from sites 27 and 67 appended to the value observed at site 19.

Let a given class string sequence for a day be

 68

 343, 323,243,544,.......,324 (a total of 24, one for each hour in a day)

This sequence is passed to the modified Viterbi algorithm which gives the observed

sequence seen along with most probable state path. Let this output sequence for the given

sequence be

 433,323,343,334,....,324

As we are interested in predicting the class values at site 19, taking only the first class

value from a class string we get, for actual values

 3,3,2,5,....,5

the observed (or predicted) values for the day are

 4,3,3,3,...,3

The distance between these class values will then give the accuracy of the predictions

made by the model.

In cases when the class string obtained from the test set is missing in the set of class

strings seen in the training data, we need to replace it, as it does not have a corresponding

symbol associated with it and thus is not recognized by the HMM. For variables like

discretized temperature, which have a relation between two class values, the missing

class string is replaced with a class string seen in the training data that is closest in

distance to the missing class string. The distance measure used is the Manhattan distance.

The difference between two classes is taken as their distance, for example class 3 and 5

have a distance of 2 between them. The distance between two class strings is the sum of

the distances between each individual class value, for example, class strings 355 and 533

have a distance of 6 between them. When finding the closest we start with a distance of 1

and change the class value for site to be predicted first and then the other sites according

to their distance from the site used for prediction. If no class string is found at a distance

of 1 we try by incrementing the distance. In case of precipitation type, where each class

value is unique, the class value is changed to indicate no precipitation present, as this is

the case that is seen for most of the instances. Replacing is also done with some changed

at a time and changing the vales at the current and then the nearby sites.

 69

The performance of the HMM on the given test set, on precipitation type and discretized

temperature, can be evaluated using the same methods that were used in the general

classification approach.

As the HMM needs a full length symbol string at a time to make predictions, we can give

the past 23 hour observed data and the present hour's data from the concerned RWIS site

to predict the value for the present hour. The HMM will predict the class value of the

variable used in the data. To compare actual and predicted values for detecting sensor

malfunctions we can use the method that was described in the general classification

approach.

 70

Chapter 4

Experiments and Results

This chapter presents the experiments we performed to predict various weather variables

using ML methods. We first discuss our experiments to predict the variables temperature,

precipitation type, and visibility at various RWIS sites using different machine learning

(ML) algorithms. In the next section we discuss our experiments to predict the variables

temperature and precipitation type at various RWIS sites using HMMs. For each

experiment we present the methodology, the results obtained, and discuss the accuracy of

that method in predicting values reported by RWIS sensors and the use of this

methodology in detecting RWIS sensor malfunctions.

4.1 Using ML Algorithms to Predict Weather Variables

To detect an RWIS sensor malfunction, we will be predicting the weather condition

reported by the sensor and comparing it with the value reported by the sensor. As

discussed in Chapter 3, we will be using, as input attributes in the dataset, the related

information gathered from nearby RWIS sites that belong to the same group and the

respective AWOS sites associated with them. We evaluated the performance of each

algorithm on the data using the 10-fold cross-validation technique.

WEKA, described in Section 2.2, contains implementations of many ML algorithms. It

allows the user to select an ML algorithm and apply it to a given dataset. Using the

selected algorithm, it builds a model based on the training set provided and uses the

model to classify instances in the training set and gives the performance results. A brief

description of WEKA along with the command-line statements used to run different

algorithms is given in Appendix B. We performed the experiments involving ML

 71

algorithms mentioned previously using WEKA. We averaged the results of ten 10-fold

cross-validation runs for our ML experiments.

4.1.1 Predicting Temperature

In this section we describe the experiments performed, using both classification and

regression algorithms, to predict the temperature value at an RWIS site. The experiments

were performed using default options provided by WEKA for the respective algorithms.

All our datasets were built from the year 2003 data because at the time the experiments

were performed 2003 was the latest year for which we had an entire year's data for the

selected 13 RWIS sites.

4.1.1.1 Experiment 1: Predicting temperature using regression methods

In this experiment we predict the current hour temperature value at an RWIS site using

regression algorithms. The temperature data from the RWIS site and the RWIS - AWOS

in its group are used to form the feature vector. The results obtained from predicting

temperature values were analyzed.

Methodology

We used the regression algorithms Linear Regression (LR), LeastMedSquare (LMS),

M5P, Multilayer Perceptron (MLP), RBF Network (RBF), and Conjunctive Rule (CR) to

predict the current temperature at an RWIS site. Our feature vector for the dataset

consists of the current and the previous three hour temperature values obtained from the

RWIS and the AWOS sites in a group of related sensors (the grouping of sites into sets is

described in Section 3.1), and the current hour temperature at the RWIS sites. We

calculate the temperature as the difference between the temperature values reported at an

RWIS site and the projected hourly temperature (described in Section 3.2.1) at its

corresponding AWOS site. For example, if the temperature at the RWIS site 67 is 32°F at

 72

time t and the projected hourly temperature at the time t for its corresponding AWOS site,

KLYU, is 30°F, then the temperature of site 19 for hour t in the feature vector is 2°F.

During the calculation of hourly projected values we used historical averages (from years

1997 to 2004) for a month and the average temperature for a day to extract temperature

values as deviations from the average. Using historical data provides additional

information apart from what we already have (i.e., the RWIS and the AWOS data).

We used the weather data collected from the year 2003 to build our dataset using the

described feature vector. For each RWIS-AWOS group we get a different dataset. To

predict temperature at an RWIS site we use the dataset describing the sites in that group.

The current temperature value at the RWIS site to be predicted is the output attribute and

all other attributes in the feature vector form the input attributes. We used the regression

algorithms mentioned above and the dataset generated to try to predict the current hour

temperature value at the selected 13 RWIS sites.

Results

Our testing involved ten 10-fold cross-validation runs so each instance in the dataset is

predicted 10 times (i.e., one in each cross-validation), the average of these 10 values

gives the final predicted value. We used absolute error between the actual value reported

by the sensor and the value predicted by the algorithm, to evaluate the performance of the

algorithm.

Figure 4.1 shows the mean of absolute error and the standard deviation obtained across

all RWIS sites for each algorithm. The ordering of algorithms in the figure is according to

the order in which algorithms were describing in Chapter 2. The mean absolute error

obtained for each individual RWIS site for an algorithm, in a detailed form, are shown in

Appendix C.

 73

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

LR LMS M5P MLP RBF CR

Algorithms

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

°F
)

Standard Deviation of Mean Absolute Errors
Mean Absolute Error (°F)

Figure 4.1: The mean of the absolute error and the standard deviation obtained

from predicting temperature across all 13 RWIS sites using regression algorithms.

The four methods LR, LMS, M5P and MLP clearly outperform RBF and CR.

Discussion

By comparing the mean absolute errors for CR and RBF with other methods, we see that

they fail to predict temperature values for all sites. It may be that these algorithms could

have performed better if we had significantly tuned the parameters for these algorithms.

Mean error for LMS, LR and M5P is seen to slightly less than 1°F and a slightly more

than 1°F for MLP. It can be observed from these values that the predictions of

temperature value by these algorithms, LMS, LR, M5P and MLP is accurate to ±1°F.

The standard deviation value for the mean absolute errors across different sites for an

algorithm measures the variation in the error values across the sites. A small standard

deviation suggests the model is fairly independent of the site location and can predict

 74

with the same accuracy on any site. This is favorable as one model can be used across all

sites rather than having a separate model for each individual site. The CR and RBF

algorithms show higher standard deviations when computed with the rest of the

algorithms used, but this is likely a function of their high error. The best standard

deviation results are obtained from M5P with 0.058 as the standard deviation value across

sites.

Combining the results and giving priority to the algorithms that has a low absolute error

and has a similar behavior across sites, we find that M5P performed the best followed by

LR. It can be clearly seen that CR and RBF did not do well concerning prediction of

temperature and were not used in the the other experiments that followed.

To detect RWIS temperature sensor malfunctions models built from M5P or LMS can be

used. When the difference between the error reported for an hour and the mean absolute

error obtained from testing the model is greater than 1.96 standard deviations, with

standard deviation of error calculated from the test results, we can say with 95% accuracy

that the sensor has failed.

4.1.1.2 Experiment 2: Predicting temperature using regression methods,

with precipitation type included as inputs.

In this experiment we predict the current hour temperature value at an RWIS site using

regression algorithms. The temperature data from the RWIS site and the RWIS - AWOS

sites in its group along with the precipitation type seen at the RWIS sites are used to form

the feature vector. The results obtained from predicting temperature values were

analyzed.

Methodology

Due to the fact that presence of precipitation affects the temperature at a location, we

 75

added it to the feature vector, so that the model built uses this information in predicting

temperature. We used the regression algorithms LMS, LR, and M5P to predict the current

temperature class value at an RWIS site. We use these three algorithms as they were the

top three of the algorithms tried in Experiment 1 (see Section 4.1.1.1) and are arranged in

ascending order with respect to the mean absolute errors across all sites (see Figure 4.1).

Our feature vector for the dataset consists of the current and the previous three hour

temperature values from the RWIS and the AWOS sites from a group of related sensors

and the precipitation type observed at the current hour at the RWIS sites.

We used the weather data collected from the year 2003 to build our dataset using the

described feature vector. The current temperature at the RWIS site to be predicted is the

output attribute and all other attributes in the feature vector form the input attributes. We

use the regression algorithms mentioned above and the dataset generated to try predict

current hour temperature class value at the selected 13 RWIS sites.

Results

We use the mean absolute error obtained from the ten 10-fold cross-validation runs to

evaluate the performance of the algorithm. Figure 4.2 shows a comparison of the mean

absolute error and the standard deviation averaged for all RWIS sites, using the

regression algorithms obtained from this experiment and from Experiment 1 (see Section

4.1.1.1) in which precipitation type information was not included. The mean absolute

error obtained for each individual RWIS site for an algorithm, in a detailed form, from

this experiment are shown in Appendix C.

Discussion

Of the three algorithms (LR, LMS and M5P) used, we see that M5P shows better results

in predicting temperature with lesser mean absolute error and consistency in predictions

across the sites (with respect to the standard deviation of errors across various sites).

Significant variation of absolute errors reported by these three algorithms was not seen,

with all them predicting temperature with an accuracy close to 0.95°F.

 76

0

0.2

0.4

0.6

0.8

1

1.2

LR (4.1.1.1) LR (4.1.1.2) LMS
(4.1.1.1)

LMS
(4.1.1.2)

M5P
(4.1.1.1)

M5P
(4.1.1.2)

Algorithms

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

°F
)

Standard Deviation of Mean Absolute Errors
Mean Absolute Error (°F)

Figure 4.2: The comparison of mean of absolute error and standard deviation

obtained from predicting temperature from Experiment 1 without precipitation

(Section 4.1.1.1) and Experiment 2 (Sections 4.1.1.2) with precipitation.

We also note that including precipitation type in the dataset as an additional source of

information does not decrease the error of the model built. It can be observed from Figure

4.2 that the mean absolute error for the algorithms LR, LMS and M5P is higher for this

experiment when compared with Experiment 1. It was observed the mean of absolute

error increased by approximately 0.09°F when precipitation type was included in the

dataset.

4.1.1.3 Experiment 3: Predicting temperature class using classification

methods

In this experiment we predicted the current hour temperature class value at an RWIS site

using classification algorithms. We discretized the temperature values for its use in

 77

classification algorithms. The temperature data from the RWIS site and the RWIS-

AWOS sites in its group along with the temperature's class value at the RWIS sites are

used to form the feature vector. The results obtained from predicting temperature class

values were analyzed.

Methodology

We used the classification algorithms J48 decision trees and Naive Bayes (NB) to predict

the current temperature class value at an RWIS site. Our feature vector for the dataset

consists of the current and the previous three hour temperature values from the RWIS and

the AWOS sites from a group of related sensors and the class value for the current hour

temperature at the RWIS sites. We discretized the temperature value using the method

described in Section 3.2.2 and the class distribution was set according to the example

mentioned at the end of that section which divides temperature into nine different classes.

We used the weather data collected from the year 2003 to build our dataset using the

described feature vector. The class value for the current temperature at the RWIS site to

be predicted is the output attribute and all other attributes in the feature vector form the

input attributes. We used the classification algorithms mentioned above and the dataset

generated to try predict the class for the current hour temperature at the selected 13 RWIS

sites.

Results

We used the absolute distance between the class value of the temperature reported by the

RWIS sensor and the temperature class predicted to evaluate the performance of the

classification algorithms used. A distance of 0 indicates that the predicted class value is

same as the class value reported. The percentage of instances that were reported with a

distance ranging from 1 to 6, for both J48 and NB used for predictions, are shown in the

Figure 4.3.

 78

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6

Distance

Pe
rc

en
ta

ge
 o

f I
ns

tn
ac

es

J48
Naive Bayes

Figure 4.3: The distance between actual and predicted temperature class obtained

from J48 and Naive Bayes algorithms.

Discussion

We see that from the results in Figure 4.3 that the J48 outperforms the the Naive Bayes

algorithm by classifying 93.6% of the instances in the dataset whereas only 32.337%

instances were correctly classified by the NB algorithm. No instances were reported

having a distance of more than 3 between actual and predicted class value when

prediction was done using J48. As 99.435% of the instances in the dataset were predicted

with a distance of either 0 or 1, using the J48 algorithm, we can predict RWIS sensor

malfunctions when the distance between the actual and predicted temperature class value

is greater than 1. For all the malfunction cases in our dataset the difference in the class

value is 2 or greater, thus we can say that sensor malfunctions can be detected with high

accuracy with the J48 algorithm.

4.1.2 Predicting Precipitation Type

This section describes the experiments we performed using the the classification

algorithms to predict precipitation type at an RWIS site. The experiments were performed

 79

using the default options provided by WEKA for the respective algorithms. We employ

only classification algorithms because precipitation type is reported by RWIS sensors in

the form of class values and classification algorithms are used to classify the given

instance into class values taken by the output attribute. The dataset was built from the

year 2003 data because at the time the experiments were performed 2003 was the latest

year for which we had an entire year's data for the selected 13 RWIS sites.

4.1.2.1 Experiment 4: Predicting precipitation type using classification

 this experiment we predict the current hour precipitation type reported at an RWIS site

ethodology

assification algorithms J48 decision trees, Naive Bayes (NB) and Bayesian

methods

In

using classification algorithms. The temperature data from the RWIS site and the RWIS-

AWOS sites in its group along with the precipitation type reported at the RWIS sites are

used to form the feature vector. The results obtained from predicting precipitation type

were analyzed.

M

We used the cl

Networks (Bayes Nets) to predict the precipitation type for the current hour at an RWIS

site. The K2 algorithm is used to learn the Bayesian network structure. Our feature vector

for the dataset consists of the current and previous three hour temperature values from

the RWIS and the AWOS sites in a group of related sensors and the precipitation type

observed at the current hour for the RWIS sites. We included the temperature information

to help in the prediction process as there is a correlation between temperature and

precipitation observed at a location. Precipitation information from AWOS sites was not

used because the effect of precipitation is localized and does not effect the occurrence of

precipitation at nearby and other locations.

 80

0
5

10
15
20
25
30
35
40
45

J48 NB Bayes Nets
Algorithms

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

Standard Deviation of Mean Absolute Errors
Mean Absolute Error (°F)

 Figure 4.4: The classification error and the standard deviation obtained from

e used the weather data collected from the year 2003 to build our dataset using the

esults

assification algorithms are run using WEKA, the output is presented as a

predicting precipitation type across all 13 RWIS sites using classification

algorithms.

W

described feature vector. The precipitation type at the current hour for the RWIS site to

be predicted is the output attribute and all other attributes in the feature vector formed the

input attributes. We used the classification algorithms mentioned above and the dataset

generated to try predict current precipitation type for the selected 13 RWIS sites.

R

When cl

confusion matrix and statistical results such as the classification error, root mean squared

errors and the percentage of correctly classified instances are given by WEKA. Figure 4.4

shows the classification error (as reported by WEKA) and standard deviation obtained

from predicting precipitation type across all RWIS sites for an algorithm. These values

were obtained after averaging the reported values for each cross-validation run. The

classification error and standard deviation values obtained for each individual sites for the

 81

0
10
20
30
40
50
60
70
80
90

Actual Data J48 NB Bayes Nets
Algorithms

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

Perdict No Precipitation Correctly Predict PrecipitationCorrect
Predict No Precipitation Incorrectly Predict Precipitation Incorrectly

Figure 4.5: The percentage of instances with precipitation present and with no

precipitation present predicted using classification algorithms.

algorithms used in a detailed form are shown in Appendix C.

For predicting precipitation type, we use the percentage of instances that were correctly

classified and incorrectly classified when precipitation was present and when no

precipitation was present to determine the accuracy of the algorithm used. Figure 4.5

shows the percentage of instances that were reported as precipitation present and no

precipitation present in the actual data. For each algorithm the figure shows the

percentage of instances these values were predicted correctly and incorrectly when

precipitation was present and when precipitation was not present. A detailed analysis of

the these percentage values of correctly and incorrectly classified instances for the

algorithms used across each individual site is given in Appendix C.

Discussion

From the classification errors reported by WEKA for the three regression algorithms

used, we see that J48 performs better in predicting precipitation type but a high standard

 82

deviation across sites shows that it is not consistent in predictions across different sites,

with site 35 having 0.077 as classification error and site 67 with 0.356 as its classification

error. Other than site 67 none of the sites have classification error above 0.26 which is

lower than the mean absolute errors reported by NB and Bayes Net.

Some RWIS sites report precipitation as present or not present while the remaining sites

report the type of precipitation observed. In order to compare sites, we combined all

different type of precipitation together and reported precipitation as present. This allows

comparison o the percentage of instances when precipitation was correctly classified

between sites.

Predicting precipitation is a challenging task. It observed from analyzing the RWIS data

that the instances with precipitation present were very few, this is because precipitation

does not continue for a long time and may be present for an hour or two leading to few

observations reported over a period of time. As seen in Figure 4.5, Naive Bayes and

Bayesian Networks predict only about 19% of the instances as no precipitation present

when in the actual data 81% of the instances were reported as no precipitation. They

perform poorly for classifying no precipitation. We found that J48 classifies instances

with no precipitation present correctly, with identifying 75% of the instances as no

precipitation present when in actual data 81% of the instances had reported no

precipitation. But it fails to report the presence of precipitation with the accuracy it

predicts precipitation.

The detection of RWIS sensor malfunctions using prediction of precipitation type is a

tough task because of the failure of the algorithms to correctly classify precipitation. We

found that combination of J48 and Bayes Net can be used to detect malfunctions, with

absence of precipitation being calculated through J48 and Bayesian Networks being used

to report presence of precipitation. We choose Bayesian Networks over Naive Bayes

because of its smaller mean absolute error and standard deviation. Due to varying

accuracies prediction among different sites (see Appendix C), each individual site

 83

requires its own model and specific percentages with which they correctly classify

precipitation to identify the sensor malfunctions. For example, for site 62, J48 mis-

classifies 3.84% of instances when predicting no precipitation and Bayes Nets mis-

classifies 0.77% of instances when reporting presence of precipitation. For this site we

can say that when J48 predicts incorrectly when no precipitation is present and with the

difference in classification error for the site (i.e., 0.062 for site 62) and the absolute error

reported by WEKA is greater than 1.96 standard deviations (standard deviation calculated

from the errors obtained on the test set) then we can say with 95% accuracy that the

sensor has failed. The same approach is followed when Bayes Nets wrongly reports

absence of precipitation. Combination of J48 and Bayes Nets produce high accuracy in

detection sensor malfunctions when each of them is individually responsible for

classifying absence of precipitation and presence of precipitation respectively.

4.1.3 Predicting Visibility

This section describes the experiments we performed using regression algorithms to

predict visibility at an RWIS site. The experiments were performed using the default

options provided by WEKA for the respective algorithms.

4.1.3.1 Experiment 5: Predicting visibility using regression methods

In this experiment we predict the current hour visibility reported at an RWIS site using

regression algorithms. The temperature data from the RWIS site and the RWIS-AWOS

sites in its group along with the precipitation type and visibility reported at the RWIS

sites are used to form the feature vector. The results obtained from predicting visibility

were analyzed.

Methodology

We used the regression algorithms LR, LMS, M5P, and MLP to predict the visibility for

 84

0.0000

0.0500

0.1000

0.1500

0.2000

LMS LR M5P MLP

Algorithms

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (m

ile
s)

Standard Deviation of Mean Absolute Errors
Mean Absolute Error (miles)

 Figure 4.6: The mean of the absolute error obtained from predicting visibility

across the RWIS sites that report visibility using various algorithms.

the current hour at an RWIS site. As visibility is affected by the presence of precipitation,

we included precipitation as an attribute in the feature vector. Our feature vector for the

dataset consists of the current and previous three hour temperature values obtained from

the RWIS and the AWOS sites in a group of related sensors, the precipitation type

observed at the current hour for the RWIS sites and the visibility at the current hour the

RWIS sites. The RWIS sites that report visibility are included in the feature vector.

We used weather data collected from the years 2002 and 2003 to build our dataset using

the described feature vector. The visibility at the current hour at the RWIS site to be

predicted is the output attribute and all other attributes in the feature vector form the input

attributes. We used the regression algorithms mentioned above and the dataset generated

to try predict current visibility for the RWIS sites that report it.

Results

The mean absolute error obtained from site 67 in RWIS Set 1 was excluded when

averaging values for the sites used in prediction, this was done because site 67 reports

 85

visibility up to 10 miles whereas all other sites report only up to 1.09 miles. Figure 4.6

shows the mean of absolute error and standard deviation obtained from predicting

visibility across all RWIS sites, excluding site 67, for an algorithm. The overall mean

absolute errors were obtained after averaging the values reported for each cross-

validation run. The mean absolute errors obtained for each individual sites with respect to

the algorithm used are given in Appendix C.

Discussion

We found that the LMS and the M5P algorithms predict visibility with almost the same

absolute error, with LMS being a little bit higher. But the standard deviation of errors

across various sites was low for M5P when compared to LMS. Thus, we can say M5P

can be used to report visibility across different sites accurately and its predictions are site

independent and a model created using one site can be used to predict values at another

site. We can use M5P to detect sensor malfunctions. We can say that when the the

difference between error from prediction and the mean absolute error for M5P is greater

than 1.96 standard deviations, with standard deviation of calculated from the error values

obtained during cross-validations, the sensor is malfunctioning.

4.2 Using HMMs to Predict Weather Variables

Based on the instance given, an HMM tries to predict the most probable path taken across

the states. For the weather data the “path” is the predicted values of the weather sensor

using the surrounding sensors as additional information. Both HMMs and classification

algorithms can be used to classify a discrete attributes such as precipitation type. When

the data is present in the form of time series, such as hourly precipitation type

observations for a time will form a hourly series of values, HMMs can be used to identity

the path of predicted values from which we can further obtain the values observed

through the path.

 86

We used the modified Viterbi algorithm (see Table 3.2) to predict the symbol observed

when a state in the most probable path is reached for the given instance. HMMs require a

training dataset to build the model, that is to estimate the initial state, transition and

emission probabilities. The test dataset is used to evaluate the model. Multiple n-fold

cross-validation can be used to estimate the model performance.

As HMMs require the presence of all symbols in the symbol sequence, any day with no

value (i.e., missing) reported by a sensor at an hour for any of the RWIS sites in the set,

was omitted from the dataset used for predictions. HMMs require class value

information, thus we discretized the temperature for using it with HMMs by following

the method described in Section 3.2.2. We found that with larger class distribution for

sites to be used for prediction helps in better comparison between the predicted and actual

class values whereas the nearby sites are used to provide additional information about the

surrounds weather conditions and they need not be taken with greater precision. Thus for

the RWIS site that were used for predictions, the temperature was broken down into nine

classes based on the value obtained for number of standard deviations the actual

temperature value differs from the predicted value, the classes were divided as

Class Value Class Value

1 num_stdev < -2 6 0.25 < num_stdev ≤ 0.5

2 -2 ≤ num_stdev ≤ -1 7 0.5 < num_stdev ≤ 1

3 -1 < num_stdev ≤ -0.5 8 1 < num_stdev ≤ 2

4 -0.5 < num_stdev ≤ -0.25 9 num_stdev > 2

5 -0.25 < num_stdev ≤ 0.25

For the RWIS sites that were appended along with the site to be predicted in the class

string, the temperature was broken down into five classes with the classes divided as

 87

Class Value Class Value

1 num_stdev < -1 4 0.5 < num_stdev ≤ 1

2 -1 ≤ num_stdev ≤ -0.5 5 num_stdev > 1

3 -0.5 < num_stdev ≤ -0.5

For example, to predict temperature values at site 19 we use temperature values from site

27 and 67 as additional information. The temperature of site 19 was be broken into 9

classes and temperature at sites 27 and 67 will be broken into 5 classes.

In the following experiments related to HMMs, we trained the HMM (Baum-Welch

algorithm) using the methods available in the 'HMM Toolbox for MATLAB' developed

by Murphy [1998] and the modified Viterbi algorithm was used for testing. We

performed ten iterations of the Baum-Welch algorithm during the training of the HMM.

We set the number of states in the model to 24 and each state was allowed to emit all

possible symbols obtained from the training set. As we are using hourly readings for a

day, each instance in the dataset is a string of symbols with a length of 24.

4.2.1 Predicting Temperature

This section describes the experiments we performed using HMMs to predict the class

value of the temperature at an RWIS site.

4.2.1.1 Experiment 6: Comparison of two methods for training HMM

Two different methods were devised to train the HMMs. In this experiment we predict

the temperature class value reported at an RWIS site using HMMs. The temperature class

information from the RWIS site and the other RWIS sites in its group are used to form

 88

the feature symbols. The results obtained from predicting temperature class value were

used to compare the two methods.

Methodology

We trained the HMM to predict the temperature class value in two different ways

Method A: In this approach we merge all the data from a group and then train the HMM

using this data. As noted earlier, the site being used for prediction has the temperature

split into 9 classes and other sites in the group have temperature split into 5 classes. Thus,

for each site we have its own merged dataset.

We create the dataset in which each instance is a string of symbols representing hourly

readings per day, where a symbol for an hour was obtained from appending that hour's

temperature class value for all of the RWIS sites in a group together. For example to

predict temperature class values at site 19 we will be using the temperature classes from

sites 27 and 67, if the temperature class values at a time t seen at sites 19, 27 and 67 are 6,

3 and 2 then the class string generated for the time t will be 632. We estimated the initial

state, transition, and emission probabilities by applying the Baum-Welch algorithm on

this dataset with combined class information.

Method B: In this approach the data from the sites used is not merged. Data from each

site is used for training the model and the emission probabilities of all sites in the group

are multiplied to obtain a single emission matrix that is used in the final model.

We created a separate dataset for each RWIS site, in which each instance is a string of

symbols representing hourly temperature class value per day. We used the dataset for

each RWIS site to estimate the initial state, transition and emission probabilities using the

Baum-Welch algorithm. The emission probability matrices obtained for each of the

RWIS sites in a group were then joined together by multiplying the respective values in

each box in the matrix. The resultant emission matrix was made stochastic, that is, all

 89

rows and columns are made to sum to 1. We then applied the m-estimate upon the

probability values in the matrix, using m = 20 and p = 1 / #classes, to make the

probabilities with very small values bigger, where in our case the number of classes

denotes the total number of class values taken by the variable we are trying to predict. By

applying the m-estimate we get new values in each block of the matrix given by

 matrix(row.col) = (matrix(row,col) + mp) / (1 + m)

For example, in the matrix shown below we apply m-estimate on it using m=20 and p=½

(considering the number of classes be equal to 2) to get the resultant matrix.

initial matrix matrix after applying m-estimate

0.00111 0.99889 0.47624 0.52376

0.49751 0.50249 0.49988 0.50012

We used the initial state and transition probabilities for the RWIS whose temperature

value is to be predicted in the model.

At the time of performing these experiments we had data from RWIS sites from 2002 to

April 2004, we used the entire data available for building the datasets. We used the

temperature values at the RWIS sites for the years 2002 and 2003 in the training set while

test set contained temperature information from January 2004 to April 2004.

We discretized the temperature values, by breaking the temperature into nine classes.

Training was done using the two methods mentioned above and temperature class value

was predicted for instances in test data using the modified Viterbi algorithm.

Results

We used the absolute distance between the actual and predicted class values for

temperature as a measure to estimate the performance of the algorithm. Figure 4.7 shows

the percentage of instances in the training set with each distance between the actual and

predicted class averaged across the results from different RWIS site, when the HMM is

 90

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 1 2 3 4 5 6 7 8

Distance

P
er

ce
nt

ag
e

of
 In

st
an

ce
s

Method A
Method B

Figure 4.7: The percentage of instances with each distance to actual value when the

HMM is trained using the two different methods.

trained using Method A and Method B. A distance of zero indicates a perfectly classified

instance.

Discussion

Smaller distances between the actual and predicted values indicate more accuracy in

predictions. From Figure 4.7 we see that Method A classified the more instances at with

distance 1 or less whereas Methods 2 had comparatively lesser number of instances

classified with distance below 2. This indicates that Method A outperforms Method B. As

Method A gave better results we will be following this approach for training the HMM in

the experiments performed in the methodologies described next.

4.2.1.2 Experiment 7: Predicting emperature class using HMMs

In this experiment we predict the temperature class value reported at an RWIS site using

HMMs. The temperature class information from the RWIS site and the other RWIS sites

 91

in its group are used to form the feature symbols.

Methodology

Using temperature data collected for each RWIS site, ranging from January 2002 to April

2004, we created a dataset for each RWIS site to be used for predictions. In this dataset

each instance is a string of symbols representing hourly readings for a day, where a

symbol for an hour was obtained from appending that hour's temperature class value for

all RWIS sites in a group together. In each class string the RWIS site predicted was

taken first and the other sites in the group were added in order of their nautical distance

from the concerned RWIS site. This order is useful while finding the closest symbol

when a class string seen in the test set is missing from the training set used. We

estimated the performance of HMM in predicting the current hour's temperature class

value at an RWIS sites using the dataset of the group this site belongs to and applied a

single 10-fold cross-validation to estimate the model evaluation.

Results

We evaluated the performance of the HMM using the absolute distances between the

actual and predicted values. The respective distance values for all RWIS sites in a group

were averaged so as to reflect on the performance of the HMM in predicting temperature

class values for that respective set. Figure 4.8 shows the percentage values for each

distance for the three sets, with the percentage calculated as the number of instances

classified with a certain distance over the total instances present in the dataset, with each

instance being an hourly reading. The percentage for each distance across all the RWIS

sites used for prediction is shown in Appendix C.

Discussion

We do not combine the results of different sets to reach an overall percentage value as the

format of the symbol sequence in dataset for each site was different. It can be seen from

Figure 4.8 that the most of the temperature class values are predicted with a distance of 1,

 92

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

0 1 2 3 4 5 6 7
Distance

Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

Group 1: RWIS Sites 19, 27 and 67
Group 2: RWIS Sites 14, 20, 35, 49 and 62
Group 3 :RWIS Sites 25, 56, 60, 68 and 78

Figure 4.8: Percentage of instances having a certain distance from the actual class

value when predicting temperature class using HMMs.

for all sets. This is also reflected in the results from individual sites shown in Appendix

C, with the exception where a distance of 2 is seen most of the times.

The percentage of instances predicted with a distance of 3 or less in the groups 1, 2 and 3

are 99.75%, 99.43% and 94.34% respectively. Approximately 3% of the data in Group 3

is predicted with a distance of 4, which is due to the results obtained for RWIS site 67 in

which approximately 15% of the data is predicted with distance 4. Taking aside the

results for site 67, we can say that, when the distance between the actual temperature

class and the predicted class is more than three then there is a malfunction in the RWIS

temperature sensor. The erratic behavior of site 67 may be due to presence of errors in it.

4.2.1.3 Experiment 8: Site independent prediction of temperature class

using HMMs.

In this experiment we predict the temperature class value reported for a site in an RWIS

 93

group. A single dataset was generated for a group that has the first class value in the class

string as the class value to be predicted. The temperature class information from the

RWIS sites in a group are used to form the feature symbols. The results obtained from

predicting temperature class were analyzed.

Methodology

In order to increase the size of data used for predictions and to perform site independent

predictions we create a single dataset for each RWIS group. Each of the RWIS sites in a

group was taken as the predicted site and the symbol strings obtained from it were

appended to the dataset. The class string was constructed using the predicted site's class

value which is added first followed by the class values of the other sites in the group with

the predicted site are added. The order of the near sites was chosen with respect to the

distance from the predicted site, thus the site closest to the predicted site was added first

and so on. For example, to create a single dataset for the RWIS Set 1 we first add data

instances taking RWIS site 19 as the site to be predicted with sites 27 and 67 as nearby

sites, followed by taking site 27 to be the site predicted and then using site 67 as the site

predicted. Using this method, we get a single large dataset whose size is equal to the sizes

of datasets generated for each site in a RWIS group separately added together. By

predicting the first class seen in the dataset we perform a site independent evaluation of

the HMM and focuses on prediction accuracy in a group.

The bigger dataset was generated for each group using the temperature data from the

years 2002 and 2003. We used this dataset was used to predict the first class value

(which is the predicted site) seen in the class string using HMMs and the model was

evaluated using ten 10-fold cross validation runs.

Results

The distance between actual and predicted class value was used to evaluate the

performance of the model. Figure 4.9 shows the percentage of instances (with an instance

being an hourly reading) with a certain distance between the actual and predicted value,

 94

0.00%

20.00%

40.00%

60.00%

80.00%

0 1 2 3 4 5 6 7
Distance

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

Group 1: RWIS Sites 19, 27 and 67
Group 2: RWIS Sites 14, 20, 35, 49 and 62

Group 3: RWIS Sites 25, 56, 60, 68 and 78

Figure 4.9: Percentage of instances having a certain distance from the actual class

value when predicting temperature class by applying ten 10-fold cross-validation on

HMMs and using the extended dataset focusing on predicting class value for an

RWIS group.

for each of the three RWIS sets used. The percentage values were obtained after

averaging the values reported for each cross-validation run.

Discussion

Comparing the results of Experiment 7 with this experiment, we observed (see Figures

4.8 and 4.9) that the percentage of instances with a certain distance is almost the same,

that is the the results obtained for a group using a combined dataset and from averaging

results from within a group where each site was trained using its dataset are about the

same. From this we conclude that using a single model built from the combined dataset

values for any site in a group can be can be predicted with accuracy comparable to that of

the overall group.

The percentage of instances predicted with a distance of 3 or less in the groups 1, 2 and 3

were 99.76%, 99.71% and 97.88% respectively, which covers almost the entire data.

 95

Thus, we can say that when the distance between the actual temperature class and the

predicted class is more than three then there is a malfunction in the RWIS temperature

sensor.

4.2.2 Predicting Precipitation Type

This section describes the experiments performed using HMMs to predict the class value

of the precipitation at an RWIS site.

4.2.2.1 Experiment 9: Predicting precipitation type using HMMs.

In this experiment we predict the precipitation type reported at an RWIS site. The

precipitation type information from the RWIS sites in a group are used to form the

feature symbols. The results obtained from predicting temperature class were analyzed.

Methodology

We performed ten 10-fold cross validations using HMMs, to predict the precipitation

type at an RWIS site. Years 2002 and 2003 were selected for generation of the data as

these where the most recent years for which we had entire yearly data for the RWIS

sensors when this experiment was conducted. The dataset used for prediction contained

precipitation type information for the years 2002 and 2003 with each instances consisting

of hourly class strings for a particular day. The class string in the dataset instance was

obtained from appending the precipitation type of RWIS site used for prediction and from

the nearby sites, which were arranged according to the distance from the site used for

predictions.

 96

Group 1: RWIS Sites19, 27
and 67

Group 2: RWIS Sites14, 20,
35, 49 and 62

Group 3: RWIS Sites 25, 56,
60, 68 and 78

0

10

20

30

40

50

60

70

80

90

No Precipitation
Present in Actual Data

Precipitation Present
in Actual Data

No Precipitation
Predicted Correctly

Precipitation Predicted
Correctly

RWIS Groups

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

Figure 4.10: The percentage of instances with precipitation present and with no

precipitation present predicted correctly using classification algorithms.

Results

We cannot use the distance between actual and predicted value to be used as a measure of

performance evaluation, as each precipitation type reported is unique and has a specific

meaning. We observed that some RWIS sites report precipitation type as present or not

present while the remaining sites indicate the type of precipitation when present. In order

to compare the performance across all sites, any form of precipitation occurring was

taken as precipitation present, averaged over all sites present in a set. Figure 4.10 shows

the percentage of instances in the dataset that were correctly predicted as precipitation

present or as not present, along with the percentage of instances where no precipitation

and precipitation present were reported in the actual data. These values for each of the 13

RWIS sites on which prediction was done is shown in Appendix C.

Discussion

From the percentage values in Figure 4.10 and Appendix C we can say that HMM fails to

predict precipitation when actually present for most of the sites with not even half of the

instances that report precipitation being correctly classified. For predicting absence of

 97

precipitation most of the sites had poor values but some showed better results. It can be

seen from the values in Appendix C that the percentage of instances correctly classified

varies with respect to a site. We see that there are a large number of instances where the

absence of precipitation was reported as precipitation and as these are seen for large

number of instances, this can be seen as a factor which reduces the accuracy of the

model. We find that there are also a lot of misclassifications occurring during prediction

of precipitation type values. From the these results we can conclude that HMM trained

using the methodology described is not a good option for predicting precipitation and

thus cannot be used for detection of RWIS precipitation sensor malfunctions. This may

be due to the training methodology we had used in our HMM.

Overall Conclusions

We compare the values predicted by the various ML methods to the actual values

observed at an RWIS sensor to detect sensor malfunctions. Accuracy of the algorithm in

predicting values plays a major role in determining the accuracy with which malfunctions

can be identified. From the experiments performed to predict temperature at an RWIS

sensor we found using current and previous three hours temperature readings and the

temperature at an RWIS site in the dataset, the classification algorithms LMS and M5P

gave results accurate to ±1°F and had low standard deviation across sites. LMS and M5P

were identified to be able to detect sensor malfunctions accurately. The algorithms RBF

Networks and CR failed to predict temperature values. The use of precipitation as an

additional source of information had no significant changes on the accuracy of the

algorithms. A threshold distance of 2 between actual and predicted class value was

identified to be able determine sensor malfunctions when using J48 to predict

temperature class values.

The J48, Naive Bayes and Bayes showed varied results when predicting presence or

absence of precipitation. A combination of J48 and Bayes Nets was identified to be able

to detect malfunctions of a senor when predicting precipitation type. Visibility was best

classified using M5P. An issue in using visibility is that RWIS sensor measures sensors

 98

to a maximum of 1.09 miles and all distances above as taken as 1.09 miles, this prevents

the algorithms from capturing changes that happen beyond this point.

HMMs were found to be effective in classifying temperature class but failed to predict

precipitation type information. A threshold distance of 3 was identified to accurately

identify sensor malfunctions. When predicting temperature class using HMM, a single

model of a group obtained from using the combined dataset gave similar accuracy when

compared to average of accuracies from predicting temperature at single sites over a

group. From this we conclude that use a single model, built from using datasets of all

sites together, can be effectively used to identity malfunctions at any site in the group.

 99

Chapter 5

Related Work

Machine learning methods have been used in various fields such as bio-informatics,

natural language processing and speech recognition. In this chapter we discuss work

related to ours using RWIS technology. We then discuss the work done using ML

methods in areas related to weather data modeling and forecasting, and time series

prediction.

5.1 Using RWIS sensors

The Road Weather Management Program of the Federal Highway Administration (FHA)

along with National Weather Service (MWS) sponsor research projects which deal with

using weather information obtained from RWIS sensors for roadway maintenance and

related operations. These projects are described in a technical report by FHA [2004].

Knight et al., [2004] describe the advantages and difficulties in integrating the RWIS,

AWOS and Automated Surface Observation System (ASOS) sensors together to form a

mesonet, which can be used for weather forecasting. They discuss the benefits of

including data from different networks operating the same region in weather forecasting.

Our work differs from theirs in that we focus on predicting individual sensors, rather than

trying to produce a model for an entire network of sensors.

Gallus et al., [2004] use Artificial Neural Networks to develop a time series prediction

model for predicting frost conditions at roadways. From 180 different weather variables,

they found the 8 – 10 most important variables that are beneficial in predictions by neural

 100

networks. The presence of frost was predicted. Frost predictions using RWIS data with

ANNs did not provide good results, which was attributed to the methods used by RWIS

in collection frost information. They also compare the data from RWIS and AWOS

networks and report bias in values reported by the sensors, which is attributed to sitting

positions of these sensors. In our work we use the Multilayer Perceptron algorithm to

predict continuous variables. We include previous hours information in the dataset and

which improves the accuracy of our results. We found some correlation between RWIS

and AWOS sites that are grouped together, the bias found by Gallus et al. may be

attributed to the location of the sensors. They used sensors in Iowa and we the sensors

from Minnesota, which are different climatological regimes.

5.2 Weather Data Modeling and Forecasting using Machine

Learning Algorithms

Hall et al. [1999] use ANNs to predict the probability of precipitation and the amount of

precipitation. They include weather-related variables measured both at ground and at the

upper atmosphere in the dataset along with observed rainfall information. They build two

different network models to determine the probability of precipitation and the amount of

precipitation. They report a change in significant variables for predicting precipitation for

cold and warm seasons, which led to the development of different models for each

season. They build network models which allows the users to change input variables in

cases when inclusion of some variables causes the performance to drop thus allowing

year round interoperability of the model and use of the model at different locations. They

find that precipitation occurs when the precipitation probability predicted by the model is

above 38.5%. They report a high accuracy in the predictions made, for both probability

and amount of precipitation, by the use of neural networks. In our work, we use a single

model whose predictions are independent of the time from which the input is derived. As

indicators of model accuracy for predicting precipitation type we use the percentage of

instances that are classified correctly and incorrectly for both cases when precipitation is

 101

present and precipitation is not present.

Schizas et al., [1991] use artificial neural networks for predicting minimum temperature

of a day by taking temperature, wind, visibility and previous day's minimum temperature

as inputs. Their best results are obtained by a network with two hidden layers and 40

output units with each output unit representing a range in temperature. Gain and

momentum were chosen to be 0.01 and 0.9 respectively. Their network predicts with an

accuracy of 68% at a temperature confidence range of ±3°C. In out work we use previous

hours temperature values with the current temperature to improve the prediction process.

We use the MultiLayer Perceptron algorithm to predict hourly temperature values. The

network we build has the number of hidden units determined by the number of attributes

and the classes.

Park et al., [1991] use artificial neural networks to forecast electric load to detect grid

failures. They use a combination of time series and artificial neural networks They build

the network using past and present information of load and weather variables. Each

network is built to trace load patterns to detect errors and to recognize different load

conditions. They build different networks by varying the number of hidden layers (using

1, 5 and 10 hidden layers) and using load and different forms of temperature, such as

average, peak and low and past temperature values. They report the best results when

using the past 2 days information on a network with 10 hidden units. Our work differs

from theirs in that we have the number of hidden units used by the model fixed. We use

the average of the sum of number of attributes used and the number of classes as the

number of hidden units. We used the temperature values in the same form reported by the

RWIS sensors.

Cano et al., [2004] use Bayesian Networks to predict rainfall and wind conditions from a

data mining point of view. The weather data was collected from a set of 100 stations that

were arranged in a grid-wise manner. They construct the Bayesian network using

historical data obtained from the sites and was is to predict present conditions. Each site

 102

used for modeling is taken as a node in the Bayesian network. They use the K2 learning

method in training of the Bayesian network. To improve the search criterion the parents

in the network are allowed to include nodes which have a climatic similarity with the

parent node. They report improvement in the efficiency of the search process and better

results when this condition is applied. Our work differs from theirs in that we use the K2

search algorithm without giving it any prior knowledge for building the network. This

allows the network to identify patterns that are not seen or measurabe.

McMillan et al., [2005] build a Bayesian hierarchical regime switching model to describe

the behaviors of ozone over space and time. The model built uses the relationship

between ozone to estimate spacial fields of ozone and weather condition. The model uses

weather conditions like temperature, wind speed and wind direction to forecast ozone

levels. Bayesian hierarchical modeling is used to build the models. The weather

conditions are treated as fixed and know. The changes in the ozone field are treated as

first-order Markov models in time. The models are used to detect ozone levels from the

given meteorological conditions and are used to capture key ozone behaviors. The model

captures various dependencies of ozone on the meteorological factors. We use Bayesian

models to predict temperature, precipitation type and visibility at an RWIS sensor. We

use Hidden Markov Models to predict temperature class values by taking the data in the

form of a time series with each sequence consisting of hourly temperature class values.

Lau & Weng [1995] use wavelet transform to climate time series analysis. Wavelet

transformations are used for study of non-stationary processes occurring over a period of

time. They applied a wavelet transform to study variations in global ice volumes and

temperature data. They provide a tutorial on the use of wavelet transform in weather

related time series domain In our work we use Hidden Markov Models when data was

formatted as a sequence in the time series.

 103

5.3 Time Series Prediction using HMMs

Bellone et al., [2000] use a non-homogeneous HMM to predict precipitation amounts

during winter months. They use weather data consisting of precipitation amounts, daily

geopotential height, temperature, atmospheric pressure and relative humidity from

different locations in Washington state area to build and evaluate the model. In the HMM

we developed to predict precipitation type, we use temperature information along with

precipitation type as inputs. Their model uses 6 states where each state corresponded to

different amount of precipitation and assumed precipitation occurrence to be

conditionally spatially independent. Our work differs from theirs in that to predict a

variable such as precipitation type for a site we use precipitation type information from

nearby sites. We did not include any other variable when predicting a particular variable.

Our model has 24 states and the symbols observed at each state are used for predicting

the output values. We modify the Viterbi algorithm to use the symbols emitted at each

state in the most probable path for a given sequence to determine the predicted value.

Zhang [2001] uses HMMs to predict and analyze financial time series, which are a

sequence of prices of financial entities, like stocks, observed over a time period at a stock

market. Information from other stock markets is used help in the prediction process. An

HMM is used to predict the S&P 500 Index. The general EM algorithm is modified to an

exponentially weighted EM algorithm to give more emphasis to current data. The HMM

developed performs better than the top mutual funds and neural networks. In our work we

use information from surrounding sites to help in the prediction process of values at a

site.

 104

Chapter 6

Future Work

In this thesis, we build predictive models using both machine learning (ML) algorithms

and Hidden Markov Models (HMM). These models are used to predict weather

conditions and compare them with actual values to detect RWIS sensor malfunctions. In

this chapter we discuss some possible improvements to the models and the general

approach to enhance our work. Some obvious areas for potential improvement would be

to use different ML methods to build a predictive model using larger datasets, and

including sites with micro-climates and the development of malfunction models.

Many different algorithmic approaches are present in the field of machine learning. The

use of other algorithms, such as Kalman filters, for weather data modeling could be

explored. Kalman filters [Harvey, 1989] are used to estimate the state of a dynamic

system from the data provided about the system. They are in some sense regression

version of HMMs. The hidden state variables in Kalman filters are continuous, making

the state sequence a sequence of numbers or a vector of real numbers. Kalman filters use

linear operators with added noise to generate hidden states and outputs. they deal with

linear systems and can also be extended to non-linear problems. Weather variables such

as temperature can be used directly on Kalman filters (temperature was discretized for

use in HMMs) as the state variables are continuous. Thus, a sequences of daily

temperatures obtained for a duration of time can be used to build predictive models by

Kalman filters.

In this work, we use data collected for one or two years for training and testing of the

models. The performance of the model may be improved by using a larger data set

spanning a larger duration of time. The number of features in the dataset for ML

 105

algorithms was limited to the present and previous three hour's temperature values along

other variables like temperature offset, precipitation type and visibility. More features can

be added to the feature vector by selecting the features that most affect a particular

variable. In HMMs, the class string contained the value of a variable from the site used

for predictions and its nearby sites. Other variable information can also be added to the

class string. To prevent the length of the class string getting to be too long in such cases,

which will lead to large number of symbols and very noisy probability estimates,

information from two or more variables can be combined to form a new class. In this

work the models built include information from data collected all round the year. The

yearly data can be split into different climatic periods, such as winter, spring, summer

and fall and build models for the respective period.

In this work we focus on 13 RWIS sites for predictions. The work can be extended to all

the RWIS sites present in Minnesota. Models for sensors at sites with significant micro-

climates, that we not included in the selected sites, can be built. Weather at sites with

micro-climates tend to have a different pattern from its surrounding sites, in order to

build models for such sensors more focus should be given on the historical and current

information collected from the site and less on the surrounding sites. Additional

information about the weather conditions, such as wind, air pressure and cloud cover,

could help in determining the weather patterns followed at such sites. Information from

weather advisories could be used to identify the weather condition at the location, and

can also be used to match it with the current weather conditions reported by the sensors to

identify sensor accuracy.

The RWIS data available to us did not include much information on days where re-

calibrations or maintenance work was done. The maintenance records were made

manually and did not provide much computer-understandable data. Information about

malfunctions and their effect on the readings recorded by the sensor was not available. To

deal with this issue, malfunction models could be generated by adding additional physical

sensors to an existing sensor. The additional sensor can be then tampered with or altered

 106

to simulate conditions of mis-calibrations and malfunctions. The data from the two

sensors, one with induced malfunctions and one recording actual conditions, can be

compared and the resulting differences used to build malfunction models. These models

could give us a range for potential errors for that sensor to identify malfunction or mis-

calibrations in it.

Miscalibrations in the sensors that lead to a small scale deviations from the actual values

and is seen for a long duration of time. Such slow drifts in the recorded readings are

difficult to identify. New models could be built or the existing enhanced to identify such

drifts in the readings, by examining for instance the long term historical differences in

sensor values between sites and calculating the likelihood of the current history for a

sensor.

 107

Chapter 7

Conclusions

In this research we attempt to detect RWIS sensor malfunctions using real time sensor

data. Malfunctions are identified as significant deviations in values reported by the sensor

from the actual conditions present at the site. We use machine learning (ML) methods to

build models for an RWIS site which are used to predict a value at that site. The predicted

value is then compared to the actual value from the site to detect sensor malfunctions. To

build models for RWIS sites, ML methods use historical weather data obtained from a

representative sample of RWIS and AWOS sites.

We build models for RWIS sites to predict temperature, precipitation type and visibility

which were identified as critical aspects of weather data for Mn/DOT. We use a variety

of ML methods such as classification methods (e.g., J48 decision tree, Naive Bayes and

Bayesian Networks), regression methods (e.g., Linear Regression, Least Median Square,

M5P, MultiLayer Perceptron, RBF Networks and Conjunctive Rule) and Hidden Markov

Models (HMMs) to predict this data. The effectiveness and accuracy of these methods in

predicting this data was analyzed and their ability to detect sensor malfunctions

identified.

From the results obtained for the ML methods applied on different representations of the

data to predict temperate at an RWIS site we see that Conjunctive Rule and RBF

Network fail completely with high errors for predicting temperature. It may be that these

algorithms could have performed better if we had significantly tuned the parameters for

these algorithms. The prediction of temperature by Linear Regression, Least Median

Squares, M5P and Multilayer Perceptron is accurate to ±1°F. Models built by M5P and

Least Median Square are used to detect sensor malfunctions because of their low standard

 108

deviation across different sites.

Including precipitation type as an additional source of information for predicting

temperature has no significant effect and the results are comparable to the experiments

done without using precipitation type. The prediction of temperature class value is the

best when J48 decision trees are used, which correctly classifies almost all instances. A

threshold distance of 2 is identified to detect malfunctions when J48 is applied to predict

temperature class values.

For detecting sensor malfunctions when predicting precipitation type, a combination of

results from J48 decision trees and Bayesian Networks are used as J48 identified

instances with no precipitation accurately and Bayesian Networks has accuracy for

predicting the presence of precipitation. The model built using M5P shows a reasonable

accuracy for predicting visibility.

Hidden Markov Models (HMMs) perform well for classifying discretized temperature

values. The accuracy for models built at different sites varies with a considerable amount.

A threshold distance of 3 between the actual and the predicted temperature class value is

used to detect malfunctions. But in most cases on temperature sensors, the HMM models

performed very well. Combining the data from different sites that belong to the same

group and predicting the temperature class values without site information gives similar

results as when using a dataset for a respective site to predict its temperature class value.

We find the model built by HMM for precipitation type have a high error when

classifying the presence or absence of precipitation. It was concluded not to use the

HMM model for detecting sensor malfunctions.

We believe that the models built using selective ML methods for predicting temperature,

predicting type and visibility can be used effectively for detecting RWIS sensor

malfunctions and can be extended to other RWIS sites that were not included in the

experiments performed.

 109

Bibliography

[Akaike, 1974] Akaike, H., A new look at the statistical model identification. IEEE
Transaction on Automatic Control , vol. AC-19, pp. 716-723, 1974.

[Allen & Greiner, 2000] Allen, T. and Greiner, R., A model selection criteria for learning
belief nets: An empirical comparison, Proceedings of the International Conference on
Machine Learning, pp. 1047-1054, 2000.

[AllWeatherInc] All Weather Inc., Automated Weather Observing System (AWOS):
International Technical Description, http://www.allweatherinc.com/pdf/int_awos.pdf.

[Aurora] Aurora Program, About RWIS,
http://www.aurora-program.org/what_is_rwis.cfm.

[Baum & Petrie, 1966] Baum, L. and Petrie, T., Statistical inference for probabilistic
functions of finite state markov chains, Annals of Mathematical Statistics, vol. 37, 1966.

[Bellone et al., 2000] Bellone, E., Huges, J. and Guttorp, P., A hidden Markov model for
downscaling synoptic atmospheric patterns to precipitation amounts, Climate Research,
vol. 15, pp. 1 – 12, 2000.

[Bishop, 1995] Bishop, C., Neural Networks for Pattern Recognition, Oxford University
Press, 1995.

[Boselly & Ernst, 1993] Boselly, S., and Ernst, D., Road Weather Information Systems,
Volume 2: Implementation Guide, Report SHRP-H-351, Strategic Highway Research
Program, National Research Council, Washington, DC, 1993.

[Boselly et al., 1993] Boselly, S., Thornes, J., Ulberg, C., and Ernst, D., Road Weather
Information Systems, Volume 1: Research Report, Report SHRP-H-350, Strategic
Highway Research Program, National Research Council, Washington, DC, 1993.

[Buhmann & Albovitz, 2003] Buhmann, M., Albowitz, M., Radial Basis Functions:
Theory and Implementations, Cambridge University Press, 2003.

[Cano et al., 2004] Cano, R., Sordo, C. and Gutierrez, J., Applications of Bayes nets in
meteorology, Advances in Bayesian networks, pp. 309 – 327, Springer 2004.

[Cooper & Herskovits, 1992] Cooper, G. and Herskovits, E., A Bayesian Method for the
Induction of Probabilistic Networks from Data, Machine Learning, vol. 9, pp. 309-347,
1992

 110

[Dietterich, 2002] Dietterich, T., Machine learning for sequential data: A review, Lecture
Notes in Computer Science, vol. 2396, pp. 15-30, 2002.

[Dougherty et al., 1995] Dougherty, J., Kohavi, R. and Sahami, M., Supervised and
unsupervised discretization of continuous features, Proceedings of the Twelfth
International Conference on Machine Learning, pp 94-202, 1995.

[Durbin et al., 1989] Durbin, R., Eddy, S., Krogh, A. and Mitchison, G., Biological
Sequence Analysis: Probabilistic models of proteins and nucleic acids, Cambridge
University Press, 1998

[FAA, 2003] Federal Aviation Administration (FAA), Automated Surface Observing
System (ASOS) / Autoamted Weather Observing System (AWOS), updated Feb 2003,
http://www.faa.gov/asos/

[FAA, 2006] Federal Aviation Administration (FAA), Mechanism Data Report:
Automated Weather Observing System, updated April 2006, http://www.nas-
architecture.faa.gov/nas5/mechanism/mech_data.cfm?mid=37.

[Fayyad & Irani, 1993] Fayyad, U. and Irani, K., Multi-interval discretization of
continuous-valued attributes for classification learning, Proceedings of 13th International
Joint Conference on Artificial Intelligence, pp 1022-1027, Morgan Kaufmann, 1993.

[FHA, 2004] Collaborative Research on Road Weather Observations and Predictions by
Universities, State Departments of Transportations, and National Weather Service
Forecast Offices, US. Department of Transportation Federal Highway Administration,
Publication No. FHWA-HRT-04-109, October, 2004.

[Forney, 1973] Forney, J., The Viterbi algorithm, Proceedings of the IEEE, vol. 61, no. 3,
pp. 268–278, March 1973

[Forsyth & Rada, 1986] Forsyth, R. and Rada, R., Machine Learning applications in
expert systems and information retrieval, Ellis Horwood Ltd., 1986.

[Friedman et al., 1997] Friedman, N., Geiger, D. and Goldszmidt, M., Bayesian network
classifiers, Machine Learning, vol. 29, pp. 131-163, 1997.

[Gallus et al., 2004] Gallus, W. Jr, Jungbluth, K. and Burkheimer, D., Improved Frost
Forecasting through Coupled Artificial Neural Network Time-Series Prediction
Techniques and a Frost Deposition Model, US. Department of Transportation Federal
Highway Administration, Publication No. FHWA-HRT-04-109, pp. 19 – 26, October,
2004.

 111

[Good, 1965] Good, I., The Estimation of Probabilities: An Essay on Modern Bayesian
Methods, M.I.T. Press, 1992.

[Hall et al., 1999] Hall, T., Brooks, H. and Doswell, C., Precipitation forecasting using a
Neural Network, Weather and Forecasting, vol. 14, num. 3, pp. 338-345, 1999.

[Harvey, 1989] Harvey, A., Forecasting, Structural Time Series Models and the Kalman
Filter, Cambridge University Press, Cambridge, 1989.

[Heckerman et al., 1995] Heckerman, D., Geiger, D. and Chickering, D., Learning
Bayesian networks: The combination of knowledge and statistical data, Machine
Learning, vol. 2, pp. 197-243, 1995.

[Holland, 1962] Holland, J., Outline for a logical theory of adaptive systems, Journal for
Association of Computing Machinery, vol. 3, pp. 297-314, 1962.

[Knight et al., 2004] Knight, P., Ayers, B., Ondrejik, D. and Uzowke, A., Developing an
Interactive Mesonet for PennDOT, US. Department of Transportation Federal Highway
Administration, Publication No. FHWA-HRT-04-109, pp. 10 – 17, October, 2004.

[Kohavi, 1995] Kohavi, R., A study of cross-validation and bootstrap for accuracy
estimation and model selection, Proceedings of the 14th International Joint Conference
on Artificial Intelligence, 1995.

[Langley et al., 1992] Langley, P., Iba, W. and Thompson, K., An Analysis of Bayesian
Classifiers, Proceedings of the Tenth National Conference on Artificial Intelligence, pp.
223-228, AAAI Press, 1992.

[Langley, 1996] Langley, P., Elements of Machine Learning, Morgan Kaufmann, San
Francisco, 1996.

[Lau &Weng, 1995] Lau, K. and Weng, H., Climate Signal Detection Using Wavelet
Transform: How to Make a Time Series Sing, Bulletin of the American Meteorological
Society: Vol. 76, No. 12, pp. 2391- 2402, 1995.

[Littlestone, 1988] Littlestone, N., Learning Quickly When Irrelevant Attributes Abound:
A New Linear-threshold Algorithm, Machine Learning, vol. 2, pp. 285-318, 1988.

[Manfredi et al., 2005] Manfredi, J., Walters, T., Wilke, G., Osborne, L., Hart, R.,
Incrocci, T. and Schmitt, T., Road Weather Information System Environmental Sensor
Station Siting Guidelines, US. Department of Transportation Federal Highway
Administration, Publication No. FHWA-HOP-05-026, April 2005.

 112

[McMillan et al., 2005] McMillan, N., Bortnick, S., Irwin, M. and Berliner, M., A
hierarchical Bayesian model to estimate and forecast ozone through space and time,
Atmosphereic Environment, vol. 39, pp. 1373 -1382, 2005.

[Mitchell, 1997] Mitchell, T., Machine Learning, McGraw Hill, 1997

[Murphy, 1998] Murphy, K., Hidden Markov Model (HMM) Toolbox for MATLAB, 1998,
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html.

[NCDC, 2005] National Climatic Data Center, Data Documentation for Data Set 3282
(DSI-3282): ASOS Surface Airways Hourly Observations, National Climatic Data Center,
Asheville, NC, May 2005.

[Nilsson, 1996] Nilsson, N., Introduction to Machine Learning. Unpublished draft,
Department of Computer Science, Stanford University, 1996.

[Orr, 1996] Orr, M., Introduction to radial basis function networks. Technical report,
Institute for Adaptive and Neural Computation of the Division of Informatics at
Edinburgh University, Scotland, UK, 1996,
http://www.anc.ed.ac.uk/~mjo/papers/intro.ps.gz.

[Park et al., 1991] Park, D., El-Sharkawi, M., Marks, R. II, Atlas, L. and Damborg, M.,
Electric load forecasting using an artificial neural network, IEEE Transactions on
Power Systems, vol. 6, issue 2, pp. 442 – 449, May 1991

[Pearl, 1988] Pearl, J., Probabilistic reasoning in intelligent systems, Morgan Kaufman,
1988

[Quinlan, 1986] Quinlan, R., Induction of Decision Trees, Machine Learning, vol. 1, pp.
81-106, 1986.

[Quinlan, 1992] Quinlan, R., Learning with Continuous Classes, Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence, pp. 343-348. World Scientific,
Singapore, 1992.

[Quinlan, 1993] Quinlan, R., C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Francisco, 1993.

[Rabiner & Juang, 1986] Rabiner, L. and Juang, B., An Introduction to Hidden Markov
Models, IEEE ASSP Magazine, pp. 4-15 , January 1986.

 113

[Rabiner, 1989] Rabiner, L., A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of IEEE, Vol. 77, Number 2, February
1989.
[Rissanen, 1978] Rissanen, J., Modeling by shortest data description. Automatica, vol.
14, pp. 465-471, 1978.

[Rousseeuw, 1984] Rousseeuw, P., Least Median Squares of Regression, Journal of
American Statistical Association, vol. 49, pp. 871-880, December 1984.

[Rumelhart et al., 1986] Rumelhart, D., Hinton, G. and Williams, R., Learning internal
representations by error propagation, Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, vol.I, pp. 318–362, MIT Press, 1986.

[Russell et al., 1995] Russell, S., Binder, J., Koller, D. and Kanazawa, K., Local Learning
in Probabilistic Networks with Hidden Variables, Proceedings of the 14th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1995.

[Schizas, 1991] Schizas, C., Michaelides, S., Pattichis, C. and Livesay, R., Artificial
neural networks in forecasting minimum temperature, Second International Conference
on Artificial Neural Networks, pp. 112 -114, November 1991.

[Todey et. al., 2002] Todey, D., Herzmann, D., Gallus, Jr. W., and Temeyer, B., An
intercomparison of RWIS data with AWOS and ASOS observations in the state of Iowa,
The Third Symposium on Environmental Applications:Facilitating the Use of
Environmental Information, American Meteorological Society, January, 2002.

[Viterbi, 1967] Viterbi, A., Error bounds for convolutional codes and asymptotically
optimum decoding algorithm, IEEE Transactions on Information Theory, vol. IT-13, no.
2, pp. 260–269, April 1967.

[Wang & Witten, 1997] Wang, Y. and Witten, I., Inducing Model Trees for Continuous
Classes, In Poster Papers of the Ninth European Conference on Machine Learning, pp.
128-137, Prague, Czech Republic, April, 1997.

[Witten & Frank, 2005] Witten, I. and Frank, E., Data Mining: Practical machine
learning tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[Zhang, 2004] Zhang, Y., Prediction of Financial Time Series with Hidden Markov
Models, Masters Thesis, Simon Fraser University, 2004.

 114

Appendix A

RWIS and AWOS Site Locations

Table A.1: Latitude and longitude coordinates for RWIS sites in Minnesota.

SITE
ID LON LAT

SITE
ID LON LAT

SITE
ID LON LAT

1 -92.354 43.508 28 -96.320 44.270 56 -95.731 48.434
3 -93.292 44.478 29 -92.708 44.022 57 -97.202 48.971
4 -92.993 45.643 30 -96.435 44.459 58 -96.732 47.296
5 -92.839 46.213 31 -94.995 44.545 59 -96.442 44.936
6 -96.378 43.608 32 -94.414 44.543 60 -96.917 47.881
7 -95.770 43.637 33 -95.614 44.692 61 -94.480 47.371
8 -95.119 43.639 34 -94.021 45.616 62 -96.111 46.877
9 -94.122 43.663 35 -94.104 46.144 63 -95.054 46.413
10 -92.681 43.727 36 -96.494 45.558 64 -94.233 45.767
11 -92.205 43.956 37 -95.562 45.488 65 -91.885 43.515
12 -91.544 43.912 38 -95.597 44.057 66 -92.488 47.211
13 -96.668 46.847 40 -91.437 43.719 67 -92.970 48.294
14 -96.291 46.491 41 -94.127 47.604 68 -96.001 47.770
15 -95.366 45.838 42 -92.858 44.409 69 -91.990 44.285
16 -94.931 45.713 43 -94.932 45.432 70 -92.482 43.902
17 -94.026 45.395 44 -95.934 47.274 71 -95.120 44.084
18 -94.432 47.874 45 -94.368 44.076 72 -93.878 48.135
19 -92.048 47.854 47 -92.698 44.601 73 -94.034 44.154
20 -93.954 46.688 48 -89.685 47.976 74 -93.963 44.366
21 -95.410 44.949 49 -94.723 46.912 75 -93.843 44.572
22 -93.986 44.906 50 -93.262 46.340 76 -93.664 45.876
23 -92.676 45.385 51 -93.274 46.978 77 -92.948 45.985
24 -96.915 48.572 52 -93.485 47.840 78 -95.051 48.789
25 -95.961 48.820 53 -94.554 48.207 79 -93.625 44.544
26 -94.067 48.628 54 -96.494 46.043
27 -93.373 48.602 55 -95.602 46.404

SITEID: Site number for a location with RWIS senor

LON: Longitude

LAT: Latitude

 115

Table A.2: Latitude and Longitude coordinates for AWOS sites in Minnesota.

SITE LON LAT SITE LON LAT SITE LON LAT
K8D3 -97.006 45.672 KFFM -96.157 46.284 KMVE -95.71 44.969
KACQ -93.555 44.077 KFGN -94.901 49.321 KMWM -95.109 43.913
KADC -95.211 46.45 KFKA -92.189 43.683 KMZH -92.805 46.419
KAEL -93.367 43.682 KFOZ -93.65 47.783 KOEO -92.694 45.314
KAIT -93.677 46.548 KFRM -94.416 43.644 KONA -91.708 44.077
KANE -93.211 45.145 KFSD -96.747 43.592 KORB -92.856 48.016
KAQP -96.004 45.228 KFSE -95.773 47.593 KOTG -95.579 43.655
KATY -97.158 44.922 KGDB -95.561 44.756 KOVL -95.033 44.779
KAUM -92.933 43.665 KGFK -97.183 47.95 KOWA -93.261 44.123
KAXN -95.395 45.866 KGHW -95.32 45.644 KPKD -95.073 46.901
KBBB -95.651 45.332 KGNA -90.341 47.751 KPNM -93.608 45.56
KBDE -94.612 48.728 KGPZ -93.51 47.211 KPQN -96.3 43.983
KBFW -91.416 47.249 KGYL -94.081 44.76 KPWC -94.382 46.725
KBJI -94.934 47.509 KGYL -94.092 44.761 KRGK -92.485 44.589
KBKX -96.817 44.308 KHCD -94.382 44.859 KROS -92.953 45.698
KBRD -94.137 46.398 KHCO -96.943 48.753 KROX -95.697 48.856
KCBG -93.265 45.56 KHIB -92.839 47.387 KRPD -91.778 45.419
KCDD -92.481 48.271 KHYR -91.453 46.031 KRRT -95.348 48.941
KCFE -93.85 45.164 KHZX -93.317 46.619 KRST -92.499 43.907
KCHU -91.504 43.596 KILL -95.089 45.116 KRWF -95.082 44.547
KCKC -90.383 47.838 KINL -93.403 48.566 KSAZ -94.807 46.381
KCKN -96.622 47.842 KJKJ -96.663 46.839 KSBU -94.093 43.595
KCOQ -92.506 46.7 KJMR -93.272 45.886 KSGS -93.033 44.857
KCQM -92.689 47.822 KJYG -94.558 43.986 KSTC -94.06 45.547
KDLH -92.194 46.842 KLJF -94.507 45.097 KSTP -93.06 44.934
KDTL -95.886 46.825 KLSE -91.261 43.886 KSUW -92.103 46.694
KDXX -96.178 44.986 KLVN -93.228 44.628 KTKC -95.611 44.258
KDYT -92.043 46.722 KLXL -94.347 45.949 KTOB -92.832 44.018
KEAU -91.486 44.875 KMGG -93.986 45.236 KTVF -96.183 48.066
KELO -91.831 47.825 KMIC -93.354 45.062 KTWM -91.745 47.049
KETH -96.544 45.78 KMJQ -94.987 43.65 KULM -94.502 44.32
KEVM -92.498 47.425 KMKT -93.919 44.222 KVVV -96.424 45.306
KFAR -96.825 46.922 KMML -95.822 44.45 KVWU -94.517 48.154
KFBL -93.311 44.325 KMOX -95.968 45.567 KXVG -94.204 46.99
FCM -93.457 44.827 KMSP -93.217 44.881

SITE: Airport code where the AWOS unit is located

LON: Longitude

LAT: Latitude

 116

Appendix B

Using WEKA

WEKA is written in Java and is organized into packages arranged in a hierarchical

manner. Details of the packages and the hierarchy are given by Witten & Frank [2005].

WEKA can be run using its graphical user interface or through entering textual

commands in the command prompt. The general structure of the WEKA textual

command, to perform multiple 10-fold cross-validations on a dataset using an algorithm

(classifier) is

java -mx1024M -cp classpath callClassifier classifier_path

classifier_options -t trainset.arff -x 10 -s seed_value -c

attribute_index

where -cp specifies the path (i.e., the class path) where WEKA is located, callClassifier3

is a java class that is used to output the complete class probability without which WEKA

outputs an evaluative result of the algorithm, classifier_path is the location of the

algorithm in the WEKA package hierarchy, classifier_options specifies the options taken

by an algorithm, -t specifies the training file, -x specifies the number of folds for cross-

validation, -s is used to indicated the seed value when a multiple n-fold cross-validations

need to be preformed, -c specifies the output attributes position in the dataset provided.

The -T option is used when a test file is used for evaluating the model, when not used a

cross validation is preformed on the training set provided.

WEKA requires the data in the train/test file to be in ARFF format. The general format of

an ARFF file is given in Table B1. The string @relation is used to mention the name of

the dataset, @attribute is used to define the attributes name and type and @data is used to

3. http://alex.seewald.at/WEKA/callClassifier.java

 117

Table B.1: Format of an ARFF file.

@relation Predict_Temp_Year2002

@attribute temperature_site1 real

@attribute temperature_site2 real

@attribute precipitation (yes, no)

% used for comments

@data

23,22,yes

12,23,no

23,32,no

.............

indicate the start of the data, which is in a comma-separated form.

Following are the classifier_path for the machine learning algorithms that were used in

this thesis along with their default options (classifier_options)

Linear Regression

weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8

where -S specifies the attribute selection methods with 0 representing the M5 method,

and -R specifies the value of the ridge parameter.

Least Median Square

weka.classifiers.functions.LeastMedSq –S 4 –G 0

where -S specifies the size of random samples used to generate the least squared

regression function, and -G specifies the seed value used to select subsets of the training

data.

 118

M5Prime

weka.classifiers.trees.M5P –M 4.0

where -M specifies the minimum number of instances.

Multilayer Perceptron

weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M

0.2 -N 500 -V 0 -S 0 -E 20 -H a

where -L specifies the learning rate, -M specifies the momentum, -N specifies the number

of training epochs, -V specifies validation set size, -S specifies the seed value taken by the

random number generator (random values are used for initialization of weights), -E

specifies the validation threshold, and -H specifies the number of hidden layers with its

value 'a' representing (num_attributes+num_classes)/2 layers.

RBF Network

weka.classifiers.functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -

M -1 -W 0.1

where -B specifies the number of clusters generated by K-means, -S specifies the value of

the seed passed on to the K-means, -R specifies the value of the ridge parameter, -M

specifies the number of iterations to be performed by logistic regression, and -W

specifies the minimum standard deviation for the clusters.

Conjunctive Rule

weka.classifiers.rules.ConjunctiveRule -N 3 -M 2.0 -P -1

-S 1

where -N specifies the amount of data used for pruning, -M specifies the minimum total

weight of the instances in a rule, -P specifies the minimum number of antecedents

allowed in a rule when pre-pruning is used, and -S specifies the seed value used.

 119

J48

weka.classifiers.trees.J48 -C 0.25 -M 2

where -C specifies the confidence factor, and -M specifies the minimum number of

instances taken by a leaf

Naive Bayes

weka.classifiers.bayes.NaiveBayes

Bayes Net

weka.classifiers.bayes.BayesNet -D

-Q weka.classifiers.bayes.net.search.local.K2 -- -P 1

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -

A 0.5

-D is used to prevent memory problems with ADTree is used, -Q specifies the search

algorithm, and -E specifies the estimator used for finding the CPTs. K2 search algorithm

is given by weka.classifiers.bayes.net.search.local.K2 with its option -P specifying the

maximum number of parents taken by a node in the Bayesian network. The estimator

used for filling up the CPTs is weka.classifiers.bayes.net.estimate.SimpleEstimator, with

its option -A specifying the alpha value of the estimator.

 120

Appendix C

Detailed Results

Table C.1: Results obtained from using regression algorithms to predict

temperature at an RWIS site (Experiment 1). Feature vector consists of temperature

information from RWIS-AWIS sites in a set along with temperature offset for the

RWIS sites. The table has mean absolute error values averaged over ten 10-fold

cross-validations.
 ML Algorithms

 RWIS Site LMS LR M5P RBF CR MLP

Set 1 19 0.908 0.960 0.936 9.521 11.150 1.059
 27 1.217 0.896 0.873 9.465 10.199 1.058
 67 1.069 0.918 0.885 10.062 11.596 1.108

Set 2 14 0.659 0.795 0.751 8.478 10.605 0.789
 20 0.743 0.820 0.776 9.417 10.821 1.001
 35 0.553 0.977 0.864 9.523 10.817 1.051
 49 0.916 0.913 0.898 9.579 11.017 1.074
 62 0.800 0.779 0.769 9.383 11.040 0.892

Set 3 25 0.984 1.062 0.889 10.386 11.957 1.097
 56 0.925 0.913 0.807 10.510 11.512 1.133
 60 0.889 0.867 0.833 9.675 11.078 1.002
 68 0.958 1.015 0.901 9.017 10.439 1.235

 78 0.929 0.875 0.809 8.945 10.449 1.012

Mean of Abs. Errors
(ºF) 0.888 0.907 0.845 9.535 10.975 1.039

StdDev of Abs. Errors 0.171 0.083 0.058 0.559 0.503 0.110

StdDev refers to Standard Deviation

 121

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

19 27 67 14 20 35 49 62 25 56 60 68 78

RWIS Site

M
ea

n
Ab

so
lu

te
 E

rr
or

 (º
F)

LMS
LR
M5P
MLP

Figure C.1: Mean absolute errors for different RWIS sites obtained from predicting

temperature using regression algorithms.

 122

Table C.2: Results obtained from using regression algorithms to predict

temperature at an RWIS site (Experiment 2). Feature vector consists of temperature

information from RWIS-AWIS sites in a set along with precipitation type for the

RWIS sites. The table has mean absolute error values averaged over ten 10-fold

cross-validations.
 ML Algorithms
 RWIS Site LMS LR M5P

Set 1 19 1.023 1.115 1.001

27 0.935 0.959 0.931

67 1.001 1.006 0.984

Set 2 14 0.726 0.788 0.771

20 0.862 0.872 0.827

35 1.052 1.062 0.938

49 1.051 1.014 1.022

62 0.848 0.827 0.815

Set 3 25 1.217 1.222 1.004

56 1.084 1.077 0.992

60 1.007 0.981 0.924

68 1.046 1.154 0.973
 78 0.876 0.891 0.856

Mean of Abs Errors (ºF) 0.979 0.997 0.926

StdDev of Abs Errors 0.127 0.130 0.083

 StdDev refers to standard deviation

 123

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

19 27 67 14 20 35 49 62 25 56 60 68 78

RWIS Site

M
ea

n
Ab

so
lu

te
 E

rr
or

 (º
F)

LMS
LR
M5P

Figure C.2: Mean absolute errors for different RWIS sites obtained from predicting

temperature using regression algorithms, with precipitation type information added

to the feature vector.

 124

Table C.3: Results obtained from using classification algorithms to predict

precipitation type at an RWIS site (Experiment 4). Feature vector consists of

temperature information from RWIS-AWIS sites in a set along with precipitation

type for the RWIS sites. The table has classification error values, as reported by

WEKA, averaged over ten 10-fold cross-validations.

 ML Algorithms

 RWIS Site J48 NB Bayes Net

Set 1 19 0.064 0.325 0.346
 27 0.256 0.420 0.363
 67 0.356 0.472 0.414

Set 2 14 0.213 0.384 0.330
 20 0.265 0.450 0.379
 35 0.077 0.312 0.337
 49 0.062 0.328 0.328
 62 0.061 0.312 0.341

Set 3 25 0.068 0.342 0.342
 56 0.072 0.345 0.333
 60 0.095 0.317 0.323

 68 0.061 0.253 0.315
 78 0.065 0.318 0.231

Mean of Classification
Errors 0.132 0.352 0.337

StdDev of
Classification Errors 0.102 0.062 0.041

 StdDev refers to Standard Deviation

 125

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500

19 27 67 14 20 35 49 62 25 56 60 68 78

RWIS Sites

Cl
as

si
fic

at
io

n
E

rr
or

 (%
)

J48 NB Bayes Net

Figure C.3: Classification errors for different RWIS sites obtained from predicting

precipitation using classification algorithms.

 126

Table C.4: Percentage of instances predicted correctly using classification

algorithms (Experiment 4)
 Actual Data J48

RWIS
Site NP P NP->NPP P->PP P->NPP NP->PP

19 86.43 13.57 81.99 5.59 4.44 7.98

27 76.29 23.71 68.78 13.31 7.51 10.40

67 63.65 36.35 50.74 18.55 12.91 17.79

25 84.92 15.08 80.49 6.61 4.43 8.47

56 86.09 13.91 81.31 4.73 4.78 9.18

60 79.59 20.41 71.95 8.82 7.63 11.59

68 87.74 12.26 85.31 5.29 2.43 6.97

78 83.33 16.67 78.30 9.46 5.03 7.21

14 78.48 21.52 73.66 10.33 4.82 11.19

20 70.49 29.51 60.79 15.77 9.70 13.74

35 84.15 15.85 78.15 6.22 6.00 9.63

49 86.41 13.59 82.47 5.90 3.94 7.69

62 85.87 14.13 82.03 6.99 3.84 7.13

Average 81.02 18.98 75.06 9.05 5.96 9.92

Std Dev 7.23 7.23 9.97 4.36 2.84 3.12

[table continued on the next page]

Std Dev: Standard Deviation

NP: No precipitation reported

P: Precipitation reported

NP->NPP: No precipitation predicted when No precipitation was reported

P->PP: Precipitation predicted when precipitation was reported

P->NPP: No precipitation predicted when precipitation was reported

NP->P: Precipitation predicted when precipitation was reported

 127

Table C.4: Percentage of instances predicted correctly using classification

algorithms (Experiment 4) [table continued from previous page]

 Naive Bayes Bayes Nets

RWIS
Site NP->NPP P->PP P->NPP NP->PP NP->NPP P->PP P->NPP NP->PP

19 7.88 13.11 78.55 0.46 1.81 13.48 84.62 0.09

27 43.72 14.14 32.57 9.57 52.02 11.92 24.27 11.79

67 27.66 12.55 35.99 23.80 40.62 18.89 23.03 17.46

25 2.53 14.92 82.38 0.16 2.29 15.02 82.63 0.07

56 2.99 13.78 83.10 0.13 4.63 13.75 81.46 0.16

60 3.33 19.95 76.26 0.46 1.17 20.32 78.41 0.09

68 28.22 10.78 59.52 1.48 13.82 11.43 73.90 0.86

78 13.18 15.68 70.15 0.99 35.23 13.41 48.10 3.26

14 49.44 12.06 29.04 9.46 57.24 9.69 21.24 11.83

20 35.03 19.88 35.45 9.63 45.98 16.11 24.50 13.40

35 9.00 14.79 75.15 1.06 2.44 15.65 81.71 0.20

49 7.44 13.20 78.97 0.39 6.81 13.41 79.60 0.18

62 10.29 13.36 75.58 0.76 2.28 13.97 83.60 0.16

Average 18.55 14.47 62.47 4.51 20.56 14.39 60.46 4.60

Std Dev 16.31 2.73 21.19 6.98 22.01 2.90 27.49 6.47

 128

Table C.5: Results obtained from using regression algorithms to predict visibility at

an RWIS site (Experiment 5). Feature vector consists of temperature information

from RWIS-AWIS sites in a set along with precipitation type and visibility for the

RWIS sites. The table has mean absolute error values averaged over ten 10-fold

cross-validations.
 ML Algorithms
 RWIS Site LMS LR M5P MLP

Set 1 67 1.6519 1.7436 1.6584 1.8020

Set 2 35 0.0785 0.1204 0.1024 0.1838
 49 0.0491 0.0756 0.0613 0.0643
 62 0.0511 0.0785 0.0618 0.0716

Set 3 56 0.0456 0.0722 0.0573 0.0975
 68 0.0160 0.0296 0.0244 0.0478
 78 0.1791 0.2081 0.0845 0.1545

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

35 49 62 56 68 78

RWIS Site

M
ea

n
Ab

so
lu

te
 E

rr
or

 (m
ile

s)

LMS
LR
M5P
MLP

Figure C.4: Mean absolute errors for different RWIS sites obtained from predicting

visibility using regression algorithms.

 129

Table C.6: Percentage of instances with a certain distance between the actual and

predicted temperature class value, obtained by using HMM to predict temperature

class (Experiment 7).
 Set 1 Set 2
 19 27 67 14 20 35 49 62

Distance 0 18.48% 16.18% 19.30% 21.94% 27.37% 22.86% 18.55% 22.37%

1 68.31% 28.67% 67.63% 73.11% 59.03% 65.06% 60.16% 70.88%

2 12.08% 49.85% 12.19% 4.83% 12.24% 11.09% 16.17% 4.38%

3 1.09% 4.59% 0.88% 0.11% 1.32% 0.95% 3.57% 1.15%

4 0.04% 0.71% 0.00% 0.00% 0.04% 0.04% 1.12% 0.53%

5 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.35% 0.67%

6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00%

7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%

 Set 3

 25 56 60 68 78

Distance 0 42.65% 44.42% 39.60% 20.11% 39.69%

1 52.82% 49.00% 53.09% 27.20% 39.26%

2 4.33% 6.14% 6.96% 18.24% 16.86%

3 0.20% 0.42% 0.35% 8.36% 1.99%

4 0.01% 0.02% 0.00% 14.59% 0.51%

5 0.00% 0.00% 0.00% 7.17% 1.20%

6 0.00% 0.00% 0.00% 3.83% 0.49%

7 0.00% 0.00% 0.00% 0.46% 0.00%

8 0.00% 0.00% 0.00% 0.02% 0.00%

 130

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 1 2 3 4 5 6 7 8
Distance |actual-predicted|

P
er

ce
nt

ag
e

of
 In

st
an

ce
s

19 27 67 14 20 35 49 62 25 56 60 68 78

Figure C.5: Percentage of instances with a certain distance between the actual and

predicted temperature class value, obtained by using HMM to predict temperature

class

 131

Table C.7: Percentage of instances with a certain distance between the actual and

predicted temperature class value, obtained by using extended dataset focusing on

predicting value for an RWIS set rather than for an RWIS site, and applying ten 10-

fold cross validations using HMM to predict temperature class (Experiment 8).
 Set 1 Set 2 Set 3

Distance 0 17.03% 19.29% 34.54%

 1 59.30% 67.05% 47.84%

 2 20.16% 11.40% 12.89%

 3 3.27% 1.97% 2.61%

 4 0.24% 0.17% 0.95%

 5 0.00% 0.13% 0.83%

 6 0.00% 0.00% 0.29%

 7 0.00% 0.00% 0.05%

Set 1: RWIS Sites 19, 27 and 67 Set 2: RWIS Sites 14, 20, 35, 49, 62

Set 3: RWIS Sites 25, 56, 60, 68, 78

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

0 1 2 3 4 5 6 7

Distance |actuial - predicted|

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

Set 1
Set 2

Set 3

Figure C.6: Percentage of instances with a certain distance between the actual and

predicted temperature class value, obtained by using HMM to predict temperature

class with training done using the extended dataset.

 132

Table C.8: Results obtained from predicting precipitation type using HMM

(Experiment 9).

RWIS

Site

% of instance
with no

precipitation
reported in data

% of instance
with

precipitation
reported in

data

% of instances
where no

precipitation is
predicted
correctly

% of instances
where

precipitation is
predicted correctly

Set 1 19 85.71 14.28 55.22 4.79

 27 77.23 22.77 13.33 18.72

 67 67.3 32.69 5.36 28.35

Set 2 14 74.61 24.38 27.22 18.08

 20 72.74 27.25 16.96 21.43

 35 83.58 16.41 71.19 6.85

 49 84.66 15.33 71.24 7.34

Set 3 62 85.82 14.17 80.8 6.38

 25 83.1 16.9 73.4 7.7

 56 85.25 14.74 74.25 4.27

 60 78 20 53.64 9.39

 68 86.41 13.59 73.69 5.15

 78 83.89 16.11 55.91 7.73

 133

