Acknowledgments

Firstly, I would like to thank my advisor, Dr. Rich Maclin, for all his help and guidance
that he has given me over the past two years. I would like to express my gratitude to the
members of my examination committee, Dr. Doug Dunham and Dr. Harlan Stech. I would
also like to thank the CS faculty for providing me support during these two years of my
graduate study.

Finally, I would like to thank all my fellow graduate students for making my stay in Duluth
that much more pleasurable. The warmth that everyone has shown has made up for all the
winter days in Duluth.

Reinforcement Learning in a Multi-agent Environment

Abstract

Reinforcement Learning (RL) is a form of Temporal Difference Learning for situations in-
volving agents exploring domains. This technique provides rewards or punishments to the
learning agents. Most of the work in this Machine Learning field has been done on single-
agent environments. This work addresses some of the issues involved in applying RL to an
environment with competing agents. The environment is a simulated air combat game. A
specific type of RL called Q-learning is employed. A collection of agents are built and their
behavior studied. Their ability to learn is evaluated by comparing their performances.

ii

Contents
1 Introduction

2 Background

2.1 Reinforcement Learning oo,
2.2 Artificial Neural Networks
2.3 Planning in multi-agent environments,
2.3.1 Statesand Actionso o
2.3.2 Planso e
2.3.3 Multi-agent domains Lo oL
Experimental Setup
3.1 Description of the game
3.2 Objective e e e e e e e e
3.3 The Maneuvers L
3.4 Levelsofexpertise Lo e
3.5 Page 223
3.6 Implementation L
3.7 State Representation e
3.8 Deadlock Avoidance Lo e
3.9 Description of the pre-programmed agent
3.10 Choice of Action e e
Experiments
4.1 Methodology e e e e e
4.2 Preliminary Results oo
42.1 Learning Agent (Q-table) vs Random Agent
4.2.2 Learning Agent (Q-table) vs Programmed Agent
4.2.3 Learning Agent (NN) vs Random Agent
4.2.4 Learning Agent (NN) vs Programmed Agent
4.3 Preliminary Cross Testing
4.3.1 Learning Agent (Q-table) vs Random Opponent
4.3.2 Learning Agent (NN) vs Random Opponent
4.3.3 Summary e e e e e e e e e e e
4.4 Advanced Results L
441 Methodologyo
4.4.2 Learning Agent (Q-table) vs Learning Agent (Q-table)
4.4.3 Learning Agent (NN) vs Learning Agent (NN)

iii

12
16
17
18
19

22
22
24
24
25
29
30
31
31
32
33

444 CrossTesting o e
4.5 Summary e e e e e e e e e e

5 Limitations and Future Work

6 Conclusions

v

List of Figures

o BN B R A R

= e e s e e e O
N OO W N = O

18
19
20
21
22
23
24

25

A formal model of a learning environment
An example of a RL problem
An example of an update to a Q-value of a state-action pair
A Neural network implementation of a Q-function
A perceptron: a simple two-layered neural network
A 3-layered feed-forward neural network
A formal model of the experimental environment
Example pages from the game L o oL
The set of maneuvers that can be performed by any player
Starting pages for an example sequence of moves
Ending pages for an example sequence of moves
States representing sequence of moves Lo
Graphs for Learning Agent (Q-table) vs Random Agent
Graphs for Learning Agent (Q-table) vs Programmed Agent
Graphs for Learning Agent (Q-table) vs Programmed Agent
Graphs for Learning Agent (NN) vs Programmed Agent
Graphs for Learning Agent (Q-table) trained against a programmed agent,
tested against a Random Agent L.
Graphs for Learning Agent (Q-table) vs Learning Agent (Q-table)
Graphs for Learning Agent (Q-table) vs Learning Agent (Q-table)
Graphs for Learning Agent (Q-table) vs Learning Agent (Q-table)
Graphs for Learning Agent (NN) vs Learning Agent (NN)
Graphs for Learning Agent (NN) vs Learning Agent (NN)

Graphs for Learning Agent (NN) vs Learning Agent (NN)
Graphs for Learning Agent (Q-table) vs Learning Agent (Q-table) Tested
against programmed opponent Lo oL
Graphs for Learning Agent (NN) vs Learning Agent (NN) Tested against
programmed OPPONENt i i i e e e e

47
51
53
55
o7
59
61

63

List of Tables

0~ S O W N

— = == ©
w N = O

14

15
16
17
18
19
20
21
22

23

The steps followed in a Q-learning algorithm 9
Backpropagation algorithm in a 3-layered neural network 16
Information provided ineach page 23
Sequence of playo 26
Table giving the moves for both players 27
Starting Page 30
General methodology for experiments 35
Learning Agent (Q-table) vs Random Agent 37
Learning Agent (Q-table) vs Programmed Agent 39
Learning Agent (Q-table) vs Programmed Agent 41
Learning Agent (NN) vs Random Agent 42
Learning Agent (NN) vs Programmed Agent 44
Learning Agent (Q-table) trained against Programmed Agent, tested against

Random player e 46
Learning Agent (NN) trained against Programmed opponent, tested against

Random Agent 48
General methodology for advanced experiments 49
Learning Agent (Q-table) vs Learning Agent (Q-table) 51
Learning Agent (Q-table) vs Learning Agent (Q-table) 53
Learning Agent (Q-table) vs Learning Agent (Q-table) 55
Learning Agent (NN) vs Learning Agent (NN) 57
Learning Agent (NN) vs Learning Agent (NN) 58
Learning Agent (NN) vs Learning Agent (NN) 60
Learning Agent (Q-table) vs Learning Agent (Q-table) Tested against pro-

grammed opponent L Lol e e 62
Learning Agent (NN) vs Learning Agent (NN) Tested against programmed

opponent e e e e 66

vi

1 Introduction

Machine Learning (ML) is an active field of research. It is playing an increasingly central
role in computer science and computer technology. ML is a multi-disciplinary field, drawing
results from artificial intelligence, statistics, neurobiology and others. A computer program
is said to learn from experience with respect to some class of tasks and a performance mea-

sure if its performance improves with experience.

One popular ML technique for creating intelligent autonomous agents is to let them ex-
plore the environment and provide them with reinforcement signals. While this approach
has worked well for some tasks such as learning to play backgammon, it suffers several
limitations. One limitation is that this type of learning, Reinforcement Learning (RL), is
not applicable to multi-agent environments. This is an important issue since real world

applications which involve robots that learn usually have multiple interacting agents.

Agents in a multi-agent system may be competitive or cooperative in nature or a mixture
of both. For example, consider a situation where two robots are working together to move
blocks in a room. Such a system would be considered cooperative, as both robots are
working towards a common goal. On the other hand, consider two agents trying to play
backgammon. In this case, each agent is trying to beat his opponent and is considered to be
competitive. In more complex environments, the agents may be both competitive as well as
cooperative. Consider trying to build two teams to play soccer. Both teams are learning,
and each agent is learning to interact constructively with its team member, at the same

time competing against the members of the other team.

In addition to the above, the agents might be either learning or pre-programmed agents. A

pre-programmed! agent has a built-in strategy for choosing actions. It has no capability to

'In this thesis, the word programmed and pre-programmed are used interchangeably

learn or generalize on its experience. Typically, an agent which has a specific set of moves
for each state is considered pre-programmed. The set of moves do not change and are not

dependent on time.

In this work, I propose to address some of the issues that are concerned with applying RL
to an environment with competing agents. Since RL is best suited for robot learning, I
have performed various tests on game-playing agents. The game itself is based on Ace of
Aces, a simple air combat game with two opposing players, whose aims are to shoot their
respective opponents out of the sky. The game consists of a finite set of states (describing
the players position and his opponents’ position) with each player having a set of actions
(turns, rolls, etc.) to choose from, depending on the state he finds himself in. The game

has a set of rules that determine how the actions affect the state.

In this thesis, I have confined myself to a particular type of RL [Sutton,1988] called Q-
learning [Watkins,1989]. In RL, the task of the agent is to learn a policy (usually a mapping
from every state in the set of states of the world to some action in the set of actions available
to the agent) that indicates the “best” action to take in each state. In Q-learning, this pol-
icy is implemented as an action-choosing module that employs a utility function that maps
states and actions to a numeric value indicating the value (utility) of taking that action in

that state.

The policy of the RL agent is a form of reactive plan. After learning the policy, the agent
is able to take the best action using the policy function. This training makes the RL agent
more responsive than an agent employing traditional planning methods. The agent is able
to adapt to changing environments since the agent makes decisions about future actions

and can adjust its actions if the environment changes.

In this work, I have built a collection of agents, pitting them against each other. In my pre-

liminary set of experiments, I train an RL agent against a random opponent, and another
against a programmed opponent (one that picks an action from a specific set of moves)
This was mainly to determine how well the learning task is handled by the reinforcement

learner.

I have built two sets of such agents, each differing in their representation of the utility
function. In one, I used a standard Q-table (which is a matrix of numbers, one for each
state-action pair) and in the other, I used a connectionist [Anderson,1987, Barto et.al.,1983]
representation of the utility function (which is a neural network, with the current state of
the world as the input and the output of the network is the utility value for each action.)

Regarding the above, I make the following claim:

Claim: The learning task is tackled by both agents quite well, though their approaches and

speed of learning are quite different

In this thesis, I show that the above claim is justified, by training and testing both agents

against specific opponents.

One problem with learning in game theory is that an agent learns against a specific op-
ponent, and its performance against other opponents is not always satisfactory. (A more
severe limitation, which is a common problem to Al, is that these agents are highly domain
dependent, which means that agents trained for a specific problem cannot solve another
task of a different nature). In this thesis, I shall explore this issue of generalization and
study how an agent trained against one type of opponent performs against another type of

opponent.

Claim: While both learning agents do have capability to generalize, the connectionist agents
are likely to outperform the standard Q-table implementation, for the above-mentioned sim-

ple cases.

I show that the above claim is justified by training both learning agents against a pro-
grammed opponent and by testing them against random players. The claim is such that
while both agents beat the random opponent, a comparative study shows that the connec-

tionist model does better.

Multi-agent tasks are generally very complex. One limitation of RL is that each agent must
explore the environment sufficiently in order to achieve good performance. This amount of
exploration grows, usually exponentially, with the number of possible states of the world. In
multi-agent tasks, the number of states of the world increases due to the presence of other
agents. In this thesis, this limitation is effectively removed because of the finite nature of

the game.

Another difficulty associated with multi-agent environments is that each of the agents might
be learning. Thus for each agent, the behavior of the environment may be dependent on
time. In single-agent domains, the world is assumed to be relatively constant over time.
This evolving nature of the task raises a number of problems. In the case of cooperating
agents, communication between agents may have to be carried out to achieve the final goal.
The nature of such communication may be to update other agents regarding the change
in the strategy of one particular agent. However, communication? is not an aspect of this

work, since there are no cooperating agents.

Another problem raised by the evolving nature of agents, is that of unlearning what was
already learned. This is because the opponent’s behavior may change, invalidating previous
experiences. In the second set of experiments that I carried out, I have addressed this key
issue. In these experiments, I have one agent learning against another learning agent. As

before, I have carried out variations on this idea of co-evolution by using different represen-

2The game has an advanced version which is based on a team of players competing against another, and
communication between team members may have to be addressed in future work

tations of the utility function. Again, I have performed tests to study the generalization

capability of such learners.

Claim: The connectionist model responds to co-evolution much better than the Q-table im-

plementation.

For the above claim, a set of different strategies for choosing actions are defined and used to
measure performance. This is to overcome a limitation that arises due to the finite nature
of the game. Since these strategies aim at introducing more randomness, the claim can be

justified by comparing the performances of both agents using the above strategies.

A major difficulty associated with RL in multi-agent domains is that of distributing credit
for goals that are achieved by agents in a group. There are two simple approaches for this
problem: in one, the agent performing the final action is given the credit, and in the other,
credit is distributed to everyone in the group. In this thesis, since there are only two agents
involved I have chosen to assign credit to both agents, depending on which agent is being
shot at. There is an added reinforcement for achieving the final goal (i.e., to shoot the

opponent completely out of the sky).

In the following section, I discuss reinforcement learning, artificial neural networks and is-
sues involving planning in more detail. Section 3 presents the rules of the game used in
performing the experiments, along with explanations and illustrations. Section 4 starts with
the approaches and methodology employed in this thesis, and finishes with a collection of
results and analysis of the experiments. In the last two sections, I describe research related

to this thesis and the final conclusions and discussions.

2 Background

In this chapter I provide background material for my work. In the first section, I give an
introduction to Reinforcement Learning. This machine learning technique, particularly the
Q-learning algorithm, has been shown to work well for a class of robot-learning problems.
In the second section I give a brief outline on neural networks. Finally, I present some issues

on planning that relate to my work.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a form of Temporal Difference learning [Sutton,1988] for sit-
uations involving agents exploring domains. In the classical RL setting, the agent or learner
perceives the state of the world, performs an action from a set of available actions, changing
the state. During this process the agent receives rewards and punishments depending on

the action chosen. RL techniques have been used in a number of early Al systems such as

Ervironrmert

The sensory system
T I

chosenn perceived pesceived
action revsrard state

I J J
The decision systern

—_—— e e = =

Figure 1: A formal model of a learning environment: the agent receives a
description of the environment, selects an action that changes the environment
and then receives reinforcements based on the action.

Feinforcement Sionals Possible One Optinal Policy

Leotions

0 10 |!

_.} _.}

—
! - G T l GD
A ;
Q 0 10
- D—-} -1 -t
0 0

Figure 2: An example of a RL problem: On the left is the figure representing
the possible states of the world, the actions the agent may take to move around
in the environment and the reinforcement signals. On the right is the figure
giving one optimal policy function for the problem. The optimal policy function
should achieve the maximum discounted future reward.

Samuel’s [1959] checker playing program and Holland’s [1986] bucket-brigade algorithm.

Figure 1 gives a formal description of a reactive learning agent with a decision making
capability in a world that is represented as a set of states. Figure 2 shows an example of
an RL problem in which the world is a grid of squares, and the possible actions for each
state are shown along with the reward for each action. The states of the agent correspond
to the location of the agent in the grid, and actions are moves (as shown by the arrows)
corresponding to moving to adjacent squares in the grid or staying in a particular state.

The agent has to learn to reach the square marked G from any other square.

The agent’s task is to learn a policy that gives the best action available to the agent in
any given state. The agent explores the environment stochastically: the agent perceives the
world, picks an action stochastically based on its predicted values, and performs the chosen
action, changing the state of the world. The agent also receives rewards or punishments for

these actions, and tries to learn the “best” action possible for any given state.

In this work I have confined myself to Q-learning [Watkins,1989]. Below, I present a math-
ematical formulation of Q-learning, which uses the idea of a discounted cumulative reward.
The task of the agent is to learn a mapping for each s € S to some a € A, where S is the
set of distinct states in the environment and A is the set of actions available to the agent.

Such a mapping, w : § — A, is called a policy. A discounted cumulative reward function

defined as:

o0

V(st) =Y 7'resa

i=1

gives a cumulative reward value for following the policy 7 from any state s € S. The above
function tries to predict the discounted cumulative reward resulting from any action. In the
above definition, 74,1 is the reward obtained at the ¢ 4 1** time step, starting from state s
at time t and following the policy 7, where 0 < 7 < 1 is a constant discount factor. The
agent’s policy is to maximize the above function for all states s;. Such a policy is referred

to as an optimal policy and is denoted 7*.

The value of v is chosen to lie between 0 and 1. This is done mainly because setting
v = 0 would correspond to a situation where the future rewards are ignored, and setting
v = 1 would mean that solutions differing in length but leading to the same goal would be
considered equivalent. A value of v = 1 also makes the learning rule simple. By adjusting

the value of v we can assign higher values to policies that achieve rewards sooner.

In Q-learning, the policy is implemented using a utility function, @ : S x A — R, that gives
a numeric value in the real domain for each state-action pair. Therefore, the agent’s policy

at time t is given by,

m(s) =a 3 Qus,a) = max(Q(s,z)) Vz € A

1. Randomize the (J-values for every state-action pair
2. Observe the current state (Scyrr)

3. Choose an action (a) stochastically

4. Execute the action

5. Observe the new state and the reward (S, and 7)

6. Update the Q-value for the state-action pair (Scyrr, @) using the current state and utility
function to arrive at an estimate of the expected utility for taking action a in Sy, and
update the Q-value for (scyrr,a) using the updating rule.

7. Goto step 2

Table 1: The steps followed in a Q-learning algorithm

When correct, Q(s,a), quantifies all relevant information, not only about the state-action

pair, but also all future consequences of choosing the action a.

The steps of the Q-learning algorithm are given in Table 1. To learn the utility function,
the agents starts out with a randomized utility function and goes through steps 2-5 in the
algorithm. During learning, the actual decision making (step 3) is done stochastically, using
a probability distribution function that assigns higher weights for actions with higher Q-
values. The update to the utility function is done by comparing a predicted reward value to
an estimate of the true reward based on the actual reward obtained. The estimated utility

is given by,

N

Q(st,at) = ¢ + v x max{Q(s¢41,2),Vz € A}

where Q(s, a¢) is the current predicted utility value for a particular state s; and action a;.

This is then used to update the utility function using:

Q(st,a1) + Q(st,ar) + a x {Q(s1,a1) — Qs1,ar)}

where « is a learning rate parameter. A low value of a (e.g. 0.1) corresponds to slow
learning. The above is actually a general class of learning rules, which assumes r; is a one
time-step reward. A more complex rule can also be derived using an n-step reward function,
which would correspond to the reward being obtained after n time steps after the action
was performed. For large n, the agent waits for the future to unfold before updating the

Q-values. Watkins [1989] has shown, in the limit, this will converge to the optimal policy.

It is generally difficult to learn the target function accurately and most learning agents
only approximate the function that is being learned. In Q-learning, the task is similar to

function approximation problems, but differs in a few ways.

1. Temporal credit assignment [Sutton,1984] - the learning rule is based on reward values
provided over time and does not use (input,output) pairs as most function approxi-

mation tasks do. The agent has to determine which of the actions led to the reward.

2. Ezploration - in RL the agent controls the distribution of training examples by choos-
ing a sequence of actions. This means that the agent faces a trade-off between explo-
ration of unknown states (in an attempt to gather more information) and exploitation
of known ones (in an attempt to maximize the cumulative reward with whatever ex-

perience it has gained)

3. Partially observable states - the agent faces many practical limitations one of which
is that the actual state of the world may not be entirely observable. For example,
an agent trying to play soccer [Salustowicz,1998] has a ”limited vision” and would be

able to see only the soccer field in front.

10

Figure 3 illustrates the idea of Q-learning using the example world described earlier. As
before, the squares form a grid and an arrow represents a move from one square to the next.
The figure on the left gives the state the agent is currently in (marked by A), and some of
the intial estimated () values. The figure on the right shows the change in the () value after
the agent moved one step towards its right, obtaining a reward value of 0, and observing

its present state.

Several approaches to the implementation of the policy function have been studied. In this
thesis, I use both a standard Q-table and a connectionist neural network [Anderson,1987,
Barto et.al.,1983]. In the connectionist model, the input to the network is the current state
of the world, and the output of the network would be the utility value for each action. In
connectionist Q-learning, the learner may be able to represent the entire table with a much
smaller set of parameters. This would be helpful in situations where representing a complete

Q-function would be space intensive. However, a connectionist model is not guaranteed to

Before
Faossihle &ctions _I.) Lufter
7.2 10 3.0 10
- -t
A & G = C A G
Toa T“— € & 3
(5.1 151
P) -

Figure 3: An example of an update to a Q-value of a state-action pair based
on the initial state, action taken, reward observed and the resulting state. In
the figure on the left, the state of the robot A is shown along-with some initial
estimate of the Q-value. After ”moving-right” (figure on the right) the agent
updates the Q-value for that state-action pair, after receiving zero reward and
observing the new state. v is assumed to be 0.9

11

E:‘O Qs,a,)
Hidden% Qfs,a,)
Units

7= Ofsa.)

Input State

UL

Figure 4: A Neural network implementation of a Q-function: The input to the
network is a description of the state of the world and the output is the predicted
utility for each of the action

find the optimal policy function, because of the gradient nature of neural networks.

2.2 Artificial Neural Networks

Neural networks have been shown to perform very well in problems involving function
approximation, especially when the input data is highly complex with a lot of noise. The
backpropagation algorithm has been effective in solving problems including character recog-
nition [LeCun et. al.,1989], recognizing spoken words [Lang et.al.,1990] and in biological
systems [Maclin,1993]. Pomerleau [1993] has provided an example of a neural control sys-
tem, ALVINN, which uses an artificial neural network to steer an autonomous vehicle driving
at normal speeds on public highways. In this section, I outline a feed-forward neural net-

work and the backpropagation (BP) algorithm [Rumelhart et. al. 1986).

A neural network is a connectionist model inspired by the human nervous system. The
network is made up of neurons, which are the fundamental units of the system, and a ma-
trix depicting connections between the neurons. A real value, called the activation value, is

associated with each neuron.

Let N be the number of neurons in the system, and 1! € R, represent the activation value

12

of the i*® neuron at any instant ¢. Then,

o' = (95, Yiy)

is a vector representing the state of individual neurons of the network at any instant ¢. Also,
let w;; represent the interconnection value or weight of the link from neuron ¢ to j. Then

the network is defined as:

Nt =", T

where J¢ = {wjli,j = 1...N}. A layered network is one in which the neurons in one
layer are connected to neurons in another layer, but there are no interconnections within

the layer. A feed-forward network is one whose topology allows no cycles.

Figure 5 depicts a perceptron [Rosenblatt,1962], a 2-layered feed-forward neural network
with one output neuron. The activation values in the second layer are calculated using

an activation function on the weighted sum of the activation values of the neurons in the

Figure 5: A perceptron: a simple two-layered neural network, with one out-
put neuron. The activation of the output neuron is computed using v; =
S(Zk_gw;1;), where ; is the activation value of neuron i and w;; is the weight of
the link from neuron i to the output neuron. In this diagram, the perceptron
has 4 input neurons (k=3)

13

previous layer. In terms of a single neuron in the second layer we have:

k
P = SO wij x ;)

1=0

where k + 1 is the number of neurons in the first layer that are connected to neuron j.
One popular activation function S is the sigmoid (or squashing) function. The squashing

function given by:

1

Solt) = T

with ¢ = 1 being used in this thesis, which is also the most common value in the field of

research. The above is a family of functions and in lim,_,+ Sy (2) converges to the function

0 <0
f@= 1 z=0
1 2>0

The backpropagation (BP) [Rumelhart et. al. 1986] algorithm has been widely used in neu-
ral network research, mainly because it has produced good results experimentally. It em-
ploys a gradient descent learning on an energy function defined on a feed-forward layered

network system.

Consider the network of Figure 6. Such a network would typically be formulated to solve
a problem of function approximation. The second or middle layer in the network is often
called the hidden layer. It has been claimed that a network with one hidden layer, and suf-
ficient number of units, has the power to solve highly complex non-linear dynamic systems

and a network with a 2 hidden layer topology can solve most learning problems in the limit

14

Hidden Layer

Figure 6: A 3-layered feed-forward neural network

because it can memorize the data, provided the network is formulated accordingly.

The BP algorithm is formalized in Table 2. The algorithm is performed on a set of training
data (data sets for which the input-output vector pairs are known). After assuming an
initial weight matrix, the error between the network output for any input vector, and the
output vector (for that input vector in the training data) is measured and used to update

the weight matrix. This process is iterated a number of times (chosen empirically).

In the connectionist implementation of RL, the input to the network is the state of the
world (as perceived by the agent) and the output of the network is the utility value for each
action. During learning, the agent activates the network for the current state and picks an
action stochastically based on the utility values obtained in the output layer. If the agent

is not learning, it picks the action with the highest utility value.

Neural networks allow the agent to generalize its predictions about the utility of actions to

15

e Let there be A,B,C number of input, hidden, output neurons in the network, respectively.
Alsolet i =1...A,5 =1...B,k =1...C. Let w;; represent the weight matrix from
input to hidden layer and wj, represent weight matrix from hidden to output layer. Let
each input-output vector pair in the training data set (TRAIN) be written as (Z,).

1. Randomize weight matrices
2. For each Z = (%1, 2,...24) € TRAIN

(a) compute output layer units y(Z) = (y1,¥2,---Yc)
(b) compute error in output layer (for each unit indexed by k)

0k = yr(1 — yk) (ok — yk)

(c) compute error in hidden layer (for each unit indexed by j)
8 = hji(1 — hy) Y wy;dy
k

(d) update each network weight with
Wi = wij + aéj:vij

Wik = Wik + aékhj

Table 2: Backpropagation algorithm in a 3-layered neural network

other similar states of the world. This reduces the amount of exploration an agent need per-
form. However, as stated earlier, neural networks are likely to produce a sub-optimal policy
for some states of the world. In the remainder of the chapter, I discuss issues concerning

plans and reactive agents.

2.3 Planning in multi-agent environments

Intelligent systems must learn to operate and respond in a dynamically changing environ-
ment. Such systems are called reactive. Different life forms interact differently in such

environments. The most complex of them have an inherent notion of anticipation of future

16

course of events and plan accordingly. In this section, I briefly introduce the various issues

involved in planning.

Real world problems of the type involving human desires and the ability to choose from
a set of choices, and the methods of achieving them, are very difficult to formulate. Such
problems involve a knowledge of the world, and an ability to foresee the consequence of an
action. There are a number of factors involved including the potentially infinite states of

the world, the changing environment and the presence of other agents.

2.3.1 States and Actions

The primary issue concerned with the above classes of problems is that of representation of
actions and states. Traditional AT work [McCarthy,1968] has sought to specify the entities
involved in such problems: the state of the world, (which is potentially infinite) actions which
the agent takes, and events that occur in the world without the direct influence of the agent.
One assumption is that only actions and events can change the world state. Some work has
also been done on trying to provide the world states with properties. These properties help

provide values to the objects in the world state (including the agents)

Some other issues involved in such environments would be the non-deterministic property
of the actions, which means that when an action (or event) occurs the resulting state may
be one among a set of states. Another issue is concurrency of actions and events. Some
of the models of such a system, where two or more actions (or events) occur at the same
time are often simplified by assuming that these actions occur one after another without

any other action occurring between them.

With the representation of states and actions, a formal method of operating on them is
required. The study of logic programming provides a calculus for working with action

sequences. Modal temporal logics [Prior,1967] provide a means to incorporate an element

17

of time into our system. Such a logic helps operate statements that determine the state
of a system n time steps from now, which was not possible in some of the earlier logical
constructs. However, some deficiencies in the calculus formulation gave rise to the STRIPS
representation [Fikes,1971] which allows a state to be formed as a conjunction of logical

formulas, and an action to be represented as an operator.

2.3.2 Plans

A second issue is plan formulation. Before discussing the different methods available to
formulate plans, it is important to realize the notion of a plan. Though there is no formal
established definition, a plan is understood to be something, execution of which produces
behavior in a machine. Viewed in this manner, a program to a computer is a plan. The
behavior depends entirely on the machine or the agent, and may be non-deterministic in

nature.

Another issue is of concern is whether a plan is a success or a failure. A successful plan
would be one such that every part of it is executed by the agent, and an unsuccessful plan
would be one in which there is at least one part that is not executed by the agent. A
plan can be considered to be composed of a few basic non-decomposable plans, where the
methods of composing them would be a combination of iterating, sequencing, recursing or

choosing from them.

Plan creation or formulation involves a more directed approach than just establishing states
and actions in an executable format. The idea of a goal is inherently a part of a plan. There
are different ways in which goals are looked at depending on the system. Classically, a
goal was considered to be a set of desired states of a system to which an agent would go.
However, real world problems are more complex and goals have been redefined and research

has been done on assuming a goal to be maintaining or preventing some condition.

18

Theorem proving has been the center of logic studies for many years. It provides a de-
ductive approach in formulating plans since our notion of plans revolves around a logical
representation for the states and actions. Planning has also been extensively looked at in
the form of search. There have been two different approaches to search: try to search the
state space for a set of states which lead to the goal state; or try to search a plan space
[Nilsson,1980, Tate,1984], which is to look for a plan where each element in the plan space
is a partially completed plan. Iterative constructs have also been looked at, i.e. beginning
with some plan on which a sequence of modifications are made, until the goal has been

achieved.

2.3.3 Multi-agent domains

Since this thesis is based on a multi-agent environment, it is worthwhile to spend some time
discussing some of the issues involved in such systems. The above single agent models cannot
be used in multi-agent systems because of the incapability of the agents to understand other

agents’ actions.

When there are multiple agents in the system they may cooperate to achieve a common
goal, or they might be competitive in nature, in which case they are opposing each other.
They could also be non-interfering, which would mean they have no direct influence with
other agents. In all these cases, the action representations have to be extended from the
single agent case to be able to handle concurrent events (or actions). This becomes a much
more complicated process, and can be modeled by approximating the event occurrences or
by giving some of the events a property of atomicity which involves an idea like during the
occurrence of action a no other event or action occurs. Such a property endows upon the
system the notion of a state transformation very similar to single agent systems and hence

the formulations of the classical system can be applied here. Pednault [1990] introduces a

19

&0

Figure 7: A formal model of the experimental environment

language called ADL, which is syntactically based on the STRIPS language, but has very
different semantics, that allows multi-agent dynamic systems to be modeled as a single

agent static system.

In this thesis, I have chosen to work with one level of greater complexity than the single
agent system. It is a 2-agent environment, with finite state space and in which the agents
are adversarial in nature, and each of them have exactly the same finite set of actions
(atomic). There are no events (as defined in this thesis) involved, only actions which the
agents perform. Also, the state transformation 2 of the system is a concurrent activity,

which can be modelled as a sequential pair of atomic actions, the first by one agent and the

Agent 1

Anert 2

3All state transformations are deterministic

20

=)

second by the opposing agent.

Each of these atomic actions, leads to a internal intermediate state transformation, which
would not be the result of the state transformation of the actual concurrent activity. On a
system level, the atomic actions are commutative, in the sense that if a occurs just before
b occurs, then the resulting state of the system is the same if b occurs immediately before
a (where a, b are atomic). This means that the intermediate states, even though affect the
outcome of the resulting state of the system do not have a direct bearing on it. Figure 7
gives an incomplete pictorial representation of the system. The complete model is discussed

with the experimental setup in later chapters.

21

3 Experimental Setup

Game theory is an ongoing area of research. Much of this work focuses on pitting man
against machine. Some work has been done in applying RL techniques for playing games
like back-gammon or simulated soccer. In this section I will describe the game I have used

to study learning issues.

Playing a game generally involves forming a strategy. It may involve a cooperative effort to
compete against an opponent(s). In such cases, the player usually tries to gain proficiency by
playing the game a few times. Forming a general strategy that defeats any opponent would

be extremely difficult. Usually, players develop a strategy to beat a particular opponent.

The ability to generalize what has been experienced before is called inductive learning. In
my thesis, I will attempt to do cross-testing. 1 will primarily build a set of agents which are
programmed with a particular strategy. Later, I will let learning agents play against any of
these opponents and observe how well they perform against another of these opponents. I

will then test these agents against other learning opponents.

I have chosen to work with a specific game and, as with most learning problems, general-
ization to other games may not be so easily achieved. Moreover, the game itself has only
a finite set of states (unlike other more complex ones.) Nevertheless, this game serves as
a useful starting point for doing research with multiple agents. Many issues of planning
and learning strategies can be addressed. The game has advanced versions that serve to

investigate advanced learning issues as well.

3.1 Description of the game

The game I have used to run my experiments on is called Ace of Aces - WWI Air Combat

Game and is actually one among a series of games played using play-books. Each player

22

Figure 8: The right picture is a leaf out of the German pilot’s book. The Allied
aircraft is on the left.

1 | The main picture | relative position of opponent
range of the opponent

direction the opponent is facing
2 | Added information | Nationality

Page Number

Tailing information

Points scored

Table 3: Information provided in each page

has a book, which has pages like the ones shown in Figure 8.

Each book has in all 223 pages, where each page is comprised of the information*provided
in Table 3. The picture on each page gives the relative position of the opponent’s aircraft.
There are three different ranges possible for the distance between the planes: close, medium
and long. The pages numbered 1-36 correspond to the close range, those numbered 37-108
are in medium range, and those from 109 - 222 are long range. Page 223 has special signif-

icance and is explained later. The picture also shows the direction in which the opponent

4There is some more information provided like altitude, critical place of hits, etc. I have not considered
for my work.

23

is facing.

The German pilot has a cross + marked in the rectangular box to the left of the picture,
the Allied pilot has a () marked in his book. The points scored on each page appears just
below the rectangular box (an encircled +4) in the picture on the right of fig. 8. The points
scored depend on the distance between the planes. The player being shot at loses 4 points
if the two airplanes are in the close range, 2 if they are in the medium range and 1 if they
are far apart. Only pages in which the opponent is directly in front yield successful hits.

The tailing information, given by the T or t, is used in the advanced versions of the game.

3.2 Objective

Generally, the objective of the game is to shoot the opponent out of the sky. A game ends
either when one player is shot from the sky or when one player decides to withdraw (in the

case of the special page 223)

Every game starts with each player having 12 points. During the course of the game, a
player loses points if he is shot at. A player is shot out of the sky if his score goes to zero
(or below.) In the case of the special page 223, the players have two options before them: to
continue or escape. If both players choose to escape, the game is considered to be drawn; if
only one of them chooses to escape then that player loses the game; however, if both choose

to continue, the game starts from the initial settings with each player retaining his score.
In the advanced version of the game where there are multiple players, a dog fight can be
simulated. In such a case, the objective is to earn victory points.

3.3 The Maneuvers

Every player has a set of moves that appear at the bottom of the picture in each page.

These moves are based on real world aircraft maneuvers. They are classified into slow,

24

“&AEE{MH?W“\.E{T 751 P e N A T

AlLB FISIHIIHNJIKILIMNOIE[QIRISTIU WiWwWXI|Y

Figure 9: The set of maneuvers that can be performed by any player

medium and fast. Each move causes the aircraft to change its position in the sky. Figure 9

gives the list of possible moves that each player can perform.

For example, a move like \ means stall left (slow turn left). To perform this move, the
pilot inclines the aircraft on an angle and the plane loses altitude until the wings become
level again. A similar set of moves exist for both the slow and fast set of maneuvers, though

they are performed differently.

A player chooses a move from this set of actions, and tells his opponent the number that
appears below the action he chose. He does not reveal the actual move. For example, in
Table 5, if the player B chooses to perform action marked C in page 2, then he tells his
opponent the number 49. These numbers are actually different pages. The actions are fixed
but the page numbers they correspond to depend on the current page. For example, A
always refers to action '\, but the number under this action depends on the player (Allied

or German) as well as the page he is on.

All pages from 1 to 222 have a similar set of listing of actions and corresponding page
numbers beneath them. Page 223 is a special page. This has no such set of actions listed.

This page corresponds to players losing sight of each other. See section 3.5.

3.4 Levels of expertise

The game is played with different levels of expertise: introductory, standard, advanced.
Table 4 gives the sequence of steps followed to the play the introductory game. A move is

chosen by referring to the number below the actions marked A through Y (refer Table 5).

25

. Start at page 170
. Choose moves

e Players make a log of the actions that they make (A - Z)

e Call out the page numbers marked below the action

. Locate Mid-turn page

e This page for player G (B) is the number called out by player B (G)
. Locate End-turn page

e This is the page number below the action chosen in the mid-turn page
e This page has to be same for both players.
e Turn to this page

. Record scores

e make a note of the scores that are indicated next to the picture

e eg., if '+4’ is marked, opponent loses 4 points

. Goto step 2

Table 4: Sequence of play

26

Figure 10: Starting pages for an example sequence of moves

Player B A B|C|D|E
Page2 |36 |84 |49 | 2 | 8
Page 36 [26 |19 | 1 | 36| 2
Player G A|B|C|D|E
Page 2 9 (29|36 | 2 |31
Page 36 | 3 |23 |26 | 36 | 25

Table 5: Table giving the moves for both players

Each player tells his opponent the number below the action that he chose. Both players
then turn to the pages their respective opponent tells them to go to. This is the MID-TURN
page. In this MID-TURN page both players now look under the action they chose earlier
and go to the number below that action. This is the END-TURN page.

All the information in the MID-TURN page is ignored. Only the END-TURN page reflects
the true state transition. The rules of the game are created such that, if a player is being
tailed (indicated by a ”t”), then his opponent who is tailing him (indicated by a ”T”) has to
be given an extra information as to what the tailed player’s next move would be. However,

I have chosen to ignore this rule throughout my experiments.

As an example, consider Figure 10. Let B represent the Allied plane and G be the German

27

Figure 11: Ending pages for an example sequence of moves

plane. Let us assume both are on page 2 as given in the figure. Consider Table 5. Let us
suppose B makes the move marked D, and G makes the move marked C. Then, B turns to
page 36, and G remains in page 2. Page 2 is the MID-TURN page for the German pilot,
while Page 36 is the MID-TURN page for the Allied aircraft.

In the MID-TURN page (Figure 11) for the Allied player we have, under action D (as he
had chosen action D) the page number 36. Which means the END-TURN page is 36. This
page can also be arrived at by referring to action C in the German’s MID-TURN page 2

(Figure 10). At the end of this sequence of moves, the players always end up on the same

page.

Figure 12 gives a state description of the players’ moves from one page to another using
the number given by the opponent. The numbers marked in bold correspond to the page
numbers under that action for that player. For example, the bold faced 36 (Table 5) refers

to number under action C in the German’s book.

In the standard version of the game, the players take into account the different machines
they are flying in. Each machine has some characteristics (which are detailed in the rules of

the game) and may not be necessarily evenly matched. I have chosen to ignore this version

28

©

é —(3)
36
S

StartPage 4 End Page

Figure 12: States representing sequence of moves

®

I

of the game.

In the advanced game, the starting page is not fixed at 170. Moreover, there is also the
idea of different altitude of the players involved. I have however, chosen to ignore difference
in heights in my experiments. The starting page is determined by casting a six-sided die
twice. Table 6 gives the starting pages depending on the die rolls. The first roll refers to
column, and the second roll refers to the row. For example, if there was a 4 rolled after 2

then the starting page would be 167 (marked in bold face in the table.)

There is one other version of the game, the campaign, which involves multiple players in a

dog fight, which would be a good starting point for working on a team strategy.

3.5 Page 223

As mentioned before, Page 223 is a special situation. This page does not have the usual set
of actions listed under it. It corresponds to the players losing sight of each other. If this
page occurs as a MID-TURN page, then the player who ended up here should wait until
his opponent figures out the end page. He should then go to the end page and resume the

game

29

L lr[2]3[4[5]6]
112 | 133 | 114 | 175 | 176 | 177
169 | 170 | 171 | 148 | 149 | 150
181 | 182 | 183 | 151 | 152 | 153
166 | 167 | 168 | 173 | 174 | 172
178 | 179 | 180 | 184 | 185 | 186
169 | 170 | 171 | 172 | 173 | 174

S| x| W N~

Table 6: Starting page: The columns marked 1 through 6 are the numbers cor-
responding to the roll of the first die. The rows marked 1 through 6 correspond
to the rollof the secind die.

However, if it occurs as the END-PAGE (which means both players have to land up here)
then it means both players have lost sight of each other. The players have two options before
them: they can choose to search their opponent and resume the fight or they can choose to
escape. The players must write out what their choice of action, before they disclose it, after

which they are not allowed to change it.

If both players chose to escape, the game ends in a draw in the introductory game irrespec-
tive of the point difference. If any one player chose to search, and the other escape, then
the player who chose to search wins the game. He is considered to have driven his opponent

out of the sky.

3.6 Implementation

All experiments are done as simulations. The game is played using a program written in C.

The main program simply follows the steps of the game as outlined in Table 4.

The program uses a configuration file, which helps control the parameters involved while
learning and testing. Different player modes are specified in this file. Each player mode has

a file which does the decision making. In case of the learning agents, the rewards are also

30

programmed into the files. There is also a manual player mode that allows users to play

the game. In this case, the different pages appear on the screen.

3.7 State Representation

Every state is referenced using the page number that corresponds to it. The learning agent
using the Q-table has a matrix (222 possible states x 25 possible actions) of Q-values. For
example, if action 5 in page 160 has the maximum value for that state, then Q[160][5] has

the maximum value of all the Q[160][.] values.

The learning agent using the neural network, translates the number 160 into an input vector.

The input vector consists of 8 units based on the analysis of the games’s pages:
e 4 units for distance between planes: 1 for each of Close/Medium/Long/Strange

e 2 units for position of opponent: 1 each for the Sine and the Cosine of the angle to

the opponent

e 2 units for position of agent (as viewed by opponent): 1 each for Sine and Cosine of

the direction the opponent is facing.

The neural network has 25 hidden units, and 25 output units (1 for each action), and is

fully connected from one layer to the next.

3.8 Deadlock Avoidance

Some sequences of moves lead to a cycle in the state transitions. In such a situation, the
game goes on forever. This happens due to determinism in the action-choosing module for
an agent. For example, let S be the current state. Suppose, both players can make only one
action in this state. Let the resulting state be T. If both players have only one action in this

state and by making them, they go back to state S, there is a cycle in the state transitions.

31

(This case is the simplest case.) Further, if both S and T do not involve hits by any player
then the scores for each player would remain as they are, but the game would never end.

(There is also the possibility of a cycle of length greater than two.)

Deadlocks can also occur when there is non-determinism, but the situation is similar to the
above. The only difference in this case is each player has a set of actions instead of only
one. The agent chooses among this set randomly, but whatever action it takes, leads to a

cycle.

This issue of deadlock is not specific to this game. Similar situations are known to exist in
other games and environments as well. For example, in the game of chess, if each player
loses all the pieces except the “king”, then neither player can achieve a decisive victory over
the other. The problem can be resolved by declaring the game to be drawn. In this game,
the main control program keeps track of the number of moves, and usually declares any

game that goes beyond 150 moves as a draw.

3.9 Description of the pre-programmed agent

The strategy of the random agent is to pick any of the 25 possible actions in any state. The
programmed opponent determines a set of reasonable actions for each state, and randomly

picks from this set. The set is computed in the following manner
e Determine the current state.

e Assuming the opponent decides to continue flying in the current direction, determine

which action would put the opponent in front

The above decision making is simple but has an “inherent” knowledge of which action leads
to a particular state configuration. This does not mean that the agent is extremely powerful.

A limitation to this agent is the assumption that opponent continues to fly straight (which

32

will not always be the case).

3.10 Choice of Action

The nature of the agent determines the actual choice of action. As said before, the random
agent simply chooses any of the 25 actions. The programmed opponent chooses randomly
among a set of reasonable actions. The learning agent picks actions stochastically (during

the training phase.) according to [Lin,1992]:

. merit; meritg
Probability(a;) = e Temr [Z e Temp
k€ Actions

where merit; corresponds to Q-value of action 4, T'emp is a temperature parameter, usually
kept constant (in this thesis it is maintained at 2), and Actions refers to the set of actions
in any given state. In the above formula, the action with higher Q-value is assigned a
greater weight, but actions with lower Q-values are not completely ignored. This attempts

to achieve a balance between exploration and exploitation.

During testing, the learning agents choose actions deterministically. They pick the action
that corresponds to the maximum value from Q-table or the output layer of the neural

network.

33

4 Experiments

In this section I discuss experiments performed on the testbed. The preliminary set of tests
consist of simple experiments. In these, the learning agent is trained against an opponent
who is either random or programmed (with some randomness). These tests were essentially

run to study the learner’s behavior with respect to specific opponents.

In the preliminary tests, I attempt to answer the following questions relating to the agent

behavior:
e Determine suitable learning rates («)

— How does the parameter « affect the learning? Is learning faster/better if «

increases?

— What are some suitable learning rates for both methods? (Are they the same?)
o Establish baselines for comparisons of agents

— Does the learning rate affect the generalization capability?

— Which model generalizes better (able to beat opponents not trained against) ?

Generally, each agent has a range of learning rates within which it works well. Determining
suitable learning rates in this manner help in fixing the parameter for the more advanced
experiments. In the more complex set of experiments, I try to investigate co-evolution,

situations where both agents are learning. Some of the questions that occur are:
e Choices of Actions

— Which method of choosing actions works better ?

— Is it the same for both agents?

34

e Comparison between agents

— Which agent works better?

4.1 Methodology

As mentioned before, the experiments are done with simulations. The results shown for
each experiment are averaged over ten different initial conditions. For example, in the case
of the Learning Agent (Q-table), a seed is used to generate the random initial values of the
Q-table. Ten such seed values are arbitrarily chosen and the same experiment is run for

each of the cases.

Data collected is the number of wins recorded by each player and the number of games

that end in a draw. In obtaining the data presented in this section, I did the experiments

1. Training

e Start with initial Q-values (say between -0.1 and +0.1)
— for the connectionist model initialize the weights of the network

e Train for some number of games (say N)

¢ Record the set of Q-values (which have been updated using the learning rule)
— for the connectionist model record the weights of the network

e Repeat the above two steps until a sufficient number of Q-value sets are obtained
2. Testing

e For each set of Q-values or weights recorded above

(a) Play the game (without learning) for some number of games
(b) Record results for each game

Table 7: The general methodology for the experiments performed. The exper-
iments are carried out in 2 phases, training and testing. The steps for both cases
are outlined above.

35

iteratively. First, I start with an initial set of parameters: learning rate, number of games,
level of game, etc. 1 then train the agents and test them. The results of this testing are

shown in a tabular and graphical formats.

Each experiment is carried out in two phases: the training phase and the testing phase.
During the training phase, the learning agent chooses actions stochastically, while the op-
ponent chooses actions in a deterministic manner. The Q-values (in the case of the Q-table
representation) are recorded at regular intervals. In the testing phase, the learning agent,
using the Q-values recorded at regular intervals during training, picks action deterministi-
cally (usually the maximum value from the Q-table). There is no updating of the Q-table
during testing. The opponent would normally be the agent against whom the learner was

trained, except during cross testing. Table 7 gives the steps for each phase.

The discount factor used in all these games is kept constant at 0.9. The results provided
are usually for the advanced game level. All the data shown in the section are the results

of the testing phase.

4.2 Preliminary Results
4.2.1 Learning Agent (Q-table) vs Random Agent

Methodology : The first set of experiments involved the Q agent learning against a ran-
dom player using a full Q-table. The sequence of steps outlined in Table 7 was followed.

Q-tables were stored every 3000 games for & = 0.01 and every 1000 games for a = 0.05,0.1

Results : In Table 8, the learner is tested against a random opponent. The data shown are
for learning rates 0.01, 0.05 and 0.1. The column on the left shows the points at which the
QQ-values were recorded during training. Columns 2 and 3 give the number of wins recorded

by each player. The last column corresponds to the number of games that ended in a draw.

36

a =0.01 a =0.05 a=0.1
Num Lrn | Rnd | Drw Num Lrn | Rnd | Drw Num Lrn Rnd | Drw
train | Wins | Wins train | Wins | Wins train | Wins | Wlns
games games games
3000 398 299 | 301 1000 305 347 | 347 1000 228 383 | 387
9000 319 334 | 346 3000 276 359 | 363 3000 407 296 | 296
15000 302 348 | 349 5000 372 314 | 313 5000 567 221 | 211
21000 378 306 | 314 7000 494 257 | 248 7000 685 159 | 155
27000 440 280 | 279 9000 595 203 | 200 9000 751 125 | 123
33000 530 237 | 232 || 11000 679 162 | 157 | 11000 799 102 97
39000 585 205 | 208 || 13000 748 123 | 128 | 13000 839 80 80
45000 657 168 | 174 || 15000 768 118 | 113 | 15000 844 78 77
51000 686 154 | 159 || 17000 834 85 80 || 17000 838 80 80
57000 717 142 | 139 || 19000 831 85 83 || 19000 853 71 75

Table 8: Learning Agent (Q-table) vs Random Agent: In the above table, the
first column shows the number of games after which the Q-values were recorded
during training, the second and third columns show the number of games won
by the Learner and the Random agent respectively, and the last column shows
the number of games that yielded a no-result (tested over 1000 games)

37

00 R

700 — e

gon . A
- 1111 AT

500 -

00

T - 400 ra
100 R . e
Eon 00 e
100

o000 Ee00e F0000 0000 50000 EO000 s0on 10000 15000 onng

s T

B0 R4

400 ’

o Dzae
TN
X . axig: Mumber of Games tramned over

Y-axis: Phawher of Games won

000 Loaan 15000 Enoon

Figure 13: Graph Plots (Table 8) for Learning Agent (Q-table) vs Random
Agent: The plot on the upper left corner corresponds to a = 0.01, the one
on the right o = 0.05 and the one below corresponds to a = 0.1. The X-axis
represents the regular intervals in which the Q-values were recorded during
training, Y-axis is the number of wins by a player (includes draws).

Figure 13 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the Q-values were recorded.

Analysis: Clearly, from the graph we can see that the learning agent is able to beat the
random opponent nearly 85% of the time. Also, from the 3 graphs plotted in Figure 13, we
see that the learning rate indeed affects the number of games the agent has to be trained
over, to achieve a win percentage of =~ 85. The learning is faster in the case of a = 0.1,

reduces when o = 0.05 and is slowest among the three when o = 0.01.

38

a =0.01 a =0.05 a=0.1
Num Lrn Prg | Drw Num Lrn Prg | Drw Num Lrn Prg | Drw

train | Wins | Wins train | Wins | Wins train | Wins | Wins
games games games

1000 262 246 | 491 1000 645 29 | 325 1000 923 3 73

3000 462 21 | 515 2000 927 3 69 2000 983 0 16

5000 654 4 | 340 3000 965 0 34 3000 988 0 11

7000 819 1| 179 4000 986 0 13 4000 990 0 9

9000 907 1 91 5000 983 0 16 5000 988 0 11
11000 940 0 59 6000 984 0 15 6000 992 0 7
13000 968 0 31 7000 989 0 10 7000 995 0 4
15000 976 0 23 8000 991 0 8 8000 993 0 6
17000 981 0 18 9000 984 0 15 9000 993 0 7
19000 984 0 15 || 10000 989 0 10 || 10000 995 0 4

Table 9: Learning Agent (Q-table) vs Programmed Agent: In the above table,
the first column shows the number of games after which the Q-values were
recorded during training, the second and third columns show the number of
games won by the Learner and its opponent respectively, and the last column
shows the number of games that yielded a no-result (tested over 1000 games)

4.2.2 Learning Agent (Q-table) vs Programmed Agent

Methodology: The second set of experiments involved the Q agent learning against a
programmed player. The sequence of steps outlined in Table 7 was followed. Q-tables were

stored every 1000 games.

Results: In Table 9, the learner is tested against a programmed opponent (who has
a specific move for every state.) The table shows data for learning rates 0.01, 0.05 and
0.1. The column on the left shows the points at which the Q-values were recorded during
training. Columns 2 and 3 give the number of wins recorded by each player. The last

column corresponds to the number of games that ended in a draw.

Figure 14 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

39

Learning Rate = 0.01 Learning Rate = 0.05

Lonn e Loin R e
i T
s -~ 1
- /
A
Fn - 111
4in -f"- 40
£ .
1] wof
e ..
(T aeermem g epep ., L T O T gy
1] 10000 15000 L0000 I Lnon 15000 T
Learning Rate = 0.1 Legend
Loan f ;_.‘_._._-.._._._..._..._..._._.._.

- —= - - Leamner
GonF

Fre - Programmed

Eon |

dnn

ennp X-axis: MNuwber of Games Trained Over

'y Y - axis: Mumber of Games won
soan 1agnn 15000 Eanan

Figure 14: Graph Plots (Table 9) for Learning Agent (Q-table) vs Programmed
Agent: The plot on the upper left corner corresponds to a = 0.01, the one
on the right o = 0.05 and the one below corresponds to a = 0.1. The X-axis
represents the regular intervals in which the Q-values were recorded during
training, Y-axis is the number of wins by a player (includes draws).

Learning rate = ,9 Legend
00 . -, .,
__."-' II'. .?._..'\“n' I'L_-"F_ Y -—--Learner
gonf e N . v
o —=— Progranmed
3010
....... Tiraw
zon}r
N e A et ot X - axiz: Mumber of Games trained over
et Ny -
' So00 looon 15000 E0000 Y - axis: Humher of Games won

Figure 15: Graph Plot (Table 10) for Learning Agent (Q-table) vs Programmed
Agent: The plot corresponds to learning rate 0.9. The X-axis represents the
regular intervals in which the Q-values were recorded during training, Y-axis is
the number of wins by a player (includes draws).

40

Num of | Lrn | Prg | Draw || Num of | Lrn | Prg | Draw
train | Wins train | Wins
games games
1000 591 | 210 197 11000 799 | 181 19
2000 627 | 278 94 12000 648 | 284 66
3000 725 | 247 27 13000 661 | 261 7
4000 778 | 181 39 14000 741 | 207 51
5000 564 | 383 52 15000 648 | 290 60
6000 705 | 246 48 16000 494 | 375 130
7000 639 | 276 84 17000 740 | 241 17
8000 727 | 253 19 18000 788 | 139 72
9000 619 | 283 97 19000 752 | 190 o7
10000 770 | 208 20 20000 975 | 328 96

Table 10: Learning Agent (Q-table) vs Programmed Agent: Learning Rate set
at 0.9. In the above table, the first column shows the number of games after
which the Q-values were recorded during training, the second and third columns
show the number of games won by the learner and its opponent respectively,
and the last column shows the number of games that yielded a no-result (tested
over 1000 games)

at which the Q-values were recorded.

Analysis: Clearly, from the graph we can see that the learning agent is able to beat the
programmed opponent more than 97% of the time. As before, we see that the learning rate
affects the number of games the agent has to be trained over, to achieve a win percentage

of > 90%.

From Figures 13 and 14, it is clear that the agent being trained versus the programmed
opponent learns faster and achieves a higher percentage of wins. The programmed opponent
makes moves with little randomness. This means that during training, the learning agent
has greater scope of obtaining rewards or punishments. In the case of the random opponent,

the learning agent while exploring the states, does not make too many rewards (he gets zero

41

a =0.001 a =0.01
Num of Lrm | Rnd | Draw || Num of Lrn | Rnd | Draw
train | Wins | Wins train | Wins | Wins
games games

10 993 5 1 10 992 6 1

30 994 4 1 30 991 6 1

50 992 6 1 50 992 5 1

70 992 6 1 70 994 4 1

90 992 6 1 90 993 5 1
110 992 5 1 110 995 3 1
130 991 7 1 130 992 6 1
150 993 5 1 150 994 4 1
170 994 4 1 170 992 6 1
190 994 4 1 190 992 6 1

Table 11: Learning Agent (NN) vs Random Agent: In the above table, the first
column shows the number of games after which the Q-values were recorded
during training, the second and third columns show the number of games won
by the Learner and the Random agent respectively, and the last column shows
the number of games that yielded a no-result (tested over 1000 games)

reward in most states) and it takes a while before he gains sufficient meaningful experience.

From Figure 15 and Table 10, we see that learning is not necessarily faster as the learning
rate parameter increases. There seems to be a zig-zag in the graph, unlike the earlier
cases. When the learning rate is high, each reward influences the updating of the Q-table
significantly. This means that if an agent receives a high immediate reward for an action that
ultimately did not help achieve the goal, it may continue taking the action (the exploration

of the world is reduced) without actually learning the best action.

4.2.3 Learning Agent (NN) vs Random Agent

Methodology : This set of experiments involved the connectionist Q-agent learning against

a random player. The sequence of steps outlined in Table 7 was followed. The weights of

42

the neural network were recorded every 10 games.

Results : In Table 11, the learner is tested against a random opponent. The data shown
are for learning rates 0.001, and 0.01. The column on the left shows the points at which the
Q-values were recorded during training. Columns 2 and 3 give the number of wins recorded

by each player. The last column corresponds to the number of games that ended in a draw.

From Table 11 we see that the learning agent has no trouble beating the random oponnent.
It can also be seen from the data that “learning” is not visible, by which I mean that the
learning process does not follow a smooth curve. Even a small number of games is sufficient

to beat the random player significantly. This indicates the power of the neural network.

4.2.4 Learning Agent (NN) vs Programmed Agent

Methodology : This set of experiments involved the connectionist Q-agent learning against
a programmed player. The sequence of steps outlined in Table 7 was followed. The weights

of the neural network were recorded every 100 games.

Results : In Table 12, the learner is tested against a programmed opponent. The data
shown are for learning rates 0.001, 0.01, and 0.1. The column on the left shows the points
at which the Q-values were recorded during training. Columns 2 and 3 give the number of
wins recorded by each player. The last column corresponds to the number of games that

ended in a draw.

Figure 16 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the Q-values were recorded.

Analysis : Clearly, the programmed player loses a significant number of games. However,
as in the case of the random opponent, the learning process does not follow a smooth

curve. Instead, there seem to be small fluctuations. A learning rate of 0.1 seems to bring

43

a=0.1 a =0.01 a =0.001

Num Lrn Prg | Drw Num Lrn Prg | Drw Num Lrn Prg | Drw

train | Wins | Wins train | Wins | Wins train | Wins | Wins
games NN games NN games NN

1000 879 96 24 1000 977 21 1 1000 843 154 1

3000 859 53 87 3000 962 36 1 3000 882 64 53

5000 854 139 5 5000 976 19 4 5000 860 135 4

7000 736 43 | 220 7000 958 8 32 7000 815 160 24

9000 847 18 | 134 9000 964 33 2 9000 879 118 1
11000 949 27 22 || 11000 897 68 34 || 11000 921 69 8
13000 761 29 | 208 || 13000 987 10 2 || 13000 889 106 3
15000 707 33 | 259 || 15000 980 17 2 || 15000 944 52 2
17000 727 29 | 242 || 17000 973 23 2 || 17000 899 99 1
19000 648 61 | 290 || 19000 968 24 7 1| 19000 932 62 4

Table 12: Learning Agent (NN) vs Programmed Agent: Learning Rates

0.1,0.01,0.001. In the above table, the first column shows the number of games
after which the Q-values were recorded during training, the second and third
columns show the number of games won by the learner and its opponent respec-
tively, and the last column shows the number of games that yielded a no-result

(tested over 1000 games)

44

Learning rate = 0.01 Learning rate = 0,001

LI .

Lo00 ot T e .

[~ F— .
—-—ch .'\V‘, .

- .-
~ 500 -

00

00 EOO

400 00

00 o
X W

sonn Longn 15000 nonn] o000 15000 Enoan

Learning rate = 0.1 Legend
W
- . Pl C—_ -
s00 - / \\.\ . . Learner HH
~ T W
B " Progrannied
o e Tiram

eon
X - axis: Mumber of Games trained owver

Y - axis: Mhamh atme
sang daoan 15000 Eaaodn H ex of G #wan

Figure 16: Graph Plots (Table 12) for Learning Agent (NN) vs Programmed
Agent: The plot on the upper left corner corresponds to a = 0.01, the one
on the right a = 0.001 and the one below corresponds to a = 0.1. The X-axis
represents the regular intervals in which the Q-values were recorded during
training, Y-axis is the number of wins by a player (includes draws).

down the agent’s performance, suggesting that a slower learning rate should be used for the

connectionist model.

4.3 Preliminary Cross Testing
4.3.1 Learning Agent (Q-table) vs Random Opponent

Methodology : In this set of experiments, no training was done. Instead, the learning
agents (using full Q-table and NN) trained against the programmed opponent were used.

The agents were tested against random opponents and the results were recorded.

Results : In Table 13, the learned agent is tested against a random opponent. The data

45

shown are for learning rates 0.01, 0.05, and 0.1. The column on the left shows the points
at which the Q-values were recorded during training. Columns 2 and 3 give the number of
wins recorded by each player. The last column corresponds to the number of games that

ended in a draw.

Analysis : From Figure 17 and Table 13, we can see that no observable pattern exists.
There is lot of variation as learning rate changes. The learned agent does not beat the
random opponent significantly. In case of @ = 0.1 there is a noticeable decrease in win
percentage. It might be worthwhile to observe the graphs in Figure 13 in comparison to

the ones in Figure 17. This clearly shows that the generalization capability of the agent is

limited.
a =0.01 a =0.05 a=0.1
Num Lrn | Prg | Drw Num Lrn | Prg | Drw Num Lrn | Prg | Drw
train | Wins train | Wins train | Wins
games games games

1000 299 | 350 | 349 1000 305 | 347 | 347 1000 404 | 296 | 298
3000 300 | 348 | 351 3000 305 | 351 | 342 3000 208 | 400 | 390
5000 301 | 348 | 350 5000 307 | 348 | 343 5000 209 | 390 | 399
7000 402 | 296 | 301 7000 210 | 393 | 396 7000 212 | 389 | 397
9000 404 | 300 | 295 9000 212 | 393 | 393 9000 211 | 386 | 401
11000 404 | 296 | 299 || 11000 213 | 390 | 395 || 11000 213 | 389 | 397
13000 306 | 342 | 351 || 13000 214 | 390 | 394 || 13000 212 | 390 | 396
15000 306 | 338 | 354 || 15000 214 | 387 | 397 || 15000 214 | 392 | 393
17000 308 | 342 | 349 || 17000 214 | 384 | 401 || 17000 212 | 398 | 389
19000 309 | 341 | 349 || 19000 214 | 388 | 396 || 19000 213 | 391 | 395

Table 13: Learning Agent (Q-table) trained against Programmed Agent, tested
against Random player: Learning rates 0.01, 0.05, 0.1. The agents trained in
previous section were used. In the above table, the first column shows the
number of games after which the Q-values were recorded during training, the
second and third columns show the number of games won by the learner and
its opponent respectively, and the last column shows the number of games that
yielded a no-result (tested over 1000 games)

46

Learning rate = 0.01 Learning rate = 0.05

40 400

LI

200

o nn vt

100 00

000 Loaao 15000 oo 000 1n0on 15000 tooan

Learnine rate = 0.1 Legend

UL

- —= - - Learmer

200

Rarvdom

inn

o0

X - axie: Mumber of Games trained over

Y- axis: Fumber of Games wan

san0 lo0an 15000 Eonag

Figure 17: Graph Plots (Table 13) for Learning Agent (Q-table) trained against
a programmed agent, tested against a Random Agent: The plot on the upper
left corner corresponds to a = 0.01, the one on the right o« = 0.05 and the one
below corresponds to a = 0.1. The X-axis represents the regular intervals in
which the Q-values were recorded during training, Y-axis is the number of wins
by a player (includes draws).

4.3.2 Learning Agent (NN) vs Random Opponent

Methodology : In this set of experiments, no training was done. Instead, the trained set
of agents from section 4.2.4 were used. The agents were tested against random opponents

and the results were recorded.

Results : In Table 14, the learned agent is tested against a random opponent. The data
shown are for learning rates 0.001, and 0.1. The column on the left shows the points at
which the Q-values were recorded during training. Columns 2 and 3 give the number of

wins recorded by each player. The last column corresponds to the number of games that

47

a =0.001 a =0.01
Num of Lrm | Rnd | Draw || Num of Lrn | Rnd | Draw
train | Wins | Wins train | Wins | Wins
games games
1000 996 2 1 1000 994 4 1
3000 995 3 1 3000 993 4 1
5000 995 3 1 5000 993 5 1
7000 995 3 1 7000 990 8 1
9000 994 4 1 9000 991 6 1
11000 994 3 1 11000 991 7 1
13000 995 3 1 13000 994 4 1
15000 995 3 1 15000 992 5 1
17000 994 4 1 17000 993 4 1
19000 993 4 1 19000 993 4 1

Table 14: Learning Agent (NN) trained against Programmed opponent, tested
against Random Agent: Learning rates 0.001, 0.01. Agents trained in previous
sections were used. In the above table, the first column shows the number of
games after which the Q-values were recorded during training, the second and
third columns show the number of games won by the Learner and the Random
agent respectively, and the last column shows the number of games that yielded
a no-result (tested over 1000 games)

ended in a draw.

Analysis : From Table 14 it is clear that the random opponent loses to the connectionist
agent. Even though the connectionist agent was trained against the programmed opponent,
it is still able to beat the random opponent. From Figure 17 it is clear that the neural

network model performs better than the Q-table model, in this case.

4.3.3 Summary

From the above collection of data, we can arrive at the following relating to agent behavior

relating to learning rates:

48

e Increase in learning rate for small values of «, does increase the speed of learning. For

higher values of «, learning ceases to be smooth.
e Learning is faster if opponent is less random, in the case of the Q-table.

e The neural network achieves a lower winning percent against the programmed oppo-

nent than does the Q-table.
We can also arrive at the following relating to generalization:

e The NN agent is able to beat the random opponent irrespective of who it was trained

against.

e The learning rate affects the generalization capability of the Q-table agent, but does

not affect the neural network agent.

4.4 Advanced Results
4.4.1 Methodology

For the following experiments the methodology as outlined in Table 15 is followed. Each

agent learns for some number of games (in this thesis I refer to this number as the “swap”

e Training

Start with initial Q-values (say between -0.1 and +0.1) for both agents (A and B)

Train agent A for some number of games (say 100), agent B plays deterministically

— Train agent B for the same number of games as above, agent A plays deterministically

Record the set of Q-values (which have been updated using the learning rule)

Repeat the above three steps until a sufficient number of Q-value sets are obtained

Table 15: The general methodology for the experiments performed. The steps
for the training phase is outlined above. Testing is done using steps from Table 7

49

number) while the other agent picks actions deterministically. At any instant, only one
agent is learning, but both agents eventually learn against each other. In this thesis, the

“swap” is fixed at 100.

While this enables learning, it poses problems during the testing phase. In the testing
phase, the learning agents pick only the action with the highest Q-value at any state. This
means that, if both agents use this strategy, then the result of the games would depend
solely on the starting page (and since this is fixed, would result in a finite set of results).
To measure the ability of the agent, I chose to introduce an element of randomness in the

testing stage. The following is the list of strategies used:

1. Agent picks (randomly) any action with a Q-value above a certain percentage of the

highest Q-value for that state. (In this thesis, an arbitrary value of 97% was chosen).

2. Agent picks actions in a stochastic manner (similar to the learning process without

updating the Q-table).
3. Agent picks (randomly) any action from all actions with the top N Q-values. (In this
thesis an arbitrary N value of 3 was chosen).
4.4.2 Learning Agent (Q-table) vs Learning Agent (Q-table)
EXPERIMENT : Stochastic choice of action at test

Methodology : The first set of experiments involved the QQ agent learning against another
Q agent (both using full Q-tables). The sequence of steps outlined in Table 15 was followed.

Q-values were recorded every 5000 games.

Results : In Table 16, the learner is tested against a trained opponent. The data shown
are for learning rates 0.025 and 0.05. The column on the left shows the points at which

the Q-values were recorded during training. Columns 2 and 3 give the number of wins

50

a =0.05 a =0.025

Num of | Lrn Lrn | Draw || Num of | Lrn Lrn | Draw
train (exp) train (exp)
games games
5000 | 408 315 276 5000 | 215 380 404
15000 | 314 340 344 15000 | 241 370 388
25000 | 366 321 312 25000 | 246 366 387
35000 | 373 317 308 35000 | 256 362 380
45000 | 428 298 273 45000 | 263 361 374
55000 | 157 404 437 55000 | 253 365 380
65000 | 176 398 425 65000 | 278 347 374
75000 | 196 406 397 75000 | 288 341 370
85000 | 226 373 400 85000 | 274 353 372
95000 | 280 352 366 95000 | 285 347 367

Table 16: Learning Agent (Q-table) vs Learning Agent (Q-table): The above
table shows data for two learning agents. Each agent learns every alternate 100
games. During testing the agent in the second column plays deterministically
(picks the maximum from Q-table) while the agent in third column chooses
with an exponential distribution

Learning rate = 0,025 Legend
d00F e L L e Learner
m E1T
00 PR —=— == Leamer ss0f

zonf "

Draw

o X - axiz: Mumber of Ganes

tramed over 'f Tohs
L0000 40000 BODOD S0000 Lodoon T - axis: Nuwber of Games won

oo 0000 EO000 F0000 Looodn

Figure 18: Graph Plots (Table 16) for Learning Agent (Q-table) trained against
a Learning Agent (Q-table): The plot on the left corresponds to a = 0.025, the
one on the right corresponds to o = 0.05. The X-axis represents the regular
intervals in which the Q-values were recorded during training, Y-axis is the
number of wins by each player. The agent marked “exp” picks actions stochas-
tically during testing.

51

recorded by each player. The last column corresponds to the number of games that ended
in a draw. The agent marked “exp” picks one action stochastically using the probabilities
for each action (actions with higher Q-values are assigned higher weights.) The other agent

picks the action with the maximum Q-value in each state.

Figure 18 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the Q-values were recorded.

Analysis : The learner choosing actions stochastically outperforms the learner playing
deterministically. For the case of a = 0.05, there seem to be some fluctuations and for a
short duration the deterministic agent plays better, but loses as the number of games is

increased.
EXPERIMENT : Actions with Q-values >= 97% of the highest Q-value

Methodology : The second set of experiments involved the Q agent learning against an-
other Q agent (both using full Q-tables). The sequence of steps outlined in Table 15 was

followed. Q-values were recorded every 5000 games.

Results : In Table 17, the learner is tested against a trained opponent. The data shown
are for learning rates 0.025 and 0.05. The column on the left shows the points at which the
Q-values were recorded during training. Columns 2 and 3 give the number of wins recorded
by each player. The last column corresponds to the number of games that ended in a draw.
The agent marked “pct” picks one action from the actions that have Q-values above 97%
of the highest Q-value for that state. The other agent picks the action with the maximum

Q-value in each state.

Figure 19 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the Q-values were recorded.

52

a =0.05 a =0.025

Num of | Lrn Lrn | Draw || Num of | Lrn Lrn | Draw
train (pct) train (pct)
games games
5000 | 31 628 340 5000 | 144 305 550
15000 | 156 277 566 15000 | 401 415 183
25000 | 68 446 485 25000 | 123 428 447
35000 | 143 508 348 35000 | 79 441 478
45000 | 250 168 581 45000 | 86 177 736
55000 | 410 338 251 55000 | 134 496 368
65000 | 88 533 378 65000 | 352 217 430
75000 | 348 325 326 75000 | 153 501 345
85000 | 330 326 342 85000 | 41 148 810
95000 | 169 355 475 95000 | 251 418 330

Table 17: Learning Agent (Q-table) vs Learning Agent (Q-table): The above
table shows data for two learning agents. Each agent learns every alternate 100
games. During testing the agent in the second column plays deterministically
(picks the maximum from Q-table) while the agent in third column chooses any
action with a Q-value >= 97% of the highest Q-value.

Learning rate = 0,025 Legend
el N e Learner
TO0E
. —=—— Learner pct soot
sonf i
N Dram 4onf
N
$on X - axds: Mumber of Games ey - ; N e
trained over Loop [ws i : v
Y- axdis: Muwher of Games won

3
oo 0000 (] o000 100000 Looon 0000 E0000 E0000 100000

Figure 19: Graph Plots (Table 17) for Learning Agent (Q-table) trained against
a Learning Agent (Q-table): The plot on the left corresponds to a = 0.025, the
one on the right corresponds to @ = 0.05. The X-axis represents the regular
intervals in which the Q-values were recorded during training, Y-axis is the
number of wins by each player. During testing, the agent marked “pct” picks
any action with a Q-value that is 97.0% above the highest Q-value.

53

Analysis : Clearly, in both cases, the deterministic agent does not fare well against its
opponent. While there is noticeable fluctuation, the opponent continues to win a significant

number of games.
EXPERIMENT : Any among top 3 actions at test

Methodology : This set of experiments involved the Q agent learning against another Q
agent (both using full Q-tables). The sequence of steps outlined in Table 15 was followed.

Q-values were recorded every 5000 games.

Results : In Table 18, the learner is tested against a trained opponent. The data shown
are for learning rates 0.025 and 0.05. The column on the left shows the points at which the
Q-values were recorded during training. Columns 2 and 3 give the number of wins recorded
by each player. The last column corresponds to the number of games that ended in a draw.
The agent marked (top 3) picks one action from the actions that correspond to the 3 highest

Q-values. The other agent picks the action with the maximum Q-value in each state.

Figure 20 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the Q-values were recorded.

Analysis : Again, the deterministic agent loses to its opponent. The win percentage seems
to be much lower in this case than the other two cases, where the learner at least managed

to beat its opponent for some specific Q-values.

54

a =0.05 a =0.025

Num of | Lrn Lrn | Draw || Num of | Lrn Lrn | Draw
train (top 3) train (top 3)
games games
5000 | 165 788 45 15000 | 405 448 146
25000 | 124 599 276 35000 | 218 716 65
45000 | 328 555 116 55000 | 371 510 117
65000 | 256 580 162 75000 | 369 563 66

85000 | 314 546 139 95000 | 343 499 156
5000 | 177 210 612 15000 | 282 418 299
25000 | 220 601 178 35000 | 254 536 209
45000 | 290 468 241 55000 | 229 618 152
65000 | 360 467 172 75000 | 158 455 386
85000 | 197 689 113 95000 | 293 992 114

Table 18: Learning Agent (Q-table) vs Learning Agent (Q-table): The above
table shows data for two learning agents. Each agent learns every alternate 100
games. During testing the agent in the second column plays deterministically
(picks the maximum from Q-table) while the agent in third column chooses any
of the actions with top 3 Q-values.

Learning rate = 0,025 Legend Learning rate = 0.05
o 1

1111 ALY

e —=— Learner topm goof 3 e D%,
a0 ;)

Draw 400

o

sonf
X . axie: Mumber of Games E00) |
tramed over

L . . . o Y- axier Fuymber of Games won
0000 40000 FOO00 S0000 LO0000 0000 40000 E0OOD E0000 Lanaga

100

Figure 20: Graph Plots (Table 18) for Learning Agent (Q-table) trained against
a Learning Agent (Q-table): The plot on the left corresponds to a = 0.025, the
one on the right corresponds to o = 0.05. The X-axis represents the regular
intervals in which the Q-values were recorded during training, Y-axis is the
number of wins by each player. During testing, the agent marked “top 3” picks
any action from actions with top 3 Q-values.

55

4.4.3 Learning Agent (NN) vs Learning Agent (NN)
EXPERIMENT : Stochastic choice of action at test

Methodology : The first set of experiments involved the QQ agent learning against another
Q agent (both using the connectionist implementation). The sequence of steps outlined in

Table 15 was followed. The weights of the neural network were recorded every 5000 games.

Results : In Table 19, the learner is tested against a trained opponent. The data shown
are for learning rates 0.005 and 0.01. The column on the left shows the points at which
the Q-values were recorded during training. Columns 2 and 3 give the number of wins
recorded by each player. The last column corresponds to the number of games that ended
in a draw. The agent marked “exp” picks one action stochastically using the probabilities
for each action (actions with higher Q-values are assigned higher weights.) The other agent

picks the action with the maximum Q-value in each state.

Figure 21 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the QQ-values were recorded.

Analysis : Clearly, the learner choosing the action corresponding to maximum value from
the Q-values at any state, beats the opponent picking an action stochastically. This is in

contrast to the Q-table implementation.
EXPERIMENT : Actions with Q-values >= 97% of the highest Q-value

Methodology : The second set of experiments involved the Q agent learning against
another Q agent (both using the connectionist implementation). The sequence of steps
outlined in Table 15 was followed. The weights of the neural network were recorded every

5000 games.

Results : In Table 20, the learner is tested against a trained opponent. The data shown

56

a =0.01 a =0.005

Num of | Lrn Lrn | Draw || Num of | Lrn Lrn | Draw
train (exp) train (exp)
games games
5000 | 583 335 81 5000 | 799 167 33
15000 | 693 249 57 15000 | 726 214 58
25000 | 675 261 62 25000 | 693 251 55
35000 | 756 191 51 35000 | 715 234 50
45000 | 734 211 54 45000 | 734 215 50
55000 | 767 187 44 55000 | 668 245 86
65000 | 776 180 43 65000 | 633 294 72
75000 | 589 315 94 75000 | 777 182 40
85000 | 737 209 53 85000 | 723 216 60
95000 | 827 140 32 95000 | 712 235 52

Table 19: Learning Agent (NN) vs Learning Agent (NN): The above table
shows data for two learning agents. Each agent learns every alternate 100
games. During testing the agent in the second column plays deterministically
(picks the maximum from Q values) while the agent in third column chooses
with an exponential distribution

Learning rate = 0.005 Legend Learning rate = 0,01
3
0o '.I . . . - = .-Leamner G . -__‘__.-,.\-’__,.._‘ '__...*\. I_.-' .
". J-._ LR _v, ’- s . ..-). \'_. -
0 -'L_-" - — =— — exp Learmer TN -
400 Dram 400
;‘\ . . L
Y Y .
mof g e X - axds; Mumber of Games . R . A,
- T S
tramed over e
e e ey Y - axis: Humber of Games won e R S

Eooon 40000 OO0 Go000 100000 Eonng 4nqng EoOng 0000 Logong

Figure 21: Graph Plots (Table 19) for Learning Agent (NN) trained against a
Learning Agent (NN): The plot on the left corresponds to a = 0.005, the one on
the right corresponds to a = 0.01. The X-axis represents the regular intervals in
which the Q-values were recorded during training, Y-axis is the number of wins
by each player. The agent marked “exp” picks actions stochastically during
testing.

57

a =0.01 a =0.005

Num of | Lrn Lrn | Draw || Num of | Lrn Lrn | Draw
train (pct) train (pct)
games games
5000 | 353 576 70 5000 | 540 367 92
15000 | 325 608 65 15000 | 380 442 177
25000 | 289 526 184 25000 | 352 573 74
35000 | 514 435 50 35000 | 300 411 287
45000 | 468 395 135 45000 | 469 478 51
55000 | 403 420 176 55000 | 372 509 118
65000 | 493 372 134 65000 | 298 589 111
75000 | 363 468 167 75000 | 585 372 42
85000 | 387 537 74 85000 | 409 538 52
95000 | 539 346 114 95000 | 373 579 46

Table 20: Learning Agent (NN) vs Learning Agent (NN): The above table
shows data for two learning agents. Each agent learns every alternate 100
games. During testing the agent in the second column plays deterministically
(picks the maximum from Q values) while the agent in third column chooses
any action with a Q-value >= 97% of the highest Q-value.

are for learning rates 0.005 and 0.01. The column on the left shows the points at which the
Q-values were recorded during training. Columns 2 and 3 give the number of wins recorded
by each player. The last column corresponds to the number of games that ended in a draw.
The agent marked “pct” picks one action from the actions that have Q-values above 97%
of the highest Q-value for that state. The other agent picks the action with the maximum

Q-value in each state.

Figure 22 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the Q-values were recorded.

Analysis : In this case, there is only a slight difference between the two players. This is

again in contrast to the Q-table implementation, where the learner playing deterministically

58

Learning rate = 0.005 Legend

00 --=--Learmner T

.
500

Learmer prt

400

-

rnf W — = — Dram ETT]

Ty o M i0n
J — Py X - axie: Mumber of Games M " LS "

. ~ .
Lo0E s “_ - I . trained over e e W
Y- axder Hwber of Games won
roann 0000 EOOQ0 0000 Lagddg gnonn 40000 Ennon gonog 100000

Figure 22: Graph Plots (Table 20) for Learning Agent (NN) trained against a
Learning Agent (NN): The plot on the left corresponds to a = 0.005, the one on
the right corresponds to o = 0.01. The X-axis represents the regular intervals
in which the Q-values were recorded during training, Y-axis is the number of
wins by each player. During testing, the agent marked “pct” picks any action
with a Q-value that is 97.0% above the highest Q-value.

lost a significant number of games.
EXPERIMENT : Any among top 3 actions at test

Methodology : This set of experiments involved the Q agent learning against another Q
agent (both using connectionist implementation). The sequence of steps outlined in Table 15

was followed. The weights of the neural network were recorded every 5000 games.

Results : In Table 21, the learner is tested against a trained opponent. The data shown
are for learning rates 0.005 and 0.01. The column on the left shows the points at which the
Q-values were recorded during training. Columns 2 and 3 give the number of wins recorded
by each player. The last column corresponds to the number of games that ended in a draw.
The agent marked (top 3) picks one action from the actions that correspond to the 3 highest

Q-values. The other agent picks the action with the maximum Q-value in each state.

Figure 23 gives a plot of the wins recorded for each player. Each plot is plotted for 20 points

at which the QQ-values were recorded.

59

a =0.01 a =0.005
Num of | Lrn Lrn | Draw || Num of | Lrn Lrn | Draw
train (top 3) train (top 3)
games games
5000 | 413 522 64 5000 | 593 356 49
15000 | 461 488 49 15000 | 522 412 64
25000 | 403 539 57 25000 | 395 552 52
35000 | 549 409 40 35000 | 459 495 46
45000 | 543 405 51 45000 | 482 481 36
55000 | 510 429 60 55000 | 491 424 83
65000 | 588 366 44 65000 | 410 554 35
75000 | 389 557 53 75000 | 599 354 46
85000 | 412 515 72 85000 | 462 497 39
95000 | 626 336 37 95000 | 458 496 45

Table 21: Learning Agent (NN) vs Learning Agent (NN): The above table
Each agent learns every alternate 100

shows data for two learning agents.

games. During testing the agent in the second column plays deterministically
(picks the maximum from Q values) while the agent in third column chooses

any of the actions with top 3 Q-values.

60

Learning rate = 0.005 Legend

Bl . : weewee Leamner £
! .

00

Learner tapn

4nn

kL — = — Dram 00

oo Eon

X axig: Mumber of Games

1ni . ined 100
- e] tramed over

Y- axie: Mumber of Games won

nonn o gooon go00n Foo0n Lledaon panan da00g G000 G0000 Longon

e i S L R

Figure 23: Graph Plots (Table 21) for Learning Agent (NN) trained against a
Learning Agent (NN): The plot on the left corresponds to a = 0.005, the one on
the right corresponds to o = 0.01. The X-axis represents the regular intervals
in which the Q-values were recorded during training, Y-axis is the number of
wins by each player. During testing, the agent marked “top 3” picks any action
from actions with top 3 Q-values.

Analysis : Again, the learner choosing deterministically, plays its opponent with a greater

ability than the Q-table implementation.

4.4.4 Cross Testing

EXPERIMENT : Learning Agent (Q-table) trained against Learning Agent (Q-

table) tested against Programmed agent

Methodology : In this set of experiments, no training was done. Instead, the learning
agents (using full Q-table) trained against learning agent (using full Q-table) were used.
The agents were tested against the programmed opponent for different strategies of choos-

ing actions.

Results : In Table 22, the The data shown is for learning rate 0.025. The column on the

left shows the points at which the Q-values were recorded during training.

61

det exp pct top 3
Num || Lrn | Prg | Drw || Lrn | Prg | Drw || Lrn | Prg | Drw Lrn | Prg | Drw
train || det exp pct top 3
games
8500 || 110 | 470 | 419 || 213 | 565 | 221 || 160 | 181 | 658 175 | 349 | 474
25500 || 165 | 152 | 682 || 216 | 565 | 218 || 142 | 191 | 665 161 | 294 | 544
42500 || 168 | 198 | 633 || 214 | 564 | 220 || 133 | 128 | 738 181 | 243 | 575
59500 || 199 | 125 | 675 || 221 | 564 | 214 || 143 | 216 | 640 114 | 305 | 579
76500 || 273 | 147 | 579 || 200 | 593 | 206 || 161 | 260 | 577 184 | 584 | 231
93500 83 | 109 | 807 || 221 | 563 | 214 || 203 | 178 | 618 181 | 325 | 493
127500 || 158 | 112 | 729 || 211 | 586 | 202 || 233 | 103 | 662 242 | 494 | 263
144000 || 171 | 76 | 752 || 204 | 585 | 210 || 224 | 228 | 546 231 | 441 | 327
161500 || 148 | 125 | 725 || 202 | 583 | 215 || 165 | 121 | 713 202 | 396 | 401
195500 || 150 | 135 | 714 || 210 | 572 | 216 || 105 | 126 | 768 182 | 339 | 477

Table 22: Learning Agent (Q-table) vs Learning Agent (Q-table) Tested against
programmed opponent: The above table shows results for the learning rate set
at 0.025. “Swap” is fixed at 100. The different strategies for choosing actions
is shown as “det” corresponds to choosing actions deterministically, “exp” is
choosing actions stochastically, “pct” corresponds to choosing an action from
all the actions with Q-value greater than 97% of the highest Q-value, “top 3”
is choosing an action from the set of actions with top 3 Q-values.

62

Top 3 actions Actions ahove 97% of the highest

.
. . M .
fonf P _/‘ sy ! A, ;
500 - SN ; . epd £00 j'-\\ A A e T, pet
. -4 R Learmer - v ! Leammer
- .
400 h/ ".I,r
- L~ a J". ELETNN b Programmed ol Progranmed
200 .
Dram con D
Lon
s0n00 Lonoon 150000 Ennn0n con g0 Loonon Tennon To0ane
Stochastic cheice of action Deterministic
[a0 ; "
e e im e namen et , S .\/'-/ o
——=—— rxp Lrazner| _f' — \‘; . s
sou gonr v det. Learner]
o
------- Frograrmed ¥
400 anwe o Programmed
- —= - - Dram
200 e — - - Dram
P B i inna |

sannn 100000 150000 200000 snong loaoon 150000 annnon

Figure 24: Graph Plots (Table 22) for Learning Agent (Q-table) trained against
a Learning Agent (Q-table): Tested against programmed opponent. The plots
correspond to a = 0.025 The X-axis represents the regular intervals in which the
Q-values were recorded during training, Y-axis is the number of wins by each
player. During testing, the agent marked “top 3” picks any action from actions
with top 3 Q-values.

63

Analysis : The learned agent does not beat its opponent in most of the cases. Among
the 4 different means of choosing actions during testing, the deterministic choice of actions
seems to work best. In this case alone, the learning agent outplays the opponent at some

points (as seen from the bottom-right graph in Figure 24).

EXPERIMENT : Learning Agent (NN) trained against Learning Agent (INN)

tested against Programmed agent

Methodology : In this set of experiments, no training was done. Instead, the learning
agents (using connectionist implementation) trained against learning agent (using connec-
tionist implementation) were used. The agents were tested against the programmed oppo-

nent for different strategies of choosing actions.

Results : In Table 23, the The data shown is for learning rate 0.005. The column on

the left shows the points at which the Q-values were recorded during training.

Analysis : The learned agent comes close to beating its opponent in most of the cases.
Among the 4 different means of choosing actions during testing, the deterministic choice of
actions seems to work best. In this case, the learning agent outplays the opponent at some
points (as seen from the bottom-right graph in Figure 25). In the other cases, the learning

agent manages to stay close and is not completely outplayed

Clearly, from Figures 24 and 25, we can see that the learning agent using the connectionist
model performs better against all programmed opponent when compared to the Q-table
implementation. An interesting point to note would be the number of draws in both cases,
which probably signifies that the learning agent actually learns to get rewards, whereas the

Q-table agent learns to stay away from punishments.

64

Top 3 actons Actions above 8T% of the highest
. ' K1 .
L1 . :
0 " e 111
1] - T topd prt
Learner Learner
con 500
....... 400
400 Programwed | FMUE- Lo A P E o S A N L Ty L Progranmed
200 200
£00 — - Dram o . — - - Draw
100 oo . " I"'f
et e e e T LN LN
soann Lonnon Ls0n0n Ennann so000 Ladnng 150000 Enaonn
Stochastic cheoice of action Deterministic
E0n B LI e A L L L T
500 —— =ip Leazrer] o
500 duet. Learmer|
400
------- Programmed 500
200 N e A B W KRRt Frogranmed
— Dram
00 200
— - - Dram
0o
1aa
1ad
saonn Lonnng 150000 tonana

sonnn Lononi 150000 Eognnn

Figure 25: Graph Plots (Table 23) for Learning Agent (NN) trained against a
Learning Agent (NN): Tested against programmed opponent. The plots cor-
respond to a = 0.000 The X-axis represents the regular intervals in which the
Q-values were recorded during training, Y-axis is the number of wins by each
player. During testing, the agent marked “top 3” picks any action from actions
with top 3 Q-values.

65

det exp pct top 3

Num of | Lrn | Prg | Drw | Lrn | Prg | Drw || Lrn | Prg | Drw Lrn | Prg | Drw
train || det exp pct top 3
games
10000 || 302 | 458 | 239 || 406 | 589
30000 || 406 | 463 | 130 | 406 | 589
50000 || 560 | 352 87 || 407 | 588
70000 || 625 | 261 | 113 || 407 | 589
90000 || 299 | 554 | 146 || 406 | 589
110000 || 517 | 298 | 183 || 406 | 589
130000 || 423 | 394 | 182 | 407 | 588
150000 || 377 | 477 | 145 || 406 | 590
170000 || 518 | 225 | 256 || 406 | 589
190000 || 467 | 435 96 || 406 | 589

330 | 661 7 298 | 692 9
459 | 532 7 384 | 604 11
377 | 605 17 386 | 596 17
582 | 392 25 467 | 498 34
280 | 709 9 254 | 734 11
467 | 449 82 457 | 520 21
464 | 521 14 346 | 637 15
326 | 661 12 331 | 657 11
475 | 436 88 467 | 507 25
406 | 585 7 407 | 585 7

L]

Table 23: Learning Agent (NN) vs Learning Agent (NN) Tested against pro-
grammed opponent: The above table shows results for the learning rate set
at 0.005. “Swap” is fixed at 100. The different strategies for choosing actions
is shown as “det” corresponds to choosing actions deterministically, “exp” is
choosing actions stochastically, “pct” corresponds to choosing an action from
all the actions with Q-value greater than 97% of the highest Q-value, “top 3”
is choosing an action from the set of actions with top 3 Q-values.

4.5 Summary

The above experiments were done using the results of the learning rate experiments done

earlier. Based on the above analysis, the following can be summarized:

e Generally, picking the action corresponding to the maximum Q-value works better
for the connectionist implementation. It is not clear about the rest of the strategies,

though the stochastic choice of action does better than the others.

e The above statement does not hold good for the Q-table implementation. There is no

clear winner in this case.

66

e In the cases of cross-testing, the neural network clearly does better (against the pro-

grammed opponent) than the Q-table implementation.

67

5 Limitations and Future Work

An obvious limitation of the thesis is the specific nature of the problem. Nevertheless, many
issues concerning multi-agent learning were discussed even in such a simple domain. Some

techniques followed in this thesis can be extended to more complex domains.

One key issue of multi-agent learning is that other agents are learning. The problem can
be broadened by introducing more than two players and simulating a “dog fight”. Such a

domain would address issues concerning team strategies.

One limitation of multi-agent domains is that the amount of exploration of the agent grows
exponentially with agents. This would play a role when there are more than two agents in

the system.

There are some practical problems (as regards this particular game) that can be looked into
such as the issue of deadlock. It would be interesting to see if the results change noticeably
if the method of breaking the deadlock is changed. Currently, any game going beyond a

certain number of moves is considered drawn.

Cross testing can be attempted in various different ways. For example, consider a learning
agent being trained against another learning agent. During testing, we could test the same
learners at different levels of their learning. i.e an agent trained for 1000 games can be

tested against its opponent trained for 2000 games.

Co-evolution can be attempted by training agents of different types against each other. In
this thesis, one learning agent learns against another of the same type. A connectionist
model could be made to learn against the Q-table implementation. This might result in
another group of agents, and give a more direct measure of comparing the performance of

the learning agents.

68

6 Conclusions

In this thesis, I implement the Q-learning algorithm in two different ways, and evaluate
them with respect to a learning task that involves two competing, game playing agents in
a world with a finite number of states. Experiments on this task indicate that claims made

earlier, are indeed valid, in the context of the game.

In the preliminary tests, I found that the agents learn to beat specific opponents with simple
strategies. The results showed that each agent learns at a different rate justifying the claim
made at the beginning: The learning task is tackled by both agents quite well, though their

approaches and speed of learning are quite different

At learning rates close to 0, a small increase in the learning rate increases the speed of
learning, but becomes highly uneven when the rate parameter is set close to 1. This was
shown by setting the parameter to 0.9. From these sets of experiments, the learning rates
were fixed for each of the opponents for the future set of experiments. For the Q-table
implementation a rate of 0.025 or 0.05 was chosen, whereas for the neural network rates of

0.005 or 0.01 were preferred.

The second claim: both agents have the capability to generalize, but the connectionist im-
plementation outperforms the Q-table, for simple cases, made in the thesis pertains to the
ability of the agents to generalize and play opponents that they were not trained against.
The learning agents were trained against programmed opponents and tested against random
opponents. Both agents were found to be able to beat the random opponent, but differed
significantly in their respective percentage of wins. It was clearly seen that the neural net-

work generalizes better, in the above case.

The main contribution of this thesis is to investigate co-evolution, or the process where

both agents are learning. The final claim was made in this regard: The neural network

69

implementation responds better to co-evolution than the full ()-table.

A set of strategies were developed to allow for a variety of competitive agents. The strate-
gies were aimed at introducing some randomness into the learned agents. The connectionist
model with a deterministic action-picking strategy outplays the other strategies. Further,

the model does better against the programmed opponent than the Q-table implementation.

In this work, I have addressed multi-agent learning in a competing environment. I have
shown that the claims made earlier can be justified by studying the experiments and the

results.

70

References

[Anderson,1987] Anderson, C. (1987) Strategy learning with multilayer connectionist rep-
resentations, Proceedings of the Fourth International Workshop on Machine Learning,
Irvine, CA.

[Barto et.al.,1983] Barto, A., Sutton, R., & Anderson, C. (1983) Neuronlike adaptive ele-
ments that can solve difficult learning control problems IEEFE Transactions on Systems,
Man, and Cybernetics

[Fikes,1971] Fikes, R.E., Nilsson, N.J. (1971) STRIPS: a new approach to the application
of theorem proving to problem solving, Artificial Intelligence

[Holland,1986] Holland, J. (1986) Escaping Brittleness: The possibilities of general-purpose
earning algorithms applied to parallel rule-based systems, Machine Learning: An Al
Approach (vol 2), Morgan Kauffman, San Mateo, CA.

[Lang et.al.,1990] Lang, K.J., Waibel, A.H., & Hinton, G.E. (1990) A time-delay neural
network architecture for isolated word recognition, Neural Networks, vol 2.

[LeCun et. al.,1989] LeCun, Y. Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hub-
bard, W. & Jackel, L.D. (1989) Backpropagation applied to handwritten zip code
recognition, Neural Computation.

[Lin,1992] Lin, L. (1992) Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching Machine Learning, Kluwer Academic Publ., Boston.

[Maclin,1993] Maclin, R. & Shavlik, J. (1993) Using knowledge-based neural networks to
improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Machine
Learning.

[McCarthy,1968] McCarthy, J. (1968) Programs with common sense, Semantic Information
Processing, Cambridge, Mass, MIT Press.

[Nilsson,1980] Nilsson, N.J. (1980) Principles of Artificial Intelligence, Palo Alto, CA, Tioga
Publishers.

[Pednault,1990] Pednault, E. (1990) Formulating Multiagent, dynamic-world problems in
the classical planning framework, Readings In Planning eds. Allen, J., Hendler J., Tate,
A., Moragn Kauffman Publishers, San Mateo, CA.

[Pomerleau,1993] Pomerleau, D.A. (1993) Knowledge-based training of artificial neural net-
works for autonomous robot driving, Robot Learning, Kluwer

71

[Prior,1967] Prior, A.N. (1967) Past, Present and Future, Oxford, Clarendon Press.
[Rosenblatt,1962] Rosenblatt, F. (1962) Principles of Neurodynamics, Spartan, NY.

[Rumelhart et. al. 1986] Rumelhart, D., Hinton, G., & Williams, R. (1986) Learning inter-
nal representations by error propagation. In Rumelhart, D. & McClelland, J. editors,

Parallel Didtributed Processing: Exzplorations in the microstructure of cognition (vol 1)
MIT Press, Cambridge, MA. Academic Publishers.

[Salustowicz,1998] Salustowicz, R., Wiering, M.A., Schmidhuber, J. (1998) Learning Team
Strategies: Soccer Case Studies Machine Learning, Kluwer Academic Publishers,
Boston.

[Samuel,1959] Samuel, A. (1959) Some studies in machine learning using the game of
checkers IBM Journal on Research € Development, Reprinted in E. Feigenbaum and
J.Feldman, eds., 1963, Computers and Thought, McGraw Hill, NY.

[Sutton,1984] Sutton, R. (1984) Temporal aredit assignment in reinforcement learning, PhD
Thesis, Dept. of Computer & Informations Science, University of Massachusetts.

[Sutton,1988] Sutton, R. (1988) Learning to predict by the method of temporal differences,
Machine Learning, 3, Kluwer Academic Publishers, Boston, MA.

[Tate,1984] Tate, A. (1984) Planning in Expert Systems Alvey IKBS Ezpert Systems Theme
- First Workshop, Oxford, March.

[Watkins,1989] Watkins, C.J.C.H. (1989) Learning from delayed rewards, PhD Thesis, Uni-
versity of Cambridge, England.

72

