Abstract

In the world today, we have witnessed an explosion in the amount of data produced. The
deluge of data is clearly impossible to handle by present means. In order to address this
problem Machine Learning research has focussed on developing automatic data analysis
techniques. Most of the techniques developed so far are computationally intensive even
for moderate sized datasets (20,000 examples with 200 features), let alone large datasets
(100,000 to 1,000,000) with a large number of features. The undesirable consequence of the
task is that the learning time becomes unbearably large. This can be addressed by the new
idea of using a user-specified training set size. Previous research in the field has shown that
using subsets of the data collection lowers the accuracy of the learner. This work addresses
the issue of using ensemble learning techniques to overcome this limitation.
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1 Introduction

This chapter begins with an example of the task addressed in this thesis. Section 1.2 is a
statement of the thesis. Section 1.3 details the motivation behind choosing this particular
topic. Section 1.4 describes the context of research for this work. The chapter concludes

with a description of the structure of this thesis.

1.1 Example of the Task Addressed in this Thesis

Consider the following task faced by the credit manager of a bank. The details are hypo-

thetical, but the generic task is representative of the task of any credit manager:

A bank customer applies for a small loan and fills out a standard form that
asks for details such as the balance of their principle savings account, their
monthly expenses, and whether they are employed. The customer’s request is
then processed according to the information contained in this form. To make
this decision, the bank has records of customers who had applied for credit over
the years, plus information about which applications were succesful. Even if
automating the process of using this information is difficult - it would certainly
be worth the effort as the database should be able to provide a valuable basis

to formulate the future lending policy of the bank.

A set of fictional loan applications is shown in Table 1. The various factors that contribute to
the success of the application are called attributes (e.g., Balance, Employed). These attributes
can either be discrete (having a fixed number of values) or continuous (having floating-point
values). In the table, Account and Employed are examples of discrete attributes. Balance
and Monthly Expense are examples of continuous attributes. The decision-making task
of the manager can be called classification. It is possible to automate this process of

classification by creating a classification procedure (or classifier) that will label any given



example presented in the format of Table 1 as accept or reject (based on information from
the form). For this classifier to replace the loan officer, it should be both reliable and
accurate. The cost of running and maintaining the classifier should also be low compared

to the expected profit from the transaction.

Machine Learning (ML) is an active field of research in which several methods for knowledge
encoding have been developed. Computer programs that can do this by “learning” from
examples in a dataset are called inductive systems. An inductive system is one that draws

inferences based only on the training examples it has seen so far.

The classifier used in this thesis is the Naive Bayes Classifier. This classifier has currently
experienced a renaissance in ML. Despite its simplicity, the naive Bayes learning scheme
performs well on most classification tasks and is often significantly more accurate than most

sophisticated methods.

Let us assume that the classifier has Table 1 as its training data, and it has to classify a new
instance. It produces probabilistic estimates, comparing the new instance with all training
data, for all the possible output classes. It then predicts the output class as the class with

the largest posterior probability. Of course, the resulting prediction, which only has a small

Attributes Output
Account | Balance | Employed | Monthly Expense | Class
bank 700 yes 200 accept
bank 300 yes 600 reject
none 0 yes 400 reject
other bank 1200 yes 500 accept
none 3000 no 300 accept
bank 600 no 300 reject
none 2000 no 100 accept

Table 1: A set of examples for the retail credit task.



amount of data to work with, will not be that accurate but it is a good estimate considering
the amount of data available. For example, let us assume that we have the following new

instance to classify:

bank, 640, yes, 500, class =7 (1)

Our task is to predict the target value (accept, reject) of the target concept Output Class.
Calculating the probabilities of the different target values based on the frequency over the

7 training examples we have,

P(OutputClass = accept) = = .5714

= 4285

NIEEESES

P(OutputClass = reject) =

Similarly, we can estimate the conditional probabilities. For example, those for Account =

bank are

P(Account = bank | OutputClass = accept) =

BN ] =

P(Account = bank | OutputClass = reject) =

When handling continuous attributes, we divide the range of values into a fixed number
of bins. In this case, we assume the number of bins to be 5. In the above example, the
range for the attribute Balance is {0-3000}, if we evenly divide the range, the 5 bins are {0-
600},{600-1200}, {1200-1800},{1800-2400},{2400-3000}. Using probability estimates and
similar estimates for the remaining attribute values, we calculate the posterior probabilities

for each class:

P(Class = accept) P(Acc = bank | Class = accept) P(Bal = {600 — 1200} | Class = accept)



P(Empl = yes | Class = accept) P(MthlyEzp = {440 — 520} | Class = accept) = 0.0

P(Class = reject)P(Acc = bank | Class = reject)P(Bal = {600 — 1200} | Class = reject)

P(Empl = yes | Class = reject) P(MthlyEzp = {440 — 520} | Class = accept) = .01058

Thus, the naive Bayes classifier assigns the target value Output Class = reject to this new
instance, based on the probability estimates learned from the training data. Furthermore,
by normalizing the above quantities to sum to 1 we can calculate the conditional probability

that the target value is no, given the observed attribute values. For the current example, this

.01058

oiossr00 — 1-0- In the above case, the table is small and the classification of

probability is
new instances can be done very quickly even on a small computer. But what would happen
if many more examples were used? The method suggested above might end up using too
much time and resources. In the real world a bank would easily accumulate hundreds of
thousands of examples in a few years, but would it be desirable to use them all? Would it
be profitable and less time-consuming at the same time to use just a sample of the training

data instead of the entire data collection? This thesis attempts to provide answers to the

above questions.

1.2 Thesis

This thesis investigates three main questions about the induction of classifiers from very

large datasets.

Question 1: Can a model that has been trained on samples taken from the collection of
training data perform as well as the model that has been trained using the entire training

data collection?



Question 2: Will this method yield accuracies that are comparable to the methods that use

more resources and processing time?

Question 3: Can using the ensemble approach overcome the disadvantages that come with

using sub-sampling techniques?

1.3 Motivation

In the world today, we have witnessed an explosion in the amount of data produced. We
are drowning in information but are starved for knowledge. The deluge of data is clearly
impossible to handle with present means. Uncontrolled and unorganized information is no
longer a resource in an information society. In order to address this problem machine learn-
ing research has focussed on developing automatic data analysis techniques. Most of the
techniques developed so far are computationally intensive even for moderate sized datasets
(20,000 examples with 200 features) let alone large datasets (100,000 to 1,000,000 examples)
with a large number of features (over 1000). Hence, in this work I focus on developing fast

and accurate machine learning techniques that are capable of handling large datasets.

Previous research in the field [Catlett, 1991] has shown that using small subsets of the data
points available when building classifiers lowers the accuracy of the classifier. In this thesis
I address this limitation by scaling up the inductive learning technique using ensemble clas-
sifiers. An ensemble classifier consists of a set of individual classifiers (components) whose
predictions are combined using an appropriate combiner mechanism. Empirical evidence
suggests that an ensemble learner almost always outperforms an average classifier from the

ensemble [Maclin and Opitz, 1997, Quinlan, 1996].

The naive Bayes classifier is used for several reasons. Besides being simple and fast it com-
pares surprisingly well to other more complex learning algorithms like decision tree learning,

rule learning, and instance based learning [Langely and Sage, 1997, Cestnik et al., 1986,



Domingos and Pazzani, 1997]. The naive Bayes learning algorithm is a stable learning al-
gorithm — small changes in the training data do not affect the classifier much compared
to the other unstable algorithms. In addition, naive Bayesian classifier learning is robust
to noise (incorrect training examples) and irrelevant attributes (attributes that are not rel-
evant to predicting the target value). Therefore it is interesting to explore the effects of

different learning techniques using this stable classifier on large datasets.

1.4 Context of Research

In this section, I will cover the context of the fields of research from which the thesis draws

ideas.

1.4.1 Why Inductive Learning Techniques?

In a general sense, the terms induction or inductive reasoning refer to any progression from
specific facts to general rules. The converse, deductive reasoning or deduction refers to the
opposite: the application of general rules to specific facts to derive new facts. Deduction
guarantees that if the premises are correct then the conclusions drawn from them will also
be correct. Induction provides no such guarantee. But if the tasks are well-defined then
induction can be performed according to a precisely defined procedure. These inductive
algorithms are fundamental to the field of ML and were mainly motivated by the desire to
automate the process of knowledge acquisition. Data can be collected by an expert in the
field and supplied to the inducer, which can the train on this data and predict the output

of any unknown future point that it may encounter.



1.4.2 Why the Naive Bayes Classifier?

The Naive Bayes Classifier [Good, 1965, Duda and Hart, 1973, Langely et al., 1992], some-
times called the simple Bayes algorithm, builds a simple conditional independence clas-
sifier. A probability estimate is determined for each output class and the prediction
is made for the class with the largest posterior probability. In this implementation of
the classifier, continuous attributes were discretized using the entropy discretization tech-
nique [Fayyad and Irani, 1993]. Probabilities were estimated using frequency counts with
an m-estimate Laplace correction [Cestnik, 1990] as described in [Becker et al., 1997b].
The Naive Bayes classifier is relatively simple but very robust to violation of its indepen-
dence assumptions. It performs well for many real-world datasets [Ali and Pazzani, 1996,
Kohavi and Sommerfield, 1995] and in [Langely and Sage, 1997], the authors show that the

Naive Bayes classifier is excellent at handling irrelevant attributes.

1.4.3 Why Ensemble Learners?

The main issue in inductive learning is the question of generalization. Given a set of train-
ing examples (i.e., pairs of inputs and corresponding outputs produced according to some
underlying but unknown rule) one wants to generate a classifier which generalizes well (i.e.,
makes accurate predictions for the outputs corresponding to inputs not contained in the
training set). More recently, it has emerged that generalization performance can often be
improved by training not just one classifier but rather by using an ensemble (i.e., a collection
of a finite number of predictors all trained for the same task). This idea of improving gen-
eralization performance by combining the predictions of many different classifiers has been

investigated extensively in the literature [Granger, 1989, Wolpert, 1992a, Breiman, 1989].

When classifying a point using an ensemble classifier, the point is given as input to all the

component classifiers. Each of these classifiers then predicts an outcome for the input point



independent of one another. The predictors are then merged by a combiner mechanism.
Empirical evidence suggests that an ensemble classifier almost always outperforms a sim-
ple classifier [Clemen, 1989, Quinlan, 1996, Wolpert, 1992a, Zhang et al., 1992]. Empirical
evidence further suggests that an ensemble classifier almost always outperforms an average
classifier from the ensemble [Maclin and Opitz, 1997, Quinlan, 1996]. Often the ensemble
classifier outperforms all of its component classifiers. Hence it would be interesting to study
ensemble learners in the context of this thesis, as it is possible for ensembles to overcome

the disadvantages of using subsets of training data.

1.4.4 Why use very Large Datasets?

The meaning of the phrase “very large” in the context of induction has been changing
rapidly with time. It used to mean hundreds or thousands of examples and now it means
tens or hundreds of thousands. The number of attributes is important too, but it does not

seem to exhibit such a wide variation as training size.

In domains where there is perfect information available, even a small set of training data
would prove sufficient to build a classifier that could predict with high reliability. But in
some domains perfect accuracy is not attainable given the imperfections of the data avail-
able. If examples are cheaply available, then the most economical way of raising accuracy
is to use all of those examples to train, provided the induction process remains economical.
However, it should be acknowledged that larger datasets are not always the only or the best

way to use CPU time to improve accuracy.

1.4.5 Why Measure Learning Time?

If only a few hundred training instances are available, the choice between taking .6 seconds

to process 100 examples and taking 0.9 seconds for 200 instances is unlikely to require



close calculations on learning time, but if the choice is between taking 6 CPU hours on
a large computer to process 100,000 examples and 2 CPU weeks to process a million, the
choice becomes economically significant. The question arises whether the small increase in
accuracy to be gained from using a larger set will justify the large increase in cost. Learning
time on large datasets must be measured because of the danger of it becoming uneconomical

or unmanageable or unbearably large.

1.5 What Follows

In the following chapter, I discuss the Naive Bayes Classifier, ensemble learners, ensemble
building techniques, ensemble combining techniques, Bagging and Boosting. In Chapter 3,
I present a set of experiments, with the methodology following each experiment and the
analysis of the results obtained. These experiments include the preliminary baselining
experiments and the advanced experiments. In the last chapter, I draw conclusions for the

thesis.



2 Background

In this chapter, I will provide background material for this thesis. In the first section, I
give an introduction to the Naive Bayes classifier. In section 2.2, I discuss the working
of ensemble classifiers. This machine learning technique has been shown to work well in
general. In sections 2.3 and 2.4, I cover background material on the mechanisms that
have been suggested for building and combining the component classifiers in an ensemble.
Finally, in sections 2.5 and 2.6, I present two ensemble classifier mechanisms that I use in

this work: Bagging and Boosting.

2.1 The Naive Bayes Classifier

The Naive-Bayes Classifier [Good, 1965, Duda and Hart, 1973, Langely et al., 1992], some-
times called Simple-Bayes [Domingos and Pazzani, 1997], builds a simple conditional clas-
sifier based on an assumption of independence. Formally, the probability of an output
class label value y for an unlabeled instance z containing n attributes, < Ay, ..., A, > that

describes the new instance is given by

Ply|s) = P(z|y)-Py)/P(x) by Bayes rule

x P(A1,...An | y) since P(x) is same for all label values
n

= H P(Aj |y) - P(y) by the conditional independence assumption
i=1

The above probability is computed for each class and the prediction is made for the class
with the largest posterior probability. The probabilities in the above formulae must be
estimated from the training set. The basic algorithm is scaled up using methods to handle
the zero contents in probabilities and by using entropy minimization techniques to calculate

the intervals for continuous attributes. Conditional independence is a property defined as
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follows: if A1, A3 and Aj are attributes with output class y independent of A; and As given
As, then we have P(y|Ai, A, A3) = P(y|As) since y is independent of both A; and As
given A3. Conditional independence may not always be a good assumption because the
attributes may not always be independent of each other. In Table 1, we saw that each
instance (x) had attributes (Aj,...A4) Account, Balance, Employed, Monthly Expense and
it belonged to either output class (y) accept or reject. The conditional probabilities are
computed for each value of the various attributes; for example, we compute P(Account =
bank|OutputClass = accept) which is estimated by the fraction "¢ where n = 4 is the total
number of training examples for which OutputClass = accept, and n, = 1 is the number of

these for which Account = Bank.

2.1.1 Laplace-m Approach

The probabilities estimated so far are calculated by the fraction of times the event is ob-
served to occur over the total number of opportunities. While this observed fraction provides
a good estimate of the probability in many cases, it provides poor estimates when n is very
small. To see this difficulty assume that n. is 0, for example in our data from Table 1, we
see that P(MonthlyEzpense = 440 — 520|OutputClass = accept) = 0. This causes two
difficulties. First, f = % produces a biased underestimate of the probability. Second, since
this probability estimate is zero, this probability term will dominate the Bayes classifier
if the future query contains Account = bank. The reason is that the quantity calculated

requires multiplying all the other probability terms by this (zero) estimate.

The class probabilities and the conditional probabilities in the above formulae were based
on pure frequency counts. As shown in the example above, an attribute value A; that does
not occur together with a given class label value will produce a zero estimate for P(A; | y)

for some attribute A;

j» eliminating class y from consideration. To overcome this problem

of a single value controlling the outcome, I used the Laplace approach. In this implemen-

11



tation, the probabilities are estimated using frequency counts with an m-estimate Laplace
correction [Cestnik, 1990]. Given a predefined factor f, if there are n, matches out of n
instances for a k value problem, we estimate the probability as (n.+ f)/(n+kf). Laplace-m
sets the adjustment f to be 1/m, where m is the number of instances in training data set,

making it smaller as the number of instances increases.

2.1.2 Multiple Interval Entropy Discretization

With continuous attributes, we face the problem of dividing the range of the attribute values
into appropriate intervals. Empirical evidence suggests that the entropy-based discretization
of continuous attributes performs well compared to other methods [Kohavi and Sahami, 1996,

Dougherty et al., 1995].

In order to fix a criterion for deciding whether to accept or to reject a partition, we choose
the Minimum Description Length Principle Criterion (MDLPC). It is defined as the mini-
mum number of bits required to uniquely specify the object out of the universe of all objects.
By object, we mean any generic entity such as a concept, a function, a set, etc. In general,
it is assumed that there is some probability distribution governing the occurance of objects
in the universe. This allows us to have interesting universes, like ours, where not all entities
are equally likely to make an appearance at any given time. Hence we make use of the
MDLPC to make a guess at the hypothesis with the higher probability, given a fixed set
of instances. Specifically, the MDLPC states that given a set of data and a hypothesis, we
accept a hypothesis if the total cost of coding the hypothesis and the data is less than that
of coding the data alone. This criterion is chosen as it reduces the arbitrariness that would
be caused if some other heuristic for deciding when to refrain from further partitioning is

chosen.

Let p denote a point that partitions the set S of N examples into subsets S; and S5. Let

12



there be k classes C1, ..., Cy and let P(Cj, S) be the proportion of examples in S that have

class Cj. The class entropy of a subset S is defined as:

k
Ent(S) = = _ P(C;, S) log(P(C;, S)) (2)

i=1

When the logarithm is base 2, Ent(S) measures the amount of information needed, in bits,
to specify the classes in S. To evaluate the resulting class entropy after a set S is partitioned
into two sets S1 and So, we take the weighted average of their resulting class entropies. For
an example set S attribute A, and cut point which is a threshold value, T: Let S; C S be
the subset of examples in S with A-values < T and So = S — S1. The class information

entropy of the partition induced by T, E(A,T;S), is defined as

| St |
| S|

| S2 |
| S|

E(A,T;S) = Ent(S1) + Enit(Ss) (3)
A binary discretization for A is determined by selecting the cut point T4 (defined as the
average of two consecutive values in the set S for which the output class value changes) for

which E(A,Ty;S) is minimal amongst all the candidate cut points. The information gain

of a cut point is:

Gain(A,T;S) = Ent(S)— E(A,T;S) (4)
| 51|
| 5]

Ent(S;) — | 2 |Ent(5’2) (5)

Gain(A,T;S) = Enit(S)— 5]

The cost for the two competing hypothesis {HT,NH} (i.e., the hypothesis induced by the

partition and null-hypothesis) is calculated as follows:

Cost(NH) = N -Ent(S)+ k- Ent(S) (6)

13



Cost(HT) = logy(N — 1)+ | S1 | -Ent(S1)— | Sa | -Ent(S2)

+ logy (3F — 2) + k1 Ent(S1) + ko Ent(Ss) (7)

where k1 and k9 are the number of classes in sets S; and Sy respectively. The MDLPC
prescribes accepts a partition iff Cost(HT) < Cost(NH). Examining the condition under
which [Cost(NH) — Cost(HT)] > 0:

0 < NETLt(S)— ‘ 51 | -Ent(Sl)— | SQ | -Ent(SQ) — logQ(N — 1)

+ kEnt(S) — logo (3% — 2) — k1 Ent(S1) — ko Ent(Ss) (8)

The above inequality, after dividing by IV, reduces to

logy(N — 1) S A(A, T S)

Gain(A,T;S) — ~ N 9)

where

A(A,T;8) =logy (3% — 2) — [kEnt(S) — k1 Ent(S1) — ko Ent(S5)] (10)

Hence the MDLP Criterion - The partition induced by a cut point T for a set S of N

examples - is accepted iff

logy (N — 1) N A(A,T;S)

Gain(A,T; S) > ~ ~ (11)

and it is rejected otherwise.

Now that the selection criterion is fixed for the intervals, I will describe the algorithm
that splits the range of continuous attributes into multiple intervals. The procedure for

selecting a fixed point (Equation 9) can be applied recursively to each of the binary subsets

14



resulting from the selected cut point to yield multiple intervals as shown in the algorithm
Multi-Interval (see Table 2). Given N examples, this procedure will partition the range of
the attribute to anywhere from 2 to N — 1 possible intervals. Algorithm Interval-Extract
returns a set of intervals for attribute A and example set S by calling the recursive algorithm
Multi-Interval. The algorithm Multi-Interval adds as many cut values to the list Val-
list as the MDLPC sees fit. The final product is a list of cut values. Algorithm Interval-
Extract simply sorts this list of values in ascending order and constructs a list of intervals
for attribute A. Each cut value, along with its immediate successor in the sorted Val-
List, defines the lower and upper bounds of an interval, respectively. Prior to the calling

of algorithm Multi-Interval, a binary interval partition is forced on the range of A.

Multi-Interval(A, S, Val-List)
A: A continuous-valued attribute.
S: a set of training examples on which A is defined.

Val-List: pointer to a list of cut values.

1. If (| S|< 2) return;
2. T < Selected-Cut-Value(A4, S);

3. If(MDLPC accepts T) then

4. Insert(T,Val-List);

5. S« ee€S|Ale) <T;

6. S S — 51

7. Multi-Interval(A, S;; Val-List);
8. Multi-Interval(A4, So; Val-List);

Table 2: The Multi-Interval Algorithm for splitting a set of of continuous values into inter-
vals.

15



To illustrate the discretization process, let us consider Table 1 There are two continuous

attributes, Balance and Monthly Expense. The ranges are {0 —3000} and {100 —600} for the

Interval-Extract(A, S)
A: A continuous-valued attribute.

S: a set of training examples on which A is defined.

1. T <« Selected-Cut-Value(A4, S);
2. S+—ecS|Ale)<T;

3. S9+ S—5;

4. Val-List + (T);

5. Multi-Interval(A, S;; Val-List);
6. Multi-Interval(A4, Sy; Val-List);
7. Val-List < Sort(Val-List);

8. = « First(Val-List);

9. Val-List < Rest(Val-List);
10. Intervals < (—o0,x);

11. While (Val-List is not Empty) Do

12. y + First(Val-List);
13. Intervals < Intervals Uz, y];
14. Ty,

15. Intervals < [y, ool;

16. Return(Intervals);

Table 3: The Interval-Extract Algorithm for splitting the continuous range of an attribute
into intervals.
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attributes respectively. In order to minimize the time taken for the process, we make use
of the fact that the selected cut-points are always boundary points (i.e., points where the
Output class value changes). In the loan example we have the cut-point 650 for the Balance
attribute and cut-points 250, 350, 450 and 550 for the Monthly Expense attribute. Since
650 is the only cut-point for attribute Balance, it is chosen. Hence the range for attribute
Balance is now split into two: {0—650} and {650—3000}. For the second attribute, Monthly
Expense, we calculate the entropies of the cut-points 250, 350, 450 and 550.

E(cut — point = 250) = 0.69

E = 0.98

( )
E(cut — point = 350) = 0.86
(cut — point = 450)

( )

E(cut — point = 550) = 0.79

So we choose the cut-point that gives the lowest entropy value (250). Since this is the first
cut-point, we force it as a partition. Now there are two intervals {100—250} and {250—600}.
Since there are no other cut-points in the first partition, we consider the remaining interval

{250 — 600}. We calculate the entropies for the cut-points 350, 450 and 550.

E(cut — point = 350) = 0.95
E(cut — point = 450) = 0.95

E(cut — point = 550) = 0.8

Now we choose cut-point 550 as it has the lowest entropy value. Checking if the MDLPC
holds for the selected cut-point, we compute Gain(A,T;S) = 0.17 and A(A,T; S) = 2.87.
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Since Gain(A,T;S) < 0.97, we reject the partition as it fails to satisfy the MDLPC.

logo(N — 1) N A(A, T S)
N N

Gain(A,T;S) > (12)
Hence we have selected two intervals, {100—250} and {250— 600}, for the attribute Monthly

Expense.

2.2 Ensemble Learners

The main issue of inductive learning is the question of generalization: given a set of train-
ing examples (i.e., pairs of inputs and corresponding outputs produced according to some
underlying but unknown rule), one wants to produce, by a suitable training algorithm, a
classifier which generalizes (i.e., makes accurate predictions for the outputs corresponding

to inputs not contained in the training set).

More recently, it has emerged that generalization performance can often be improved by
training not just one classifier but rather by using an ensemble (i.e., a collection of a (finite)
number of predictions, all trained for the same task). This idea of improving generalization
performance by combining the predictions of many different classifiers has been investigated

extensively in literature [Granger, 1989, Wolpert, 1992a, Breiman, 1989].

Consider the real-life situation in which we are trying to predict the next day’s weather.
Ten copies of the same weather forecast may contain the same amount of information as
just one copy. By obtaining ten different forecasts, however, it may actually be possible to
predict the next day’s weather more accurately, even if the forecasts are all based on the
same satellite data, as the aspects not given importance in some forecasts may be covered
by others and the “good” aspects of the predictions will hopefully be reinforced. The same

is true quite generally for ensemble learning. But only when the classifiers in an ensemble
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Figure 1: A classifier ensemble made up of N component classifiers and a combine mecha-
nism.

are different is there something to be gained from using an ensemble.

An ensemble classifier consists of a set of individual classifiers (see Figure 1). The predictions
of these classifiers, produced by different techniques, are combined by a suitable combiner
mechanism. When classifying a point using an ensemble classifier, the point is given as input
to all the component classifiers. Each of these classifiers then predicts an outcome for the in-
put point independent of one another. The predictors are then merged by a combiner mech-
anism. Empirical evidence suggests that an ensemble classifier almost always outperforms
an individual classifier [Clemen, 1989, Quinlan, 1996, Wolpert, 1992b, Zhang et al., 1992].

Often the ensemble classifier outperforms all of its component classifiers. Numerous meth-

19



ods have been suggested for the creation of component classifiers and for the combining

their predictions. These methods will be discussed in Sections 2.3 and 2.4 in detail.

In order to increase the disagreement between the component classifiers, the classifiers could
be trained using the same method with different training sets in each case. This method
tries to produce members that are more diverse, so as to reduce the ensemble error more
than the error of the individual members [Krogh and Vedelsby, 1995]. The above method-
ology opens up a plethora of ideas for the creation of optimal ensemble learners. The
disagreement between the ensemble classifiers can be considered as the ambiguity in their
classifications. When an ensemble of classifiers is considered it was shown that the general-
ization error of the entire ensemble is equal to the weighted average error of the individual
classifiers minus the ensemble ambiguity (the weighted average of the individual ambigui-

ties) [Krogh and Vedelsby, 1995].

2.3 Ensemble Building Techniques

The classifiers in the ensemble are usually trained independent of each other before com-
bining their predictions. Examples of mechanisms used to build component classifiers in-
clude: (i) using different training parameters with a single learning method [Alpaydin, 1993,
Drucker et al., 1994, Maclin and Shavlik, 1995]; (ii) using different subsets of training data
with a single learning method [Breiman, 1996, Freund and Schapire, 1996]; (iii) using differ-
ent learning methods [Zhang et al., 1992]; and (iv) explicitly searching for a set of classifiers
that is both accurate and diverse [Opitz and Shavlik, 1996]. Bagging [Breiman, 1996] and
Boosting [Freund and Schapire, 1996] are two of the most successful methods used in en-
semble learning that create component classifiers by using different subsets of the training

data.
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2.3.1 Single Training Method - Different Training Parameters

This method involves the use of the same training method with different training parameters
to create an ensemble and has been investigated by many researchers. In [Drucker et al., 1994],
the authors suggest a way to build ensembles of neural networks by using different ini-
tial weights for each network in the ensemble. The training sets chosen to build each
of the networks were selected randomly. In order to ensure that each network is accu-
rate, training was done until the mean square error reached a pre-defined minimum. In
[Maclin and Shavlik, 1995], a combination of networks initialized via competitive learning
is used. Competitive learning was used to partition training data into clusters, each rep-
resenting one output category. Neural networks that have a hidden unit corresponding to
every cluster in all the categories were created. These were then combined to create the
ensemble classifier. The variability among the networks was achieved through randomly
choosing seeds for the competitive learning algorithm and training the algorithm with ran-

dom sequences of examples.

2.3.2 Single Training Method - Different Subsets of Training Data

This technique of building ensembles is followed in the popular methods of Bagging and
Boosting. Bagging [Breiman, 1996] is a method that creates ensembles by randomly se-
lecting training examples, with replacement, for each of its component classifiers. Boost-
ing [Freund and Schapire, 1996], on the other hand, involves creating classifiers sequentially,

applying them to re-weighted versions of the training data.

2.3.3 Single Dataset - Different Training Method

In [Zhang et al., 1992] a hybrid system is built using three different experts which are trained

using the same dataset (see Figure 2). The training system consisted of a statistical model,
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Figure 2: The hybrid system has 3 experts, a statistical module, a memory-based reason-
ing module and a NN module. The combiner combines the outputs to produce the final
output [Zhang et al., 1992].

a memory-based reasoning model and a neural network model. The training of the whole
system involves (1) training the 3 experts and (2) training the Combiner. In order to train
the Combiner, half of the training data is used to train the 3 experts separately and the
outputs of these trained experts on the second half of the training data are recorded. These
outputs are then used as inputs to train the Combiner. After the training of the Combiner
is completed, each expert is trained using the whole training set. These trained experts
together with the trained Combiner form a trained hybrid system. Each expert is then
allowed to make predictions completely independent of the other. The predictions were

then combined using the trained Combiner to yield the final output.
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2.3.4 Searching for Accurate and Diverse Classifiers

In [Opitz and Shavlik, 1996], a neural-network ensemble was built by explicitly looking for
neural networks that committed errors on different parts of the input space. Genetic oper-
ators were applied continually to an initial population of networks to create new networks,

keeping only the set of networks that were highly accurate and diverse in every generation.

2.4 Ensemble Combining Techniques

The performance of the learner can be fine-tuned to get the highest possible accuracy on
a validation set. This fine-tuning can be a complex task when there are patterns on which
even the best learner is not accurate enough when some other learner may be. By suitably
combining these learners, performance can be improved. As there is no point in combining
multiple learners that always make similar decisions, the aim is to be able to find a set of

learners that differ in their decisions to complement each other.

Combining the component classifiers of an ensemble can be done in many ways. Examples
of methods used for combining classifiers include: (i) voting [Hansen and Salamon, 1990];
(ii) simple averaging (in regression) [Lincoln and Skrzypek, 1989]; and (iii) weighted aver-

aging [Freund and Schapire, 1996, Perrone, 1993, Rogova, 1994].

2.4.1 Notation for Combining Predictors

Let us say we have k learners. Let 9; denote the estimate of learner j given input z. Let
S be the training dataset with data (y,,z,),n = 1,..., N, where the y’s are class labels for
the input z’s. For now we ignore how #J; are calculated and instead we concentrate on the

ways in which they could be combined to find C, to get the final estimate as

C = g(91(z, S),V2(x, S), ..., 9 (z, S) | ¥) (13)
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where g is the combiner function with 1) denoting its parameters. When there are ¢ outputs,
each learner gives ¢ outputs which are combined. If we are doing classification, assuming
that C; estimates the posterior probability of class ¢ and the zero-one loss function is used

to minimize Bayesian risk, we choose the class with the highest probability
C* = argmax C; (14)
7

The combining of the classification powers of several classifiers is considered a general prob-
lem in many areas and a systematic investigation has been made. The following approaches

for solving this problem are proposed, based on different methodologies.

2.4.2 Voting

The simplest way to combine multiple classifiers is by woting which corresponds to taking a
linear combination of the learners. If g; denotes the weight of the learner j, the final output

is computed as

m
= Z g5-9; (15)
7j=1
satisfying the following conditions
Vj,g; > Oand ) g; =1 (16)
7j=1

Simple Voting All the voters in this case have equal weight, i.e., g; = 1/m. Hansen and
Salamon [1990] used this technique to combine the predictions of multiple neural networks
in the ensemble. The randomness in the networks was brought about by assigning different
initial weights and sequencing of training examples to the networks. As each of these

networks made generalization errors on different subsets of the input space, the collective
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decision made by them is less likely to be in the error than in the decision made by any of
the individual networks. They concluded that the ensemble can be far less fallible than any

one network.

Weighted Voting If the voters can supply additional information on how much they
vote for each class, then these can be converted to certainties and used as weights in a
weighted voting scheme, for example, proportional to the difference of the two highest out-
puts [Alpaydin, 1993]. Another possibility is to assess the accuracies of the classifiers on
a separate cross-validation set and use that information to compute the weights. Xu et
al. [1992] discuss various ways in which the outputs of several classifiers are combined.
To compute the weights, they propose to use a belief measure or the Dempster-Schafer
theory [Rogova, 1994]. Freund and Schapire [1996] combined the classifiers created by the
Boosting technique by weighting them according to their performance over the training
set. In [Lincoln and Skrzypek, 1989], the authors propose a way to learn the weights in a
voting scheme. In [Alpaydin, 1993], the model complexities in a Bayesian framework are
taken into consideration by giving larger weights to simpler models. In [Perrone, 1993] the
author gives a number of didactic examples that depict the advantage of voting. He also
shows that for a minimum square error, when the learners are unbiased and uncorrelated,

weights should be inversely proportional to variances.

2.4.3 Voting sequence of Combiners

In [Asker and Maclin, 1997] a system called SEQUEL is introduced which suggests a novel
way to combine classifiers. It implements a method for combining the predictions of &
classifiers trained on n examples. The method assumes that each classifier f; produces a
probability estimate so that fx(z) gives the probability that z is an instance of a target

concept C. Each classifier z is an instance of a threshold (7), which is the probability given
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to the negative example with the highest probability. A classifier is considered competent
for an example z if fx(xz) > 74. The prediction of the ensemble f*(z) is the prediction of

the best classifier multiplied by the product of the thresholds of all previous classifiers.

k(z)—-1
f(z) = ( > Ti) fr(z)(2) (17)

i=1

2.4.4 Learning a Combiner function

Wolpert [1992a], describes a stacking mechanism that extends voting in the sense that the
output of the learners are combined through a combiner system that has also been trained.
In the original terminology, the learners are called the level 0 generalizers and the combiner
is the level 1 generalizer. Let’s denote the level 0 generalizers as the 9; and the level 1
generalizer as the combining function g(- | ) specified up to a parameter vector 1. For

example ¢g(-) may be a multi-layer perceptron and 1) its connection weights

r= g(lﬁlalﬂ% 719m | ¢) (18)

The level 1 generalizer learns what the correct output is when level 0 generalizers give a
certain output combination. Thus level 1 needs be trained on data unused in training the
level 0 generalizers. Wolpert proposes the use of the leave-one-out strategy though this is
too costly and k-fold cross validation is more efficient when a larger sample exists. Unlike
voting, in this case ¢g(-) can also be non-linear. In [Zhang et al., 1992] stacking for protein
secondary structure prediction was shown to significantly improve in accuracy. In their
study, the level 0 generalizers are a statistical model, a memory-based learner and a one
hidden layer network. The level 1 generalizer is another neural network with one hidden

layer. Maclin [1998] discusses a method that uses a neural network to predict the accuracy
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of the predictions of each classifier in the ensemble. A k-Nearest Neighbor method for

predicting the accuracy of the classifier, when combining, is also discussed.

2.5 Bagging

The Bagging algorithm (Bootstrap aggregating) by Breiman [1996] votes classifiers gen-
erated by different bootstrap samples (replicates). The algorithm is shown in Table 4. The
classifier denoted by ¥(z, S) predicts the output y, using x as the input. A sequence of
learning sets S are generated, each consisting of N independent observations from the same
underlying distribution S. Using these learning sets we generate a sequence of predictors

{9(z,SE)}. The predictions of these predictors are then combined using majority voting.

The replicate data sets S(B), each consisting of N cases, are drawn at random but with
replacement, from S. Each (y,,z,) may appear repeated number of times or not at all in
any particular SB). Hence the S(B) are a replicate data set drawn from the bootstrap dis-

tribution approximating the distribution underlying S. A critical factor in whether Bagging

Input: training set S, Classifier 9, integer T' (number of bootstrap samples)

1. fori=1toT

2. S’ = bootstrap sample from S (sample with replacement).

3. C; =9(5")

4. C*(z) = arg maxycy Ei:cz-(m):y 1 (the most often predicted label y)

Output: classifier C*

Table 4: The Bagging Algorithm votes classifiers generated using different bootstrap sam-
ples.
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will improve accuracy is the stability of the predictor 9. If minor changes in the training
data set causes major changes in the behavior of the predictor ¥, then the predictor is
considered unstable. Bagging is seen to work well with unstable predicting methods. If
changes in S (i.e. a replicate S) produce small changes in 1, then ¥p will be close to 9.
Improvement will result only otherwise. Some unstable procedures were found to include
neural networks, classification and regression trees, and subset selection in linear regression,

while k-nearest neighbor methods were found to be stable.

2.6 Boosting

Boosting was introduced by Schapire [1990] as a method for boosting the performance of
a weak learning algorithm. After improvements by Freund[1990], AdaBoost (Adaptive
Boosting) was introduced by Freund and Schapire [1995]. But later another version of the
algorithm called AdaBoost.M1 [Freund and Schapire, 1996] was introduced, and Table 5
shows this algorithm. This algorithm generates classifiers sequentially, while Bagging can
generate them in parallel. AdaBoost also changes the weights of the training instances

provided as input to each inducer based on the classifiers that were previously built.

Given an integer k specifying the number of trials, k& weighted training sets Si, So, ..., Sk
are generated in sequence and k classifiers C1, Co, ..., Cy are built. A final classifier C* is
formed using a weighted voting scheme where the weight of each classifier depends on its
performance on the training set used to build it. The probability of picking an example is
initially set to % (where N is the number of original examples). After a classifier is added to
the ensemble, the probabilities are adjusted by a factor based on €, the sum of probabilities
of the examples that were incorrectly classified by the previous classifier. The probability of
selecting each of the misclassified examples is multiplied by % Then all the probabilities
are renormalized to sum to one. Hence the probabilities of misclassified examples are

increased whereas the probabilities of correctly classified examples are decreased. The
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Input: training set S, Classifier 9, integer T' (number of trials)

1. S’ = S with instance weights assigned to be 1.
2. Fori=1to T
3. C; =9(5")

4. € = EzjeS':Ci(zj);éyj weight(x) (weighted error on training set).

5. If & > 3

6. Set S’ to a bootstrap sample from S with weight 1 for every instance.

7. Goto step (3) (this loop is limited to 25 times after which we exit the loop).
8. Bi= 15

9. For-each z; € ', if Cj(z;) = y; then weight(z;) =weight(z;) -
10. Normalize the weights of instances so the total weight of S’ is m.
11. }

12. C*(z) = arg maxyey 3;.c;(z)=y 108 i
Output: classifier C*

Table 5: The AdaBoost Algorithm weights the predictions of the classifiers trained using
examples selected from a weighted training set.

predictions of the classifiers are not simply averaged because the later ones may be effective

in classifying only a small subset of points. To address this problem the predictions of the

classifiers are weighted by the factor log((t—;’“)). Hence classifiers with small values of ¢

will be weighted higher than those with large values, which results in fewer errors on the

training set.
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3 Experiments

This chapter describes the datasets and the experimental methods used in the empirical
evaluations in this thesis. Results obtained for the various methods are presented and an-
alyzed. Machine learning studies intelligent artifacts - systems created by the researchers
who study them. Research in the field has thus tried to emphasize formal analysis and the-
oretical approaches. Indeed considerable progress has recently occured on the theoretical
front, both in formalizing the nature of learning algorithms and characterizing their behav-
ior. Despite this progress, some algorithms still remain too complex for formal analysis. In
such cases, empirical studies of these algorithms must retain a central role. Hence, in this

work I empirically evaluate the new technique of learning from sub-samples.

In any science, the goal of experimentation is to understand a class of behaviors and the
conditions under which they occur. Formally defined, an experiment involves systematically
varying one or more independent variables and examining their effect on some dependent
variables. In this thesis the variables most often varied are the learning methods and the
number of training instances. The dependent variables observed are error rate and learning

time.

3.1 Datasets

The datasets were drawn from the UCI repository with emphasis on ones that were previ-
ously investigated by other researchers. This section overviews the characteristics typically
used to describe datasets, explains the basis on which the datasets used in this thesis were
selected, and gives a brief description of each. The following questions deal with analyzing

the different characteristics of the datasets:

e How many training instances does the dataset comprise?

— Indicates the availability of data for learning.
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e How many classes are there?

— Indicates the possible distribution of the instances among the output classes.

What is their distribution (i.e., their relative frequencies)?

— Gives a general idea about the frequency distributions of the instances among

the output classes.
e How many attributes are there?

— Gives an indication of how elaborate the description of every instance in the

dataset is.

Are the attributes all real-valued, all discrete, or mixed?
— Provides an indication of the nature of the different attributes.

What is the distribution of the values of the attributes?

— Provides an indication of the distribution of the attribute values for each at-

tribute.

Are the values ever unknown?

— Gives an idea about the uncertainty of the availability of data for the dataset.

A harder question to answer is: What is the Bayes optimal error rate (which is the error
rate calculated knowing the estimates of the probability density functions of samples of
classes)? The Bayes optimal error is the lowest error rate that can be possibly be obtained
with any particular problem. This question is complicated by noise, which can make even
a simple concept difficult to formulate. The phrase “the concept” seems to presume that
a 100% correct concept exists, but perfect accuracy may not be achievable and the best

concept may be unknown. The notion of complexity is bound up with the way the concept
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is found and represented; no independent metric of complexity of the concept has gained
acceptance. However, the other descriptors listed above give an indication of the complexity

of the dataset.

One last but important question concerns the origin and purpose of the data: is it a natural
domain of interest to someone other than machine learning researchers (as opposed to
synthetic (or artificial), contrived by those researchers to investigate algorithms rather than
some external phenomenon)? A dataset can still be labeled as natural even though it was
generated by a computer, such as the simulation data for the satellite dataset; the distinction

is made on the basis of whether the dataset concerns some practical real-world task.

The datasets used in this thesis were chosen to “show real-world relevance” and “provide
evidence of generality”. I used almost all the natural domains of sufficient size (at least
5000 training instances) that I could find in the UCI repository. I have included the smaller
datasets also in my experiments to study the nature of the standard techniques in a more
complete way. Table 6 describes the datasets providing answers for most of the questions

that were listed above.

3.2 Experimental Methodology

In this section I will describe the experiments that were performed, what they measured,
and how the results were interpreted. First and foremost, I will elaborate on the general
methodology followed in carrying out the various experiments. The details of the specific

experiments are then given in later sections.

For supervised concept induction tasks, the first dependent variable to measure is the per-
centage of correctly classified future instances. Given a particular performance criterion,
one must estimate this value in some fashion. For estimating accuracy, a model is built

from a set of data called the training data and tested against a set of data set aside for test-
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Data set Dataset Attributes Unknown | Classes
size | Continuous/Nominal | Attributes?
agaricus-lepiota 8124 0/22 yes 2
breast-cancer-wisconsin 699 10/0 yes 2
cleveland-heart 303 8/5 yes 2
credit-a 690 6/9 yes 2
credit-g 1000 7/13 no 2
DNA 21623 0/13 no 3
glass 214 9/0 no 7
hepatitis 155 6/13 yes 2
house-votes-84 435 0/16 yes 2
hypo 3772 7/22 yes 5
hypothyroid 3163 7/18 yes 2
ionosphere 351 34/0 no 2
iris 150 4/0 no 3
kr-vs-kp 3196 0/35 no 2
labor 57 8/8 yes 2
led-creator-+17 5000 0/24 no 10
letter-recognition 20000 16/0 no 26
nursery 12960 0/8 no 5
pima-indians-diabetes 768 8/0 no 2
promoters-936 936 0/57 yes 2
rbs 1877 0/49 no 2
satellite 6435 0/36 no 6
segmentation 2310 0/19 no 7
sick-euthyroid 3163 7/22 yes 2
sick 3772 7/18 yes 2
sonar 208 60/0 no 2
soybean-large 683 0/35 yes 19
splice 3190 0/60 yes 3
vehicle 846 18/0 no 4
waveform 5000 40/0 no 3

Table 6: The characteristics of the datasets used in the experiments are shown. For each dataset
the size of the dataset, the number of continuous and nominal attributes, information about
missing attributes and the number of classes are shown.
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ing called the testing data. To produce an unbiased estimate, these sets should be disjoint
and selected randomly from the available data. In the classification domain, the predictive
accuracy of a learning algorithm depends on predicting properties of unseen instances, not

on summarizing aspects of instances it has already processed.

In this thesis, I have adopted the 10-fold cross-validation technique. In this technique, the
entire dataset is randomly divided into 10 equal parts and each of these 10 sets is used
as the testing set against the classifier, keeping the remaining 9 sets as training sets each
time. The results are then averaged over the observed results. These partitions are selected
by random sampling, where the partitions are randomly generated and the error rate is
averaged across them. Besides improving error estimates, there are a number of significant
advantages to sampling. The goal of separating a sample of cases into a training set and
testing set is to help produce an unbiased error estimate. With a single train and test
partition, too few cases in the training group can lead to erroneous error estimates. The
10-fold cross validation technique allow for more accurate estimates as it guarantees testing

on all instances in the dataset.

The other dependent variable measured was the time taken. Since the major goal of this
thesis is to find methods of speeding up learning by a large factor without significantly

altering accuracy, learning time is scrutinized closely along with changes in error rate.

3.3 Preliminary Experiments - Naive Bayes

In this section, I discuss the preliminary tests conducted with the Naive Bayes Classifier.
These tests are run to study the behavior and efficiency of the base classifier. These re-
sults are used, in later sections, for efficiency comparisons with results obtained from more

complex techniques implemented using this same base classifier.
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3.3.1 Methodology

Our main concern with estimating accuracy is that the estimate should be precise. Hence,
we use the 10-fold cross validation technique. As mentioned above, this technique is used
to get better error estimates. The Naive Bayes classifier was trained on 9 folds each time
leaving one fold to remain the test fold. These results give an idea of the performance and

accuracy of the base classifier used throughout this thesis on unseen examples.

3.3.2 Results

The Naive Bayes classifier discretizes using entropy, estimating probabilities using the
Laplace-m technique and ignoring unknown values during classification as described in
Chapter 2. In Table 7, the results obtained using the Naive Bayes classifier are com-
pared with standard C4.5 results [Quinlan, 1996, Becker et al., 1997a, Dietterich, 1998,
Maclin and Opitz, 1997]. These results are averaged over ten standard 10-fold cross-validation

experiments.

3.3.3 Analysis

The average error for C4.5 is 13.21% and for Naive Bayes it is 13.57%. The results in Table
7 show clearly that the accuracy of the Naive Bayes classifier is comparable to that of C4.5.
If we ignore the large datasets (agaricus-lepiota, kr-vs-kp, letter-recognition, satellite and
segmentation) C4.5’s error is 15.61% and Naive Bayes’s error is 14.29%. But this estimate

will not be very useful as I am going to concentrate on the larger datasets in this work.

The Naive Bayes is an efficient an accurate algorithm. Clearly from the results we can see
that its accuracy is very good on small datasets when compared with larger ones. This
behavior can be attributed to the fact that the classifier may asymptote to a high error

rate, making it less useful as a classifier for very large datasets.
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Dataset Naive Bayes | C4.5 Sign Test
Error Error | (Naive Bayes vs. C4.5)

agaricus-lepiota 0.78 0.00 +
labor 11.90 19.12 -
breast-cancer-wisconsin 3.37 5.25 -
letter-recognition 26.35 12.36 +
cleveland-heart 17.52 24.02 -
pima-indians-diabetes 25.22 25.31 -
credit-a 13.82 14.55 -
promoters-936 5.81 12.8 -
credit-g 26.46 28.96

rbs 9.08 11.2 -
glass 29.99 33.17 -
satellite 18.67 13.8 +
hepatitis 15.82 20.75 -
segmentation 7.04 37 +
house-votes-84 9.98 5.06 +
sick 3.03 1.3 +
hypo 0.92 0.48 +
sonar 22.21 27.42 -
hypothyroid 1.42 073 +
soybean-large 7.69 8.20 -
ionosphere 10.09 10.79 -
splice 5.41 5.9 -
iris 8.33 5.20 +
vehicle 39.23 29.4 +
kr-vs-kp 12.55 0.75 +
waveform 20.0 23.41 -

36

Bayes optimal error as the dataset grows to infinity).

Table 7: Results obtained for the datasets from Table 6 using the Naive Bayes classifier and C4.5.
The third column, shows the difference sign for the results obtained from both the classifiers for
statistical analysis using the Sign Test.

While the Naive Bayes classifier shows good performance on many of the datasets, it is
still a very limited classifier. It is a “global classifier” and cannot make local predictions.
Hence the Naive Bayesian inducer cannot be consistent in the statistical sense without

additional assumptions (an inducer is consistent if the classifiers it produces approach the




Applying the sign test to the distribution of results, we assume that the probability of a

type I error, denoted by «, is .05. Formulating the decision rule, we have:

Decision Rule: Reject the hypothesis of the identity of the two distributions if the number
of positive differences among the matched pairs is between 0,...7 and 19...26 (called

the critical region).

In the case of comparing the Naive Bayes with C4.5, the number of positive differences
computed is 11 out of 26 datasets, and since this is outside the critical region we do accept
the hypothesis of the identity between the two distributions. Hence, we conclude that the

results obtained from the Naive Bayes classifier and C4.5 are comparable to each other.

3.4 Preliminary Experiments - Bagging and Boosting

This section, presents results obtained by applying the techniques of Bagging and Boosting
to the Naive Bayes classifier. These results serve as a baseline for the future experiments

conducted with ensembles of classifiers.

3.4.1 Methodology

This set of experiments involved running the Bagging and the Boosting algorithms on the
datasets. In these experiments, the 10-fold cross-validation technique was applied to the

Bagging and Boosting algorithms presented earlier in Sections 2.5 and 2.6.

3.4.2 Results

Table 8 shows the results obtained for Bagging and Boosting. Figure 3 shows a bar-graph of
the results in Table 8 for a few selected datasets. Since the later experiments are conducted
on ensemble classifiers, the simple classifier Bagging and Boosting results will provide a

baseline for the later experiments. These results will aid the reader in obtaining a better
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Dataset Base | Bagging | Boosting | Sign Test Sign Test Sign Test
Error Error Error | (Base/Bag) | (Base/Boost) | (Bag/Boost)
agaricus-lepiota 0.78 0.48 0.0 + + +
breast-cancer-wisconsin 3.37 3.14 3.74 + - -
cleveland-heart 17.52 17.38 18.31 + - -
credit-a 13.82 14.13 14.69 - - -
credit-g 26.46 24.64 26.38 + - -
DNA 37.96 38.04 36.87 - + +
glass 29.99 29.43 29.39 + + +
hepatitis 15.82 14.39 16.78 - - -
house-votes-84 9.98 9.87 4,77 - + +
hypo 0.92 0.90 0.84 + + +
hypothyroid 1.42 1.45 1.36 - + +
ionosphere 10.09 9.66 9.17 + + +
iris 8.33 6.33 7.33 + + -
kr-vs-kp 12.55 12.49 5.91 + + +
labor 11.90 10.19 8.63 + + +
led-creator-+17 25.54 25.64 25.88 - - -
letter-recognition 26.35 25.2 18.65 + + +
nursery 9.66 9.79 8.17 - + +
pima-indians-diabetes 25.22 24.34 24.38 + + -
promoters-936 5.81 5.76 5.78 + + -
rbs 9.08 8.21 9.99 + - -
satellite 18.67 18.29 18.19 + + +
segmentation 7.04 6.92 7.19 + - -
sick 3.03 2.88 2.91 + + -
sick-euthyroid 3.88 3.88 3.82 + + +
sonar 22.21 21.34 21.32 + + +
soybean-large 7.69 7.26 6.48 + + +
splice 5.41 4.45 5.82 + - -
vehicle 39.23 40.22 38.54 - + +
waveform 20.0 20.06 20.07 - - -

Table 8: The table shows the base results obtained for the datasets using the Bagging and the
Boosting techniques. The last three columns present the difference scores, between the Naive
Bayes, Bagging and Boosting results, for analysis using the Sign Test.

view of the results obtained, by comparison with the results of the base classifier. The

results shown were averaged over ten standard 10-fold cross-validation trials.
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3.4.3 Analysis

The Naive Bayes algorithm is a very stable algorithm, and Bagging being a variance reduc-
tion technique did not significantly reduce the error rates. The bar-graph in Figure 3 gives
a general idea of the performance of Bagging and Boosting on a few selected datasets. The
Boosting results proved to be better than Bagging overall, but it degraded performance
for 12 datasets (breast-cancer-wisconsin, cleveland-heart, credit-a, credit-g, hepatitis, iris,

led-creator-+17, pima-indians-diabetes, rbs, segmentation, splice and waveform).

In general, Bagging produced results with slightly lower error rates than the results obtained
for the single classifier except for the credit-a, DNA, hypothyroid, led-creator-+17 and nurs-
ery. Except for the agaricus-lepiota, iris and splice datasets, Bagging did not significantly
decrease the error rates when compared to the single classifier. The Boosting results were
more extreme. It performed significantly worse than Bagging for the following datasets:
breast-cancer-wisconsin, cleveland-heart, credit-a, credit-g, hepatitis, led-creator-+17, rbs,
splice and waveform. At the same time, Boosting did exceptionally well for agaricus-lepiota,

house-votes-84, kr-vs-kp, labor and vehicle.

Applying the sign test again to the distribution of results, assuming again the probability

of a type I error (a) to be .05. Formulating the decision rule, we have:

Decision Rule: Reject the hypothesis of the identity of the two distributions if the number
of positive differences among the matched pairs is between 0,...9 and 21... 30 (called

the critical region).

Single vs. Bagging: Since the number of positive differences computed is 21 out of a
30, this lies in the critical region and we reject the hypothesis of the identity between the
two distributions. From this we conclude that the results obtained from the Naive Bayes

classifier and the Bagging technique are not comparable to each other.

Single vs. Boosting: Since the number of positive differences computed is 21 out of a
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Figure 3: Datasets for which the errors for Bagging are uniformly lower than for Boosting.
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30 this lies in the critical region and we reject the hypothesis of the identity between the
two distributions. From this we conclude that the results obtained from the Naive Bayes

classifier and the Boosting technique are not comparable to each other.

Bagging vs. Boosting: Since the number of positive differences computed is 16 out of a
30 this lies outside the critical region and we accept the hypothesis of the identity between
the two distributions. From this we conclude that the results obtained from the Bagging

technique and the Boosting technique are comparable to each other.

3.5 Advanced Experiments - Bagging using Training Samples

In this section, I present experiments that were conducted by using only sub-samples of
data from the training set. This method has an obvious disadvantage of reducing accuracy
of the learned concept when compared to methods that learn from the entire training data
collection. In order to reduce this effect, I use the ensemble techniques of Bagging and
Boosting. These techniques have certain advantages over single classifier learning in that
they are capable of learning a concept in a more complete way. Hence in this section,
unlike the experiments that were run in previous sections, training is done on sub-samples
selected at random from the training set. Ensemble classifiers are described in detail in
Sections 2.2, 2.3 and 2.4. Details on how the Bagging and the Boosting technique works is

covered in Sections 2.5 and 2.6. The questions we are trying to answer in this section are:

Question 1: Will the Sub-sample Bagging method yield accuracies that are comparable to

the standard Bagging methods that use more resources and processing time?

Question 2: Can using the ensemble approach with Bagging overcome the disadvantages

that come with using sub-sampling techniques?
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3.5.1 Methodology

Each classifier in the ensemble was built using only a random sub-sample of the dataset. The
training samples used were of a fixed size containing 100, 200, 500 and 1000 samples. The
Bagging technique was used to build the ensemble of classifiers (each with 25 component

classifiers). The results were averaged over five standard 10-fold cross-validations.

3.5.2 Results

The results obtained for Bagging using sub-samples are shown in Figures 4 to 14 for the
larger datasets (i.e., datasets with more than 3000 samples). For every dataset, the graph
with plots representing the simple classifier results, the standard Bagging results and the
sub-sample Bagging results are shown in the graph. The time taken (in minutes) for the
experiments are shown in Table 9 for all the datasets. The first and second columns indi-
cate the dataset name and sizes. The third column shows the time taken by the Bagging
algorithm with a standard training set size to train an ensemble of size 25. The columns 3
to 7 show the time taken for the corresponding training set sizes shown in the appropriate
columns for the same ensemble size of 25. The results were averaged over 5 standard 10-fold
cross-validations. In order to enable uniformity of time comparisons, all of the following

experiments were performed on Sun Ultra 1 machines.

The graphs shown in Figures 4 to 14 plot the error rates for Bagging Sub-samples of fixed
sizes (100, 200, 500 and 1000). The plots for the base classifier result is indicated by a
horizontal line marking the error rate. The standard Bagging plot is also included in every

case.
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Figure 4: Graph for the agaricus-lepiota dataset showing the plots for Bagging Sub-samples
using different fixed-sized datasets of 100, 200, 500 and 1000 instances. The standard
Bagging plot is also shown. The plot for the single classifier results is shown as a plot
independent of ensemble size.
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Figure 5: Graph for the DNA dataset showing the plots for Bagging Sub-samples similar
to Figure 4.
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Figure 6: Graph for the hypothyroid dataset showing the plots for Bagging Sub-samples
similar to Figure 4.
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Figure 7: Graph for the kr-vs-kp dataset showing the plots for Bagging Sub-samples similar
to Figure 4.
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Figure 8: Graph for the led-creator-+17 dataset showing the plots for Bagging Sub-samples
similar to Figure 4.
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Figure 9: Graph for the letter-recognition dataset showing the plots for Bagging Sub-
samples similar to Figure 4.
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Figure 12: Graph for the segmentation dataset
similar to Figure 4.
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Figure 13: Graph for the sick-euthyroid dataset showing the plots for Bagging Sub-samples

similar to Figure 4.
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Figure 14: Graph for the waveform dataset showing the plots for Bagging Sub-samples

similar to Figure 4.

Time Taken(mins) with Time Reduction(%)

Dataset Dataset Training Set Size

size | Standard | 100 | 200 | 500 | 1000
agaricus-lepiota 8124 | 1423.87 | 21.16(98.51) | 43.30(96.96) | 90.87(93.62) | 197.40(86.14)
DNA 21623 | 5701.60 | 33.33(99.42) | 67.89(98.81) | 144.78(97.46) | 292.39(94.87)
hypothyroid 3163 354.89 | 16.06(95.47) | 28.11(92.08) | 64.67(81.77) | 124.96(64.78)
kr-vs-kp 3196 612.17 | 18.58(96.96) | 37.23(93.92) | 100.45(83.59) | 213.30(65.16)
led-creator-+17 5000 685.26 | 18.17(97.35) | 34.82(94.91) | 75.64(88.96) | 152.28(77.78)
letter-recognition 20000 | 19594.26 | 134.32(99.31) | 272.83(98.61) | 560.52(97.14) | 1088.57(94.44)
nursery 12960 | 5289.41 | 37.00(99.30) | 79.34(98.50) | 178.48(96.63) | 367.32(93.06)
satellite 6435 | 2244.00 | 75.46(96.64) | 109.28(95.13) | 213.98(90.46) | 387.48(82.73)
segmentation 2310 | 621.49 | 36.41(94.14) | 74.38(88.03) | 149.33(75.97) | 298.94(51.90)
sick-euthyroid 3163 349.80 | 14.71(95.74) | 26.58(92.40) | 62.60(82.10) | 122.88(64.87)
waveform 5000 | 2409.44 | 110.34(95.42) | 227.54(90.56) | 265.90(88.96) | 535.43(77.78)

Table 9: The table shows the time taken by the Bagging algorithm for the different-sized training
The percentage reduction from the standard technique, is also shown in
parenthesis, next to the time taken in minutes.

sub-samples chosen.

3.5.3 Analysis

It is clear from the graphs shown in Figures 4 to 14 that the sub-sample Bagging technique

gives better (lower error rate) results as the number of component classifiers in the ensemble

48




Dataset Standard | Sub-sample | Sub-sample Reduction

time(mins) size | time(mins) | in Time(%)
DNA 5701.60 1000 292.39 04.87
hypothyroid 354.89 1000 124.96 64.78
kr-vs-kp 612.17 500 100.45 83.59
led-creator-+17 685.26 200 34.82 9491
letter-recognition 19594.26 500 560.52 97.14
nursery 5289.41 500 178.48 96.63
sick-euthyroid 349.80 1000 122.88 64.87

Table 10: The table shows the time taken by the Bagging algorithm for the different-sized
training sub-samples chosen.

increases and as the training set increases. The graphs for almost all the datasets (except
agaricus-lepiota and hypothyroid) show a drastic reduction in the error rates obtained for

the lower number (approximately 0 to 10) of ensembles.

The graphs for the DNA, hypothyroid, kr-vs-kp, led-creator-+17, letter-recognition, nursery
and sick-euthyroid datasets show a good performance especially with the availability of at
least a 1000 training instances. The error rate is seen to rapidly decrease to the error
rate obtained for the single classifier (in many cases the error rate of the Bagged classifier)
as the ensemble size increases. The led-creator-+17, kr-vs-kp and the letter-recognition
datasets show optimal performances for datasets of sizes 500 and 1000 with an ensemble
size of 25. The led-creator-+17 dataset even shows good performance with a training set
size of 200. Hence we see that for most domains it is in fact possible to obtain a good
performance with a substantially smaller training set. Focusing on Table 9, we see that
significant reduction in time for Bagging occurs because of the reduction in the training set
size. For the DNA, hypothyroid, kr-vs-kp, led-creator-+17, letter-recognition, nursery and
sick-euthyroid domains, the sub-sample error rates are comparable to that of the standard

Bagging results and the simple classifier. This accuracy is achieved in a much shorter time.

For example, the time reduction obtained for the above mentioned datasets is given in
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the Table 10. It is quite clear from the reduction in the time taken that the sub-sample
technique does not compromise efficiency for time for most domains provided a sufficiently

large training set along with a good number of ensembles is chosen.

3.6 Advanced Experiments - Boosting using Training Samples

In this section, I present results obtained from ensembles built from applying the Boosting
technique to sub-samples of the training set. Details on how the Boosting technique works

is covered in Section 2.6. The questions we are trying to answer in this section are:

Question 1: Will the Sub-sample Boosting method yield accuracies that are comparable to

the standard Boosting methods that use more resources and processing time?

Question 2: Can using the ensemble approach with Boosting overcome the disadvantages

that come with using sub-sampling techniques?

3.6.1 Methodology

Each classifier in the ensemble was built using a random sub-sample of the dataset. The
training samples used were of a fixed size containing either a 100, 200, 500 or 1000 samples.
The Boosting technique was used to build the ensemble of classifiers. Using 10-fold cross-
validation, for every fold in the 10-fold cross validation, an ensemble of 25 classifiers was built
(for a total of 250 classifiers for each 10-fold cross-validation). The results were averaged

over five standard 10-fold cross-validations.

3.6.2 Results

The results obtained for Boosting using sub-samples are as shown in Figures 15 to 25,
similar to the Bagging results. For every dataset, the graph with plots representing the

simple classifier results, the standard Boosting results and the sub-sample Boosting results
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are shown in the graph. The times of the experiments are shown in Table 9 for all the
datasets. The first and second columns indicate the dataset name and sizes. The third
column shows the time taken by the standard Boosting algorithm to train an ensemble size

of 25. The columns 3 to 7 show the time taken (in mins) for the different domains.

The graphs shown in Figures 15 to 25 plot the error rates for Boosting Sub-samples of fixed
sizes (100, 200, 500 and 1000). The plots for the base classifier result is indicated by a

horizontal line marking the error rate. The standard Boosting plot is also included in every

case.
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Figure 15: Graph for the agaricus-lepiota dataset showing the plots for Boosting Sub-
samples using different fixed-sized datasets of 100, 200, 500 and 1000 instances. The stan-

dard Boosting plot is also shown. The plot for the single classifier results is shown as a plot
independent of ensemble size.
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Figure 16: Graph for the DNA dataset showing the plots for Boosting Sub-samples similar
to Figure 15.
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Figure 17: Graph for the hypothyroid dataset showing the plots for Boosting Sub-samples
similar to Figure 15.
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Figure 18: Graph for the kr-vs-kp dataset showing

similar to Figure 15.
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the plots for Boosting Sub-samples
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Figure 19: Graph for the led-creator-+17 dataset showing the plots for Boosting Sub-

samples similar to Figure 15.
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Figure 20: Graph for the letter-recognition dataset showing the plots for Boosting Sub-
samples similar to Figure 15.
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Figure 21: Graph for the nursery dataset showing the plots for Boosting Sub-samples similar
to Figure 15.
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Figure 22: Graph for the satellite dataset showing the plots for Boosting Sub-samples similar
to Figure 15.
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Figure 23: Graph for the segmentation dataset showing the plots for Boosting Sub-samples
similar to Figure 15.
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Figure 24: Graph for the sick-euthyroid dataset showing the plots for Boosting Sub-samples
similar to Figure 15.
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Figure 25: Graph for the waveform dataset showing the plots for Boosting Sub-samples
similar to Figure 15.
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Time Taken(mins) with Time Reduction(%)

Dataset Dataset Training Set Size

size [Standard | 100 | 200 | 500 | 1000
agaricus-lepiota 8124 | 7538.25 | 106.90(98.51) | 208.38(96.96) | 516.88(93.62) | 1031.92(86.31)
DNA 21623 | 36813.23 | 354.65(99.42) 586.72(98.81) 765.03(97.46) | 1891.67(94.86)
hypothyroid 3163 | 1766.54 | 83.87(95.47) | 172.42(92.08) | 303.38(81.77) | 620.57(64.87)
kr-vs-kp 3196 | 953.95 | 37.55(96.96) | 70.87(93.92) | 160.87(83.59) | 331.65(65.23)
led-creator-+17 5000 | 4601.93 | 141.95(97.35) | 207.80(94.92) | 516.87(88.96) | 1023.54(77.78)
letter-recognition | 20000 | 84661.36 | 749.54(99.31) | 1441.32(98.61) | 2951.27(97.14) | 5814.52(93.13)
nursery 12060 | 20510.15 | 212.87(99.30) | 421.36(98.50) | 1050.77(96.63) | 2101.35(89.75)
satellite 6435 | 20974.32 | 479.73(96.64) | 910.85(95.13) | 2226.47(90.46) | 4398.57(79.03)
segmentation 2310 | 1893.72 | 279.23(94.14) | 331.73(88.03) | 560.37(75.97) | 910.88(51.90)
sick-euthyroid 3163 | 5116.74 | 184.06(95.79) | 372.53(92.40) | 905.25(82.10) | 1797.43(64.87)
waveform 5000 | 15271.38 | 500.76(95.42) | 1912.90(90.56) | 1754.53(88.96) | 3392.64(77.78)

Table 11: The table shows the time taken by the Boosting algorithm for the different-sized
training sub-samples chosen. The percentage reduction from the standard technique is also
shown in parenthesis next to the time taken in minutes.

3.6.3 Analysis

As is clear from the graphs in Figures 15 to 25, the experiments with Boosting prove to
be less uniform and more interesting than Bagging in general. The error-rates overall are
lower than those obtained for Sub-sample Bagging. For the agaricus-lepiota, hypothyroid,
kr-vs-kp, led-creator-+17, letter-recognition, nursery, satellite, segmentation and the wave-
form datasets, the Sub-sample method seems to work well with a substantial number of
ensembles. It is interesting to note that in the case of the agaricus-lepiota dataset, the error
reaches an optimum with only a small number of ensembles (5 - 10) with and a training set

of only 100 instances.

The segmentation and the led-creator-+17 datasets show that with only 15 ensembles and
training sizes of 200 or more, the sub-sample technique gives results that are very sim-
ilar to those obtained from standard Boosting techniques. The graph for the kr-vs-kp

dataset shows error rates that are definitely lower than the single classifier with ensem-
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Dataset Standard | Sub-sample | Sub-sample Reduction

time(mins) size | time(mins) | in Time(%)
agaricus-lepiota 1423.87 100 21.16 98.51
kr-vs-kp 612.17 500 100.45 83.59
led-creator-+17 685.26 500 75.64 88.96
segmentation 621.49 200 74.38 88.03
sick-euthyroid 349.80 1000 122.88 64.87
waveform 2409.44 500 265.90 88.96

Table 12: The table shows the time taken by the Boosting algorithm for the different-sized
training sub-samples chosen.

ble sizes approximately greater than 5, regardless of the training set size. The plots for
the DNA, letter-recognition and the nursery datasets show the error rates obtained for the
sub-sampling technique is comparable to but not as low as those obtained from standard

techniques.

For the domains where Sub-sample Boosting works well, the error seems to increase consid-
erably when the ensemble size is increased, unlike training size which does not seem to affect
the error rate as much. This can be observed from the graphs for agaricus-lepiota, kr-vs-kp,
led-creator-+17, satellite and segmentation datasets. Hence for most domains, where the
Sub-sample Boosting technique gives good results, it would not make much of a difference if
one were to increase the training set size. Table 12 shows the percentage in time reduction
possible using Sub-sampling technique over the standard method for the domains in which
the former performs better. From the graphs in Figures 15 to 25 and the time reduction
estimates in Table 12 we can see that the Sub-sample Boosting technique would be a prof-
itable method to use, in terms of time, for the following domains: agaricus-lepiota, kr-vs-kp,
led-creator-+17, segmentation, sick-euthyroid and waveform. Comparing the Sub-sample
Bagging results to the Sub-sample Boosting results we see that the Sub-sample Boosting

technique produces results that are more unstable.
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4 Conclusions

In this thesis, I implement two different ensemble building techniques and evaluate them
with respect to learning from samples of training data. Experiments on these techniques
indicate that the questions put forth earlier have been answered with respect to the different

domains used.

In the preliminary tests, I first determined the baseline results with which to compare the
results of the newer technique. The results showed that the Naive Bayes classifier produces

results that are comparable to C4.5 in performance.

Also included in the preliminary tests are the Bagging and the Boosting experiments with
the Naive Bayes classifier. The results show that Bagging is more consistent in giving lower
error-rates than the Boosting algorithm when compared with the base classifier. I then

tested these two ensemble techniques with sub-samples of the training data.

The Sub-sampling techniques were implemented using fixed training set sizes of a 100, 200,
500 and 1000 instances. The Bagging technique seemed to perform in a stable way for most
domains, with the error rates gradually decreasing as the training set and the number of
ensembles increased. It was possible to obtain a good performance with a 1000 training
instances in many domains. It was seen that the new technique of sub-sampling did in
fact work quite well, given sufficient training data and ensembles. The error seemed to
decrease correspondingly when the training set size was increased. The same behavior was
seen when the number of ensembles was increased. This shows that a larger training set is
definitely useful, but at the same time it may be possible to obtain the same accuracy with
a smaller training set using a larger number of ensembles. As the time statistics show, this
would greatly reduce the learning time needed. Results show that it is possible to reduce
the time taken to obtain the base results (from the earlier experiments) with the standard

techniques.
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The Boosting technique, on the other hand, gave non-uniform results. The experiments
suggested that this technique could reduce the error rates considerably for some domains,
implying the advantage of speed that the sub-sampling method promises in general. Boost-
ing with sub-samples produced a drastic reduction in the error rates for some domains when
compared with the results obtained for Bagging with sub-samples. The inherent extreme
nature of Boosting was seen to exist even when sub-samples of training data were used. The
Boosting technique, when it worked, did really well at reducing the error rates drastically
even with a training set size of a 100 and a few ensembles (5 -10). But this behavior was
not consistent for all domains. Furthermore, reduction in the error rates was very small
for corresponding increases in the training set size and the number of ensembles for these
domains. Another interesting observation was that increasing the training set size did not
play a great part in lowering the error rates for a few datasets. Overall, the Boosting method
with sub-samples produced correspondingly better results as the number of ensembles in-

creased.

The main contribution of this thesis is to investigate the problem of overcoming the dis-
advantage of using sub-samples of training data by making use of ensemble techniques.
The strategy proved to work quite well for most domains (7 out of a 11 domains) with the
Bagging technique reducing the time required for the learning task. It proved effective for

a good number of datasets (6 out of a 11 domains) with Boosting.

The questions from Chapter 1 that proved as a chief motivation behind this thesis are re-
stated here along with the conclusions that could be drawn about answering them in the

context of the experiments conducted:

Question 1: Can a model that has been trained on samples taken from the collection of
training data perform as well as the model that has been trained using the entire training

data collection?
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From the results of the experiments we see that the new techniques developed indicate that
a model trained from sub-samples of the training data could perform as well as the model
that has been trained using the entire data collection depending on the domain and the

learning technique being used.

Question 2: Will this method yield accuracies that are comparable to the methods that use

more resources and processing time?

The accuracies obtained for most of the datasets indicate that the sub-sample methods are
not only comparable to the standard techniques but are also competitive in terms of using

lesser time and resources.

Question 3: Can using the ensemble approach overcome the disadvantages that come with

using sub-sampling techniques?

The sub-sampling technique comes with the obvious disadvantage of reducing the accuracy
of the model being built when compared to the standard model. As the results show, the
ensemble method seems to perform well enough to give good results despite this fact. In
most cases, provided a sufficiently large training set and ensembles are available this method

proves competitive to the standard learning techniques.

This claim that induction from large datasets is now manageable or practicable is made
from a theoretical point of view, by examining abstract requirements and trends. But a
specific concrete application may present practical difficulties that should not be left under-
stated. The dataset may be too large to move or copy from the machine where it resides.
In extreme cases, so many training instances may be available that performing even the
simplest computation on them all would be too expensive. In such cases, sub-sampling on
a relatively small training set may become mandatory, which might cause reduction in the

accuracy obtained.
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The principle conclusions of this thesis are that induction from very large datasets is de-
sirable and can be manageable with the techniques presented here. Gains in accuracy are
available in some domains with the use of only sub-samples of the training data available.
Learning can be accelerated using ensemble techniques. These techniques may reduce the

learning time to a manageable level for large datasets.

In this work, I have addressed the problems that come with using sub-samples for learning.
We see from the results that the disadvantage of using sub-samples, i.e., the problem of
reduction in accuracy, is overcome by using ensemble techniques in most cases. The claim

made above can be justified by studying the experiments and the results.
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