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Abstract

With an ever-growing amount of data produced in a wide range of disciplines, there is an

increasing need for effective, efficient and accurate algorithms to discover interesting patterns in

the  data.  In  many datasets,  not  all  the  features  contain  useful  information.  In  this  work,  we

attempt to build a system using genetic algorithms and decision trees to construct a predictive

model  which  identifies  good,  small  subsets  of  features  with  high classification  accuracy  and

establishes relationships within a dataset. Our system uses a decision tree based preprocessing

technique to discard likely irrelevant features.  

The  system  that  we  have  created,  which  uses  survey  datasets,  employs  a  genetic

algorithm combined with decision trees. In our testing, it effectively addresses the problem of

identifying predictors of cardiovascular disease risk factors and mental health status variables

and  discovering  interesting  relationships  within  the  data,  especially  between  cardiovascular

disease risk factors and mental health status variables. We also identify a set of parameters of

genetic algorithms for which accurate data models are obtained. We believe that our system can

be applied to various epidemiological datasets to construct meaningful predictive data models.

We  believe  that  the  results  obtained  from  our  system  may  enable  physicians  and  health

professionals  to  intervene  early  in  addressing  cardiovascular  disease  risk  factors  and  mental

health issues and reduce risks of both conditions effectively and efficiently. 
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Chapter 1

Introduction

In recent years, we have seen a dramatic increase in the amount of data collected. Data is

collected  by numerous  organizations and  institutes to  extract  useful  information  for  decision

making using various data-mining algorithms. The ever-growing amount of data has prompted a

search for effective, efficient and accurate algorithms to extract useful information from the data.

Generally a dataset consists  of large number of features, but only some of the features in the

dataset contain useful information. The feature subset selection process is an useful process to

find an optimal subset of features that contain useful information. In this thesis, we construct

easily comprehensible predictive models using a genetic algorithm system employing decision

trees, which assesses importance of features in the dataset, identifies optimal subsets of features

and  establishes  relationships  within  the  data.  In  particular,  we  apply  our  system  to

epidemiological  datasets  as  they  contain  a  large  number  of   features  that  contain  irrelevant

information.. 

In  order  to  increase  public  awareness  about  health  risks,  several  collaboratives  and

organizations  have  collected  large  amounts  of  data  using  surveys.  A  lot  of  interesting

information  can  be  inferred  from the  collected  medical  survey  data.  Statistical  methods  are

frequently  used to  find  patterns  in  the  data  [Manilla,  1996]  as  they are   easy  to  implement.

However, they do not reflect every aspect of relationships in the data, especially relationships

involving  multiple  features.  Currently,  machine  learning  techniques,  which  make  use  of

statistical properties, are used increasingly for analyzing large datasets [Manilla, 1996]. Using

machine  learning  techniques  we  can  view  data  from  several  perspectives  and  find  complex

relationships within the data.

According  to  statistics  released  by  the  American  Heart  Association  [AHA,  2004],

cardiovascular diseases have been the main cause of deaths in United States since 1900 except

for  the  year  1918.   Statistics  [NIMH,  2004]  also  indicate  depression  is  one  of  the  most

commonly diagnosed psychiatric illnesses in United States. Studies [Davidson et al., 2001, Ford

et al., 1998, O'Connor et al., 2000, Pratt et al., 1996] have linked clinical depression with chronic
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illnesses  and  life  threatening  diseases.  Understanding  the  relationship  between  risk  factors

associated with cardiovascular disease and poor mental health can lead to prevention and early

intervention for both conditions. 

In this thesis we present a machine learning system which attempts to identify predictors

of cardiovascular disease risk factors and mental health status variables. We attempt to derive a

predictive  model  which  draws  inferences  from  survey  data  to  identify  predictors  of

cardiovascular disease risk factors and mental health in a regional population. In this research we

further  attempt  to  establish  relationships  within  the  data.  We  especially  try to  identify  the

relationship  between  cardiovascular  disease  risk  factors  and  mental  health  which  might  help

physicians  and health  professionals to intervene early  in addressing mental  health  issues  and

cardiovascular disease risks. 

1.1 Machine Learning and Knowledge Discovery in Databases

Learning is a process of improving knowledge through experience. Humans learn from

their experience so that they perform better in similar situations in the future and do not repeat

their  mistakes.  This  experience  comes  either  from  a  teacher  or  through  self-study.  A more

concrete definition of learning which is widely accepted by psychologists is as follows: 

Learning is a process in which behavior capabilities are changed as the result of

experience,  provided  the  change  cannot  be  accounted  for  by  native  response

tendencies, maturation, or temporary states of the organism due to fatigue, drugs,

or other temporary factors [Runyon, 1977].

 Machine learning is  a process  of  attempting to  automate  the human learning process

using computer programs. The goal of a machine learning algorithm is to learn from experience

and build a model that can be used to perform similar tasks in the future. A machine learning

system is a system capable of autonomous acquisition and integration of knowledge. In recent

years many successful machine learning algorithms have been developed ranging from learning

to perform credit  risk  assessment  [Gallindo  and Tamayo,  1997]  to  autonomous vehicles  that

learn to drive on highways [Pomerleau, 1995]. 
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Recently, the capacity for generating and collecting data has increased rapidly. Millions

of databases are available in business management,  government administration,  scientific and

engineering data management, traffic control, weather prediction, diagnosis of patients and many

other applications. The number of such databases is increasing rapidly because of the availability

of powerful and affordable database systems. This explosive growth in data and databases has

generated  urgent  need  for  new techniques  and  tools  that  can  intelligently  and  automatically

process the data into useful information [Chen et al., 1996]. Knowledge discovery in databases

(sometimes  called  data-mining)  makes  use  of  concepts  from artificial  intelligence  to  extract

useful  information  from the  databases  and in  combination  with  machine  learning  techniques

produce efficient predictive models. 

1.2 Thesis Statement

In this research we propose to build a system employing genetic algorithms to perform

feature subset selection to reduce the number of features used in constructing the learning model

while maintaining the desired accuracy. In this predictive model, we use decision trees as a base

classifier to construct the learning model and reflect the relationship within the data. We further

attempt to identify the factors affecting the performance of the genetic algorithms. In this thesis,

we also compare the results obtained from our proposed model with the results obtained from

traditional  statistical  methods.  As a  test  of  our  method we attempt  to  construct  a  predictive

model to identify predictors of cardiovascular disease risk factors and mental health status in a

regional population from a survey dataset. 

The aims of the study of cardiovascular disease risk factors and mental health status are: 

➢  Identification of predictors of cardiovascular  disease risk factors and predictors of mental

health status of a regional population.

➢  Examination of relationships between cardiovascular disease risk factors and mental health

status in a regional population.

➢ Identification of an optimal set of parameters of the genetic algorithms for the survey dataset.
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1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 presents background information  for our

system, introduces decision tree learning and genetic algorithms, and various related concepts.

Chapter 3 introduces the dataset used to find the predictors of cardiovascular disease risk factors

and mental health status of a regional population. Chapter 4 presents the proposed solution and

the design of the system. It discusses the preprocessing technique, the feature subset selection

procedure and the construction of the predictive model. Chapter 5 describes various experiments

that  were  conducted  and  the  results  obtained  from  these  experiments.  It  further  presents  a

comparison  of  the  results  obtained  by  our  proposed  system  with  the  results  obtained  from

traditional  statistical  methods.  Chapter  6  discusses  research  related  to  this  work.  Chapter  7

discusses  future  improvements  that  can  be  done  to  the  proposed  system.  Finally,  Chapter  8

summarizes the main findings of this work and concludes the thesis.
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Chapter 2

Background

This chapter  discusses  background for this  research.  In the first  section we introduce

decision trees, a method used in supervised machine learning. We discuss  the representation of

decision trees,  the  decision  tree  learning  algorithm and related  concepts.  Finally  we give an

illustrative example showing the decision tree learning process. In the second section we discuss

genetic algorithms, which are an effective technique in machine learning to perform randomized

stochastic search. In this section we first discuss the theory of natural evolution as proposed by

Charles Darwin [Darwin, 1859] and how the theory of artificial evolution borrows concepts from

natural evolution. Then we describe the genetic algorithm learning process, genetic operators and

different selection mechanisms. Finally we discuss the parameters of genetic algorithms.  

2.1 Decision Trees

Decision tree learning [Breiman et al., 1984, Quinlan, 1986] is one of the most popular

and  widely  used  algorithms  for  inductive  learning  [Holland et  al.,  1986].  Decision  trees  are

powerful and popular tools for classification and prediction. A decision tree is used as a classifier

for  determining an appropriate action from a set  of predefined actions. Decision trees  are an

efficient  technique  to  express  classification  knowledge  and  to  make  use  of  the  learned

knowledge. Decision tree learning algorithms have been applied to a variety of problems ranging

from the classification of celestial objects in satellite images [Salzberg et al., 1995] to medical

diagnosis [Demsar et al., 2001, Kokol et al., 1994] and credit risk assessment of loan applicants

[Gallindo and Tamayo, 1997]. 

2.1.1 Decision Trees Representation

As shown in Figure 2.1, a decision tree is a k-ary tree where each of the internal nodes

specifies a test on some feature from the input features used to represent the dataset. Each branch

descending from a node corresponds to one of the possible values of the features specified at that

node. Decision trees classify instances by sorting them down from the root node to a leaf node.
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An instance is classified by recursively testing the feature value of the instance for the feature

specified by that  node starting from the root  node and then moving down the corresponding

branch until a leaf node is reached. A classification label is one of the possible values of the

output feature (i.e., the learned concept). Every leaf node is associated with a classification label

and every test instance receives the classification label of the corresponding leaf.  All the internal

nodes are represented by ovals and all the leaf nodes are represented by rectangles.

For better understanding of decision trees, consider a hypothetical case where you have

to predict the outcome of a basketball  match played by the  Moonriders basketball  team. The

decision tree in Figure 2.1 can be used to try to predict the outcome of the game. The decision

tree can be constructed if you have sufficient data pertaining to the previous performances of the

team and the outcomes of the previous games. 

                      
       midwest      eastern     pacific

       
    Venue         lost       Rebounds                 

      home        away
> 50                  < 50    

      won     Points     
        
       > 100    < 100 won                  lost

 
                                     won         lost

Figure 2.1: A decision tree to predict the outcome of a Moonriders basketball game.
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Consider the following example:

(Opponents Division =midwest, Points>100=yes, Venue=home, Rebounds>50=no, Opponents

Points>100=yes,Opponents Rebounds>50=no)

Classification starts at the root node of the decision tree. At the root node the  feature

Opponents  Division  is  tested  and  sorted  down  the  branch  corresponding  to  midwest  in  the

decision tree. Then at the second level of the decision tree the feature  Venue  is tested and is

sorted down the left branch (corresponding to Venue = home) to a leaf node. When an instance is

classified down to a leaf node, it is assigned the classification label associated with the leaf node

(Outcome = won). Thus the decision tree predicts that if Moonriders are playing a home game

against opponents from Midwest division, then they will win the game. 

The decision tree can also be represented as a set of  if-then rules. The learned decision

tree represented in Figure 2.1 can also be represented as if-then rules as shown in Table 2.1. A

decision tree can also be represented as a disjunction of conjunctive expressions. Each path in

the decision tree from the root node to the leaf node is a conjunction of constraints on feature

values and  all  such paths from the root to a leaf  node form a disjunction of conjunctions.

Table 2.1: The If-then rules corresponding to learned decision tree in Figure 2.1.

if Opponents Division=eastern then Outcome=lost

if Opponents Division = midwest and Venue = home then Outcome = won

if Opponents Division=midwest and Venue=away and Points>100 then Outcome=won

if Opponents Division=midwest and Venue=away and Points<100 then Outcome=lost

if Opponents Division=pacific and Rebounds>50 then Outcome=won

if Opponents Division=pacific and Rebounds<50 then Outcome=lost

Table 2.2: Decision tree rules from the decision tree in Figure 2.1 
represented as a disjunction of conjunctive expressions.

 (Opponents Division=midwest ∧  Venue=home)

∨  (Opponents Division=midwest ∧  Venue=away ∧  Points>100)

∨  (Opponents Division=pacific ∧  Rebounds>50)
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Thus  decision  trees  represent  a  disjunction  of  conjunctions  on  the  feature  values  of

instances. For example, the paths from the learned decision tree that represent winning outcomes

in Figure 2.1 can be represented as shown in Table 2.2. 

2.1.2 Decision Tree Learning Algorithms 

Most decision tree learning algorithms employ a top-down, greedy search through the

space of possible decision trees. The ID3 decision tree learning algorithm [Quinlan, 1986] is a

basic  decision  tree  learning  algorithm  around  which  many  of  the  variants  of  decision tree

learning  algorithms  have  been  developed.  However,  due  to  various  limitations  of  the  ID3

learning algorithm, it is seldom used. The C4.5 decision tree learning algorithm [Quinlan, 1993]

replaced  the ID3 algorithm by overcoming  many of the  limitations  of  the  ID3 decision tree

learning algorithm. The C5.0 learning algorithm [Quinlan, 1996] is a commercial version of this

family of algorithms. C5.0 incorporates newer and faster methods for generating learning rules,

provides support for boosting [Freund and Schapire, 1996] and has the option of providing non-

uniform misclassification costs.  C5.0 and CART [Breiman et.  al., 1984] are the most popular

decision tree algorithms in use. The CART (Classification And Regression Trees) algorithm is

used  on  a  large  scale  in  statistics. In  this  section  we briefly  describe  the  ID3 decision  tree

learning algorithm.

Table  2.3 summarizes  the  ID3 decision tree  learning algorithm.  First,  we will  define

some of the terms used in the algorithm. The features of the dataset can take two or more distinct

values (e.g., color could be red, green or blue) or can be continuous (e.g., the weight of a person

in pounds). The  target class  is the label given to each training example by a teacher (e.g., in

predicting the outcome of a game, the target labels are won or lost.). The task of the algorithm is

to learn the decision tree from the training data and predict the labels of the examples from the

test data. Information gain, which is based on entropy (discussed in the next sub-section), is the

statistical measure used in ID3 to determine how useful an feature is for classifying the training

examples.  When  a  decision  tree  is  constructed,  some  feature  is  tested  at  each  node  and  a

classification label is attached to every leaf node. 

The ID3 algorithm follows a greedy approach by constructing the tree in a top-down

manner  by  choosing the  'best'  possible feature from those remaining to classify the data. The 
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Table 2.3: An outline of the ID3 decision tree learning algorithm.

ID3 ( S )

• If all examples in S are labeled with the same class, return a leaf

node labeled with that class. 

• Find information gain of every feature and choose the feature (AT)

with highest information gain.

• Partition set into S disjoint subsets S1, S2, ..........., Sn.  where n

is the the number of discrete values the chosen feature can take.

• Call the tree construction process ID3(S1), ID3(S2) ....ID3(SN)  on

each of the subsets recursively and let the decision  trees  returned

by these recursive calls be T1, T2, ........., TN.

• Return a decision tree T with a node labeled AT as the root and T1,

T2, ....., Tn as descendant of T.

ID3 algorithm chooses  the  'best'  feature  from the  remaining  set  of  features  by  performing a

statistical test  (information  gain in  ID3)  on  each  feature  to  determine  how well  the  chosen

feature alone classifies the data. The feature is 'best' in the sense that it classifies the data most

accurately amongst the set of features specified in the dataset if we stop at that feature, but it is

not necessarily the optimal feature for the tree. Initially a decision tree is empty. The root node is

created by choosing the best  feature by calculating the information gain of every feature and

choosing the feature with the largest information gain. Once  the  root  node  is  created, internal

descendant  nodes  are  created  for  every possible value of the feature tested at the root node.

The training data is split at the root node depending upon the value of the feature tested. The

decision tree process continues recursively and the entire procedure is repeated using the training

examples associated with each descendant node to select the best feature at that point and split

the data further. This process continues until the tree perfectly classifies the training examples or

until all the features have been used. 

The algorithm represented in Table 2.3 is a simplified ID3 algorithm. The ID3 algorithm

can  be  extended  to  incorporate  continuous  values  as  well  as  handle  missing  data  values.

Continuous  values  are  handled  by  the  ID3  algorithm  by  dynamically  defining  new discrete

valued features that partition the continuous feature values into a discrete set of intervals. The

ID3  algorithm  handles  missing  data  values  by  probabilistically  assigning  a  value  based  on

observed frequencies of various values for the missing feature amongst the data present at the
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node. The ID3 algorithm takes as input a set  S  = {<X1,c1>,<X2,c2>,.........<Xn,cn>}  of training

samples. The set S consists of training samples of the form <X,c> where X is vector of features

describing some case and c is the classification label for that training sample. The output of the

algorithm is a learned decision tree.

2.1.2.1 Entropy

The main aspect of building a decision tree is to choose the 'best' feature at each node in

the decision tree. Once the best feature is chosen at each node, the data is split according to the

different  values  the  feature  can  take.  The  selected  feature  at  each  node  should  be  the  most

effective  single  feature in classifying examples. The ID3 algorithm uses  a statistical  measure

called information gain to determine how effective each feature is in classifying examples. The

information  gain  of  an feature  determines  how well  the  given  feature  separates the  training

examples  according to  the  target  classification.  The concept  of  information  gain is  based on

another  concept  in  information  theory  called  entropy.  Entropy is  a  measure  of  the  expected

amount of information conveyed by an as-yet-unseen message from a known set. The expected

amount  of  information  conveyed  by  any  message  is  the  sum  over  all  possible  messages,

weighted by their probabilities. 

Consider a set S of training examples. For simplicity we assume that the target function

is boolean valued. As the decision tree has to classify the training examples into two classes, we

consider these two classes of training examples as positive and negative. Hence set  S contains

positive and negative examples of some target concept. The entropy of the set S relative to this

boolean classification is:

Entropy(S) = -p+log2p+ - p-log2p-               (2.1)

where p+ is the proportion of positive examples in the set S and p- is the proportion of negative

examples in set S. For all calculations involving entropy we define log20 = 0.  
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Figure 2.2: A graph showing variations in value obtained by entropy function relative to a
boolean classification as the proportion of positive examples p+ varies between 0 and 1. 

Figure 2.2 shows a graph of the entropy function as the proportion of positive examples

varies between 0 and 1. The entropy is 0 if  all  members  of  S  belong to the same class.  The

entropy is 1 if the set  S contains equal number of positive and negative examples. If the set  S

contains an unequal number of positive and negative examples, the entropy of the set S varies

between 0 and 1. Entropy specifies the minimum number of bits of information needed to encode

the classification of an arbitrary training example of set  S. Equation (2.1) gives the expression

for calculating entropy of  set S assuming that the target function is boolean valued. The formula

for calculating entropy can be easily extended to learn a target function that takes more than two

values. Equation (2.2) is an extension of Equation (2.1) for calculating the entropy of a set  S

whose target function can take on N different values. 

                  N
      Entropy S =∑−pi log2 pi              (2.2)    

     i=1
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2.1.2.2 Information Gain

Information gain is the  expected reduction in entropy caused by partitioning a set  of

examples according to a particular feature. Information gain is used to measure the effectiveness

of  an  feature  in  classifying  the  training  data.  Consider  a  set  S  of  training  examples.  The

information gain Gain(S,A) of an feature A, relative to a collection of examples S is defined as:

Gain S , A=Entropy S −∑V ∈valuesA

∣SV∣
∣S∣

×Entropy SV                (2.3)

where Entropy(S) is the entropy of set S, values(A) is the set of all possible values for feature A,

and SV is the subset of S for which feature A has value V. Gain(S,A) is the information provided

about  the  target  function value,  given  the value  of  some feature  A. The ID3 algorithm uses

information gain as a measure  to  choose the  best  feature at  each step while constructing the

decision tree. The feature with the highest value of information gain is chosen and data is split

into various subsets based on the values of  the  training examples for the chosen feature. Next,

we show an example illustrating the computation of information gain of an feature. 

2.1.3 An Illustrative Example

This section illustrates the working of the ID3 algorithm for an example. We continue

the task of predicting the outcome of a basketball game played by the Moonriders. For predicting

the outcome of the basketball game, we need some previous records of the games played by the

Moonriders to construct the decision tree. The input features are Opponents, Points, Opponents

Points, Rebounds, Opponent Rebounds, Opponents Division and Venue. The task is to predict the

outcome of the basketball game. This is represented by the target feature Result. Table 2.4 shows

the  training  examples  used  to  train  the  decision  tree.  The  ID3  algorithm  determines  the

information  gain  for  each  of  the  input  features.  At  each  point  it  chooses  the  feature  with

maximum value of information gain.  A node is created with the chosen feature, the data is tested

for the chosen feature and is split according to the value of the chosen feature. 
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Table 2.4: Training examples for predicting the Result of Moonriders basketball game.

ID Opponent Opp.
Points
> 100

Venue Opp.
Rebounds
> 50 

Opp 
Division

Rebounds
> 50 

Points
> 100

Result

1 Wolves Yes Home Yes Midwest No Yes Won
2 Lakers No Home No Pacific Yes No Won
3 Mavs No Home No Pacific Yes No Won
4 Suns No Home Yes Midwest No Yes Won
5 Magic Yes Home Yes Eastern No Yes Lost
6 Sixers Yes Away Yes Midwest No No Lost
7 Celtics Yes Away Yes Midwest Yes No Lost
8 Spurs Yes Home No Eastern No No Lost
9 Clippers No Away Yes Midwest No No Lost
10 Sonics Yes Away Yes Midwest Yes Yes Lost
11 Pistons No Away Yes Midwest No Yes Won
12 Nuggets Yes Home No Eastern Yes Yes Lost
13 Grizzlies Yes Home Yes Eastern No Yes Lost
14 Hawks Yes Home No Pacific No No Lost
15 Bobcats No Home No Pacific No No Lost

To illustrate  the  computation of entropy consider  our set  S  containing all  15 training

examples. 5 examples of this training set are labeled positive (when the outcome is won) while

10 examples are  labeled negative (when the outcome is lost). Then the entropy of the set  S  is

computed as follows:

Entropy(S) = Entropy([5+,10-]) =  -(5/15) log2 (5/15) – (10/15) log2 (10/15)

       =  0.9182

To  illustrate  the  computation  of  the  information  gain  of  an  feature,  consider  the  feature

Rebounds,  which has two possible values (less than 50, and greater than 50). We calculate the

gain for feature Rebounds as follows:

Values(Rebounds) = {less than 50 , greater than 50}

S = [ 5+, 10- ]

S <50 = [ 3+ , 7- ]

S >50 = [ 2+ , 3- ]

Gain(S,Rebounds) = Entropy(S) – (10/15) Entropy (S<50) – (5/10) Entropy (S>50)

      = 0.9182 – (10/15) * (0.8812) – (5/15) * (0.9708)

      = 0.0072

13



Similarly the ID3 algorithm determines the information gain for all the features. The information

gain for the features is as shown:

Gain(S, Venue) = 0.0853

Gain(S, Points) = 0.0065

Gain(S, Opponent Points) = 0.0165

Gain (S, Rebounds) = 0.0072

Gain(S, Opponent Rebounds) = 0.0000

Gain(S, Opponent Division) = 0.1918 

As the information gain for  Opponents Division is maximum, it is chosen as the best

feature. The root node is created with  Opponent Division  as the test condition.  As  Opponent

Division  can take three distinct  values, three descendants are created and the same process is

repeated at each node until all of the training examples have the same target class or until all the

features have been used up. The decision tree corresponding to the training examples in    Table

2.4 is shown in Figure 2.1. 

2.1.4 Overfitting and Pruning

The  ID3  algorithm  can  suffer  from  overfitting  of  data  if,  for  example,  the  training

examples contain noise in the data. Mitchell [1997] defines overfitting as: 

Given a hypothesis  space H, a hypothesis  h∈H is said to  overfit the training

data if there exists some alternative hypothesis h'∈H, such that h has smaller

error than h' over the training examples, but h'  has a smaller error than h over

the entire distribution of instances. 

Often overfitting occurs if the training examples contain random errors or noise. To overcome

the  limitations  of  the  ID3  algorithm,  Quinlan  [1987]  suggested  a  reduced-error  pruning  to

prevent overfitting of data. The C4.5 algorithm often uses a technique called rule post-pruning

proposed  by  Quinlan  [1993].  In  reduced  error  pruning,  a  decision  node  may  be  pruned  by

removing the subtree rooted at that  node and making it  a leaf node by assigning it  the most

common classification of the training examples associated with that node. Pruning focuses on
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those nodes which result  in the  pruned tree performing at  least  as well  as the original  tree.

Reduced-error pruning can take place while the decision tree is built, whereas rule post-pruning

prunes the decision tree after it is built entirely. Rule post-pruning allows the decision tree to be

built completely and sometimes prevents overfitting from occurring. Then it converts the learned

decision tree into an equivalent set of rules by creating one rule for each path from the root to the

leaf node. The algorithm then tries to prune the rules by generalizing each rule, removing any

preconditions that result  in improving the accuracy of the data.  We use decision trees in this

work to evaluate the solutions obtained by the genetic algorithms, which are discussed next. 

2.2 Genetic Algorithms

Genetic algorithms [Holland,  1975]  are stochastic  search algorithms loosely based on

ideas underlying the theory of evolution by natural selection [Darwin, 1859]. Genetic algorithms

provide an approach to learning that is based loosely on simulated evolution and are random

search methods that follow the principle of  “survival of the fittest.”

Genetic  algorithms  are  useful  in  solving  optimization  problems  [Michalewiz,  1992],

scheduling problems [Mesman, 1995] and function-approximation problems [Hauser and Purdy,

2003].  Genetic  algorithms  are  currently  used  in  chemistry,  medicine,  computer  science,

economics,  physics,  engineering  design,  manufacturing  systems,  electronics  and

telecommunications and various related fields. Harp et al. [1990] used genetic algorithms in the

design  of  neural  networks  to  be  applied  to  a  variety  of  classification  tasks.  Schnecke and

Vorberger  [1996] designed a genetic algorithm for the physical design of VLSI chips.  Galindo

and Tamayo [1997] have applied genetic algorithms to credit risk assessment problem. 

2.2.1 Natural Evolution and Artificial Evolution

Darwin in his  theory of natural  evolution states that  evolution is a process by which

populations of organisms gradually adapt themselves over time to better survive and reproduce

in conditions imposed by their  surrounding environment.  An individual's  survival  capacity  is

determined by various features (size, shape, function, form and behavior)  that  characterize it.

Most  of these  variations  are  heritable from one generation to the next. However, some of these
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As many more individuals of each species are born that can possibly

survive, and as consequently there is a frequently recurring struggle

for  existence,  it  follows  that  any  being,  if  it  vary  in  any  manner

profitable  to  itself,  under  the  complex  and  sometime  varying

conditions of life,  will  have a better  chance of survival  and thus be

naturally  selected.  From  the  strong  principle  of  inheritance,  any

selected  variety  will  tend  to  propagate  its  new  and  modified  form.

Charles Darwin on origin of species [Darwin,  1859].

heritable traits are more adaptive to the environment than others, thus improving the chances of

surviving and reproducing. These traits  become more common in the  population,  making the

population more adaptive to the surrounding environment. The underlying principle of natural

evolution is that more adaptive individuals will  win the competition for scanty resources and

have better chance of surviving. According to Darwin, the fittest individuals  (those with most

favorable  traits)  tend  to  survive and  reproduce,  while  the  individuals  with  unfavorable  traits

would die out gradually. Over a long period of time, entirely new species are created having

traits suited to particularly ecological niches. 

In  artificial  evolution,  genetic  algorithms  are  based  on  the  same  principle  as  that  of

natural  evolution.  Members  of  a  population  in  artificial  evolution  represent  the  candidate

solutions. The problem itself represents the environment. Every candidate solution is applied to

the problem and a fitness  value is  assigned for  every candidate  solution depending upon the

performance of the candidate solution on the problem. In compliance with the theory of natural

evolution, more adaptive hereditary traits are carried over to the next generation. The features of

natural evolution are maintained by ensuring that the reproduction process  preserves many of

the traits of the parent solution and yet allows for diversity for exploration of other traits. 

2.2.2 Working of a Genetic Algorithm

The genetic algorithm approach is a robust and efficient approach for problem solving as

it  represents  natural  systems  and  can  adapt  to  wide  variety  of  environments.  A  simple

prototypical  genetic  algorithm is  depicted  in  Table  2.5.  Genetic  algorithms  search through a

space of candidate solutions to identify the best  solutions. Genetic algorithms operate iteratively
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    Table 2.5: An outline of a prototypical genetic algorithm. 

1.[Start]Generate random population of n chromosomes (suitable initial 

   solutions for the  problem).     

2.[Fitness]Evaluate the fitness function fitness(X) of each chromosome 
     X in the population. 

3.[New population]Create a new population by repeating the following
       steps until the new population is complete.

1.[Selection]Select two parent chromosomes from a population 
 according to their fitness (the better fitness,the 
 bigger chance to be selected). 

2.[Crossover]With some probability crossover the parents to form
  new offspring. If no crossover was performed, 
       offspring is the exact copy of parent.

3.[Mutation]With some probability mutate new offspring at each
      locus (position in chromosome). 

4.[Accepting]Add new offspring to the new population.

4.[Replace]Use new generated population for the next iteration of  
     the algorithm. 

5.[Test]If the end condition is satisfied, stop, and return the best  
  solution in the current population.                       

6. [Loop] Go to step 2. 

over  a set  of solutions,  evaluating each solution at  every iteration on the basis  of the  fitness

function and generating a new population probabilistically at each iteration. 

Genetic algorithms operate on a set of candidate solutions which are generated randomly

or probabilistically at the beginning of evolution. This set of candidate solutions are generally bit

streams called chromosomes. The set of current chromosomes is termed a population. Genetic

algorithms  operate  iteratively  on  a  population  of  chromosomes,  updating  the  pool  of

chromosomes at every iteration. On each iteration, all the chromosomes are evaluated according

to the fitness function and ranked  according  to  their  fitness  values. The  fitness function  is

used  to evaluate the potential of each candidate solution. The chromosomes with higher fitness

values have higher  probability of containing more adaptive traits  than the  chromosomes with

lesser fitness values, and hence are more fit to survive and reproduce. A new population is then

generated by probabilistically selecting the most fit individuals from the current population using

a selection operator which is discussed later  in the section. Some of the selected  individuals

may  be  carried  forward  into  the  next generation intact to prevent the loss of the current best

solution.  Other  selected  chromosomes  are  used  for  creating  new  offspring  individuals   by
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applying  genetic operators such as  crossover and mutation  described later in the section. The

end result of this process is a collection of  candidate solutions which contain members that are

often better than the previous generations.  

In order  to  apply a  genetic  algorithm to a  particular  search,  optimization  or function

approximation problem, the problem must be first described in a manner such that an individual

will represent a potential solution and a fitness function (a function which evaluates the quality

of  the  candidate  solution)  must  be  provided.  The  initial potential  solutions  (i.e.,  the  initial

population) are generated randomly and then the genetic algorithm makes this population more

adaptive by means of selection, recombination and mutation as shown in Table 2.5. Table 2.5

shows a simple genetic algorithm framework which can be applied to most search, optimization

and function  approximation  problems with  slight  modifications  depending  upon the problem

environment. The inputs to the genetic algorithm specify the population size to be maintained,

the number  of  iterations  to  be  performed,  a  threshold value defining an acceptable  level  of

fitness for terminating the algorithm and the parameters to determine successor population. The

parameters of a genetic algorithm are discussed in detail in the Section 2.2.6.  

The genetic algorithm process often begins with a randomly generated population, while

in  some  cases  the  initial  population  is  generated  from  the  training  dataset.  Most  genetic

algorithm  implementations  use  a  binary  encoding  of  chromosomes.  Different  types  of

chromosome encodings are discussed later in Section 2.2.3. The first  real iterative step starts

with the evaluation of the candidate solutions. Every individual solution is evaluated by a fitness

function,  which  provides  a  criteria  for  ranking  the  candidate  solutions  on the  basis  of  their

quality. The fitness function is specific to a problem domain and varies from implementation to

implementation.  For  example,  in  any  classification  task,  the  fitness  function  typically  has  a

component  that  scores  the  classification  accuracy  of  the  rule  over  a  set  of  provided  training

examples. The value assigned by the fitness functions also influences the number of times an

individual chromosome is selected for reproduction. The candidate solutions  are  evaluated  and

ranked  in  descending order of their fitness values. The solutions with higher fitness values are

superior in quality and have more chances of surviving and reproducing. 

After the candidate solutions are ranked, the selection process selects some of the top

solutions probabilistically. The selection operator and various types of selection schemes used
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are discussed later in the section. A certain number of chromosomes from the current population

are selected for inclusion in the next generation. This process is  called elitism; it ensures that the

best  solutions are not lost in the recombination process. Even though these chromosomes are

included  directly  in  the  next  generation,  they  are  also  used  for  recombination  to  achieve

preservation of the adaptive traits of the parent chromosomes and also allow exploration of other

traits. Once these members of the current generation have been selected for inclusion in the next

generation population,  additional  members  are  generated using a crossover  operator.  Various

crossover operators are discussed later in the section. In addition to crossover, genetic algorithms

often also apply a mutation operator to the chromosomes to increase diversity.

The combined process of selection,  crossover and mutation produces a new population

generation. The current generation population is destroyed and replaced by the newly generated

population  (though  some individuals  may be carried  over).  This  newly  generated  population

becomes  the  current  generation  population  in  the  next  iteration.  So,  a  random  population

generation is required only once, at the start  of first generation, and otherwise the population

generated in nth  generation becomes the starting population for the n+1th  generation. The genetic

algorithm process terminates at a specified number of iterations or if the fitness value crosses a

specified threshold fitness value. The outcome of a genetic algorithm is a set of solutions  that

hopefully have a  fitness value significantly higher than the initial random population. There is

no  guarantee  that  the  solution  obtained  by  genetic  algorithms  is  optimal,  however,  genetic

algorithms will usually converge to a solution that is very good. The following sections describe

four  main elements  for  implementing  a genetic  algorithm:  encoding hypotheses,  operators  to

affect individuals of population, fitness function to indicate how good the individual is, and the

selection mechanism.

2.2.3 Representing a Hypothesis

To apply  genetic algorithms to any problem, the candidate solutions must be encoded in

a suitable form so that genetic operators are able to operate in an appropriate manner. Generally

the  potential  solution  of  the  problem  is  represented  as  a  set  of  parameters  and  this  set of
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Table 2.6 : Binary encoding in bits for the Opponent Division feature 
for representing a condition predicting outcome of Moonriders basketball game.

Bit String  Corresponding condition

001 Opponent = pacific division

010 Opponent = midwest division

100 Opponent = eastern conference

011 Opponent = midwest division OR pacific division

111 do not care condition

parameters  is  encoded as chromosomes.  In  the  traditional  genetic   algorithm,   solutions   are

represented by bit strings. Binary encodings are used commonly because of their simplicity and

because of the ease with which the genetic operators crossover and mutation can manipulate  the

binary   encoded  bit  streams. Integer  and  decision  variables  are  easily  represented  in  binary

encoding.  Discrete  variables  can  also  be  easily  encoded  as  bit  strings.  Consider  the  feature

Opponent  Division  from the  example  given  in  decision  trees  section.  The  feature  Opponent

Division  can take on any of three values eastern, midwest or pacific. The easiest way to encode

any feature into a bit stream is to use a bit string of length N, where N is the number of possible

values  the  feature  can  take.  For  example,  the  feature  Opponent  Division can  take  on  three

different values, hence we use a bit string of length three. Table 2.6 shows some possible values

of the encoded bit string and the corresponding conditions. Consider the following instance

Opponent Division = midwest, Points>100 = yes, Venue=home, Rebounds>50 = no, 

Opponents points>100 = no, Opponents rebounds > 50 = no

The feature Opponent Division can be encoded as shown in Table 2.6. The feature Venue

can take  two  values:  home  and  away, hence  it is encoded  into a  binary string using two bits

represents 10 represents home and 01 represents away). The remaining features also take on two

values, yes or no, so they can be encoded in the similar way as feature Venue is encoded (i.e. 10

represents  yes  and  01  represents  no).  Table  2.7  shows  an  example  of  a  binary  encoded

chromosome. From the Table 2.7 we can see that the chromosome 0101010010101 represents

the instance specified above.
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Table 2.7: An example of binary encoded chromosome representing 
an example with feature values encoded as binary numbers.

Opponent, Points>100, Venue,  Rebounds>50, Opp. Points>100, Opp Rebounds>50

     010             10              10               01                    01                           01

Continuous values are harder to encode into binary strings.  In some cases continuous

values are discretized by classifying the values into classes (e.g., the variable points scored is a

continuous variable, it can be  discretized into classes by assigning a 0 if  points scored   is less

than 100 and 1 if points scored is greater than 100. It can also be classified into a larger number

of  classes  depending  upon  the  requirements.)  In  some  cases  continuous  values  are  encoded

directly into binary strings by actually converting the number into binary format.  However to

maintain fixed length strings, the precision of continuous values is restricted. 

Although binary encoding is widely used in genetic algorithms, various other encodings

have been proposed. Some other types that have been used thus far are  permutation encoding

[Mathias and Whitley, 1992], value encoding and tree encoding. Permutation encoding is used in

ordering problems where every chromosome  is a string of numbers that represents a position in

a  sequence.  Mathias  and Whitley [1992]  used  permutation encoding in  solving  the  traveling

salesman problem using genetic algorithms. Value encoding [Geisler and Manikas, 2002] is used

when the solution  contains real numbers which are hard to encode in binary strings. In value

encoding every chromosome is a sequence of some values directly  encoded in a string.  Tree

encoding [Koza, 1992] is used in genetic programming where every chromosome is represented

as tree of objects such as functions or commands in programming language. 

For our problem we are interested in finding small but accurate subsets of features. We

call this the feature subset selection task. Binary encodings are used widely in feature subset

selection  tasks.  In  the  feature  subset  selection  task,  the  main  aim  is  to  find  an  optimal

combination of subset of features from a set of candidate features. A binary encoding can be

used to represent the subset of features. The chromosome is a binary string of length equal to the

number  of candidate  features.  A  '0'  in bit  position  n in the chromosome represents  that  the

corresponding feature is not included in the subset of features, whereas a '1' in bit position  n

represents that the corresponding feature is included in the subset of features. 
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2.2.4 The Fitness Function 

A fitness function  quantifies the optimality of a solution. It evaluates all the candidate

solutions  and  evaluates  the  quality  of  all  individual  solutions.  It  gives  a  criterion  to  rank

candidate solutions which is the basis of making a decision as to whether a particular individual

solution is fit to survive and reproduce. A fitness function must be devised for each problem. The

fitness function takes in one chromosome at a time as input and returns a single numeric value,

which is  indicative of the ability  or  utility of the candidate solution represented by the input

chromosome.  The  fitness  function  should  be  smooth  and  regular  so  that  there  is  not  much

disparity in the fitness values of chromosomes. An ideal fitness function should neither have too

many local  maxima, nor a very isolated global maximum. The fitness function should correlate

closely with the algorithm's goal, and should be executed quickly, as genetic algorithms must be

iterated  numerous  times  to  produce  useful  results.  For  example,  if  the  task  is  to  learn

classification rules, then the function has a component that scores the classification accuracy of

the rule over a set of training examples. Fitness functions can be as simple as evaluating the

distance  traveled in  traveling salesman  problem or  can  be  as  complex  as  finding  predictive

accuracies  using  a  classifier.  In  our  system  we  compute  the  fitness  value  by  computing

classification accuracy and penalizing it for missing features as discussed in Section 4.3.3.4.

2.2.5 Genetic Operators

Genetic  algorithms  are  stochastic,  iterative  algorithms.  Thus  the  candidate  solutions

should get better with more iterations. Genetic algorithms attempt to preserve individuals with

good  traits  (i.e.,  preserving  individuals  having  high  fitness  values)  and  to  create  better

individuals  with  new traits  by  combining  fit  individuals.  Genetic  algorithms  employ genetic

operators  to  preserve fit  individuals  (selection)  and to  explore  new traits  by recombining  fit

individuals   (crossover  and  mutation).  The  function  of  a  genetic  operator  is  to  cause

chromosomes created during reproduction to differ from those of their parents in order to explore

any missing traits.  The recombination operators must be able to create new configurations of

genes  that  never  existed before  and are  likely  to  perform well.  Below,  we discuss  the  basic

genetic operators and their variants. 
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2.2.4.1 Selection

At  every  iteration,  chromosomes  are  recombined  to  create  new chromosomes  in  an

attempt  to  find  better  chromosomes.  As  genetic  algorithms  follow  the  theory  of  natural

evolution, better individuals should be able to survive and reproduce. The selection operator is

used  to  select  such  fit  individuals  from  the  population  for  recombination.  Before  any

recombination takes place, the fittest individual solutions are selected and promoted to the next

generation in an attempt to ensure that the best solution is not lost. Then the selection operator is

applied  again  for  choosing  chromosomes  to  act  as  parents  and  produce  new offspring.  The

selection  operator  is  solely  responsible  for  choosing  better  individuals  for  preservation  and

recombination. The selection process is one of the key factors affecting the overall performance

of  the  genetic  algorithms.  If  the  selection  mechanism  selects  fit  individuals for  elitism  and

recombination,  then  the  solution  converges  faster.  The  selection  process  controls  which  fit

individuals should be preserved and which individuals should be used for recombination. A bad

selection mechanism could hamper the performance of genetic algorithm in terms of quality and

also  in  terms  of  convergence  rate.  We discuss  some of  the  popular  methods  for  selecting  a

chromosome for preservation or for recombination. 

Fitness  Proportional Selection [Goldberg, 1989]

In fitness proportional selection, parents are selected according to their fitness value. The

probability  of  selecting  a  chromosome  is  directly  proportional  to  the  fitness  value  of  the

chromosome. Imagine a roulette wheel where all the chromosomes in the population are placed.

The size of the section in the roulette wheel is proportional to the value of the fitness function of

every chromosome. The chromosomes with larger fitness values are assigned larger sections of

roulette wheel and have greater probability of being selected. 

Ranked Selection [Bäck and Hoffmeister, 1991, Whitley, 1989]

In ranked selection, chromosomes are sorted in descending order on the basis of their

fitness function value. Once they are sorted they are assigned new fitness values based on their

rankings.  Fitness  proportional  selection  does  not  perform  as  expected  if  there  are  very  few

chromosomes with very high fitness value and the rest of the chromosomes have very low fitness
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values, because the chromosomes with high fitness values get selected very often and many traits

are left unexplored. In such a situation, ranked selection performs better than fitness proportional

selection, as ranked selection assigns probability of selection to every chromosome based on the

ranking of the chromosome and not on the basis of the fitness value of the chromosome. 

Boltzmann Tournament Selection [Blickle and Thiele, 1995, Goldberg and Deb, 1991] 

In  tournament  selections,  tournaments  are  conducted  between  sets  of  competing

chromosomes.  The competing  chromosomes are chosen randomly and, once chosen,  the best

chromosome amongst the set of randomly chosen chromosomes is selected based on the fitness

value of the chromosomes. The important parameter in tournament selection is the tournament

size.  If  the  tournament  size  is  equal  to  one,  then  tournament  selection  reduces  to  random

selection. However if the tournament size is very close to the population size, then tournament

selection produces results similar to ranked selection as the chromosomes with higher rank have

high  probability  of  being  selected.  Tournament  selection  can  produce  good  results  with

appropriate tournament size.

2.2.4.2 Crossover

The crossover operator produces two new offspring from two parent strings by copying

selected bits from each parent. The bit at position  i  in each offspring is copied from the bit at

position i in one of the two parents. The choice of which parent contributes the bit for position i

is determined by an additional string called the crossover mask. In this section, we discuss some

of the methods for performing crossover. 

 Table 2.8: An example of single-point crossover for two chromosomes.

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Crossover Mask 1111100000000000

Offspring 1 1101111000011110

Offspring 2 1101100100110110
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Table 2.9: An example of two-point crossover for two chromosomes.

Chromosome 1 110110010011011

Chromosome 2 110111100001111

Crossover Mask 111111000001111

Offspring 1 110110100001011

Offspring 2 110111010011111

Single-point crossover

In single-point  crossover,  the crossover  point  is  selected randomly.  The binary string

from the beginning of the chromosome to the crossover point is copied from the first parent, the

rest is copied from the other parent. The crossover mask is always constructed so that it begins

with a string containing n contiguous 1's followed by the necessary number of 0's to complete the

chromosome string.  This results  in offspring in which the  first n  bits  are  contributed by one

parent and the remaining bits by the second parent. Table 2.8 shows an example of single-point

crossover. It shows two parent chromosomes represented by bit strings and the crossover point.

The crossover operator creates two offspring using the crossover mask to determine which parent

contributes which bit. 

Multi-point crossover

The most widely used form of multi-point crossover is two-point crossover. In two-point

crossover,  two bit  positions are  randomly selected.  The binary string from one of the parent

chromosome is copied from the first bit position to the second bit position, while the remaining

bits (i.e., the bits from start of the string to the first bit position and from the second bit position

until the end of the string) are copied from the other parent. This concept can be further extended

to implement multi-point crossover by generating bit positions randomly and copying the strings

from  parents alternately until  the next bit position is reached. Table 2.9 shows an example of

two-point  crossover.  It  shows  two  parent  chromosomes  represented  by  bit  strings  and  the

crossover  mask.  The  crossover  operator  creates  two  offspring  using  the  crossover  mask  to

determine which parent contributes which bit. 

25



Table 2.10: An example of uniform crossover for two chromosomes.

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Crossover Mask 0010100010100010

Offspring 1 1101100100010110

Offspring 2    1101111000111110

Table 2.11: An example of mutation applied to a chromosome.

Original offspring 1101111000011110

Mutated offspring 1100111000011110

Uniform Crossover

Uniform  crossover  combines  bits  sampled  uniformly  from  the  two  parents  and  is

illustrated in Table 2.10. In this case the crossover mask is generated as a random bit string with

each bit chosen at random and independent of the others. 

2.2.4.3 Mutation

Mutation is intended to prevent early convergence of all solutions in the population into

a local optimum of the solved problem. The mutation operation randomly changes the offspring

resulted from crossover. The mutation operator produces small random changes to the bit string

by  choosing  a  single  bit  at  random,  then  changing  its  value.  Table  2.11  shows  how some

chromosomes have random mutations just as they occur in genes in nature. 

2.2.5 Parameters of a Genetic Algorithm

A genetic algorithm operates iteratively and tries to adapt itself progressively over the

iterations. At every iteration the genetic algorithm evaluates the population of chromosomes on

the basis of it's fitness function and ranks them according to the fitness value. Genetic algorithms

also apply the crossover and the mutation operator to explore new traits in chromosomes. There

are various parameters defining a genetic  algorithm. These parameters can be varied to obtain

better performance. In this section we discuss some of the parameters that are provided as input
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to the genetic algorithm. The extent to which each of the factors affects the performance of the

genetic  algorithm  and  the  optimum  values  of  the  parameters  for  the  research  dataset  are

discussed in Chapter 5. 

Crossover rate: The crossover rate specifies how often a crossover operator would be applied to

the current population to produce new offspring. The crossover rate, mutation rate and selection

rate determine the composition of the population in the next generation. 

Mutation  rate:  The  mutation  rate  specifies  how often  mutation  would  be  applied  after  the

crossover operator has been applied. 

Selection rate:  This parameter comes into play if elitism is applied to the genetic algorithms.

When creating a new population there  is  a chance that  the  best  chromosome might  get  lost.

Elitism is a method which prevents the best chromosome from getting lost by copying a fixed

percentage of the best chromosomes directly into the next generation. The selection rate specifies

how often  the  chromosomes  from the  current  generation  would  be  carried  over  to  the  next

generation directly by means of elitism. 

Population  size  and  generation:  This  parameter  sets  the  number  of  chromosomes  in  the

population at a given instance of time (i.e., in one generation). It also determines whether the

initial population is generated randomly or by heuristics.

Number of iterations:  This parameter  dictates the stopping criteria for the genetic algorithm.

Generally the stopping criteria used in genetic algorithms is the number of iterations. In some

cases genetic algorithms are halted if the average fitness value crosses a certain threshold value. 

Selection type: This parameter dictates the type of selection mechanism to be used. 

Crossover type: This parameter dictates the type of crossover to be used. 
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Chapter 3

The Bridge To Health Dataset 

This  chapter  briefly  discusses  the  data  used  in  this  research  to  test  our  method.  We

discuss the data in general, the data collection process, data design, and the statistical weighting

of the dataset.  We further  discuss  some of the  salient  features  of  the dataset  and  groups of

features in the dataset.

3.1 Bridge to Health Dataset (BTH 2000) 

The data  used  for  this  research  is  the  Bridge  to  Health  Survey  Dataset  (BTH 2000)

[Block et. al., 2000]. The data was collected by the Bridge to Health Collaborative with the help

of  118  organizations  and  individuals  from  the  study  region.  The  data  was  collected  by

conducting surveys of randomly chosen households in a sixteen-county region in Northwestern

Wisconsin and Northeastern Minnesota. The purpose of the survey was to gather population-

based health status data about the adult residents in the study region to assist health professionals

in understanding the health and well-being of  regional residents. 

3.2 Data Collection

The BTH 2000 data was collected using computer aided telephone interviews conducted

by the Survey Research Center, Division of Health Services Research and Policy located in the

School of Public Health at the University of Minnesota. One adult (age 18 or older) from each

sampled household was selected to participate in the survey. Proper care was taken in sampling

the households  and choosing the respondents  to ensure  representation of various  age groups,

economic  backgrounds,  ethnicities,  races  and educational  levels.  The  survey  was  carried  out

between November 1999 and February 2000 and included interviews of 6,251 individuals.  

3.3 Data Representation

The  survey  was  designed  to  gather  information  pertaining  to  the  perceived health,
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diagnosed diseases, general  information (such as age, sex, height,  weight,  education,  income,

health  insurance status etc.)  and life-style of  the respondent  (such as amount of food intake,

amount of physical activity, amount of drinking etc). The survey consisted of 101 questions and

included all  questions from the Short-Form 12-Item survey (SF12) [Ware et al.,  1996]. Some

questions were to be  answered  yes  or  no, but generally respondents were provided with more

options to answer the questions. Respondents also had a choice to refuse to answer a question or

choose the option of don't know / not sure if the respondent was not sure about the answer to any

of the questions. The data was originally represented in a SPSS data format in the form of a 2-

dimensional  table,  consisting of  6251  data  points,  with  each  data  point corresponding  to  the

responses  of  an  individual.  Each  data  point is  made  up  of  334  features,  representing direct

responses  of an individual,  recoded variables,  combined variables and maintenance variables.

The dataset was converted to C4.5 data format for effective and efficient usage of the data by our

proposed system. 

3.4 Data Description

Each  data  point  in  the  The  BTH  2000  dataset  represents  responses  of  individual

respondents. Each data point is made up of three categories of variables: (1) direct responses of

the individual respondents, (2) new and recoded variables and (3)  maintenance variables. The

first  category  of  variables  contain  direct  responses of  the  respondents  to  the  101  questions

presented in the survey. The new and recoded variables are constructed from the direct responses

of  the  respondents  by  discretizing a  continuous  variable.  For  example,  BMI is  a  continuous

variable representing the body mass index of an individual. BMMICUTS is a recoded variable

which  discretizes BMI into three classes: not overweight, overweight and obese. Variables are

also constructed by combining two or more direct responses. For example, the variable MCS12

represents mental composite score of an individual. The score is computed using the values of

various  mental  health  variables.  Maintenance variables  consist  of  variables  to  maintain  the

integrity of the data. For example, the variable ID is used to index the  data points. It provides

unique identification  of every  data  point. Maintenance  variables  also  include  those  variables

used  for  statistical  weighting  of  the  data.  For  example  variables  like  STATEWT  and

COUNTYWT which represent state weight and county weight depending upon the population

distribution. In general, the 334 features can be classified in groups with each group of features

conveying different information. The features can be classified as follows:
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•  Demographic Information: information such as age, sex, weight, height, race, marital status,

education, income and where the individual lives.

•  Life  Style:  information such as general  health,  physical  activities,  eating habits,  seat  belt

usage, and frequency of health doing checkups and  drinking/smoking habits.

•  Medical History: information such as whether an individual suffers from allergies, asthma,

cancer, diabetes, back problems, high blood pressure, high cholesterol, the insurance status of

an individual, and prescriptions for medicines of an individual.

•  Physical  Health  Status:  features  such  as  whether  the  person  is  overweight,  whether  the

person is suffering from any diseases and how frequently does an individual exercise.

•  Mental Health Status: information such as whether the person was diagnosed with depression

or anxiety or has other indications of poor mental health status.  

•  Recoded Variables: some variables are recoded either to make them more specific or to make

them more general. For example, BMI is a continuous variable representing the body mass

index of an individual. OVERWGT2 is a recoded variable which discretizes BMI into two

classes: not overweight and overweight.

•  Combination of direct responses: some of the variables were combined to form a   composite

variable. For example, all the mental health status variables were combined to give a mental

health  status  composite  score  (MCS12).  Another  example  is,  the  variable  ALCWDBNO

which is constructed by combining the accomplished less, careless work, downhearted/blue,

depression and anxiety variables. 

•  Maintenance Variables: Maintenance variables are  used to maintain the  data  integrity, to

order  the  data  points,  and  to  statistically  weigh  the  data.  For  example  variables  like  ID,

SRVYMODE, STATEWT and COUNTYWT. 

3.5 Statistical Weighting of Data 

Statistical  weighting  of  the  BTH  2000  dataset  is  necessary  due  to  differences  in

household sizes, differences in population distribution in different counties and differences in the

response rates between men and women of different ages [Block et al., 2000].  In the first step,

the BTH 2000 dataset is weighted by the inverse of selection probability within the household to

remove  any  bias  created  due  to  different  household  sizes.  Then  the  BTH  2000  dataset  is

weighted by the ratio of adult population size in a county to the number of adults interviewed in

that  county,  which  ensures  that  the  respondents  from every  county  are  counted  towards  the

30



results  in same  proportion as the population from that  county contributed towards the overall

population of the survey area. The third step weighs the data by a factor based on the 1998 U.S.

Census to ensure that the respondents from every age and/or gender group contribute in same

proportion as that of the overall population distribution. In the last step, the weights are divided

by  a  numeric  constant  to  ensure  that  the  total  sample  size  is  equal  to  the  total  number  of

respondents in the survey area.  

3.6 Salient Features 

The dataset contains responses from individuals with diverse demographic profiles (i.e.,

individuals  from  different  age  groups,  gender,  education  levels,  poverty  status,  race  and

geographic area of residence). Almost half the respondents in the BTH 2000 dataset were male

and half were female (49% were males and 51% were females). The  age of the respondents

varied from 18 to 99 with a mean age of 48.4 years, a median age of 46.0 years and a standard

deviation of 17.9 years. The response rate of the survey was 74%, as some of the respondents

refused to answer specific questions of the survey. The overall educational level of the study area

was high,  with 91.2% of the people having received at least  a high school diploma. Another

major characteristic of the survey was that 77.1% of the people in the study area lived in rural

regions  and  22.9%  of  the  people  lived  in  urban  regions  (mainly  in  the  cities  of  Duluth,

Minnesota and Superior, Wisconsin) [Block et al., 2000].

Table 3.1:Variables related to mental health status of individuals in the BTH 2000 dataset.

Variable Description Response

Q5_15NEW2 Diagnosed depression 1: Yes
10: No

Q5_16NEW2 Diagnosed anxiety 2: Yes
20: No

DEPRANX2 Diagnosed depression and
diagnosed anxiety

2: Yes
5: No

ALDPANX2 Accomplished less without
depression or anxiety

31: Yes
33: No

CWDPANX2 Careless work without depression
or anxiety

31: Yes
34: No

DBDPANX2 Downhearted blue without
depression or anxiety

31: Yes
35: No
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3.7 Features of Interest

In this research, we are interested in identifying subsets of the features which predict

cardiovascular disease risk factors or mental health status of a regional population. Table 3.1 lists

the mental health status variables and Table 3.2 lists the cardiovascular disease risk factors. Our

learning task is to try to find factors affecting the outcome of the variables described in Table 3.1

and Table 3.2. 

Table 3.2:Variables related to cardiovascular disease risk factors 
of individuals in the BTH 2000 dataset

Variable Description Response

Q5_11 Diagnosed high blood pressure

Q5_12 Diagnosed elevated cholesterol

1: Yes
2: No
7: Don't know/not sure 
9: Refused 

Q48REC Blood pressure checked in last 2
years

Q49REC Cholesterol checked in last 2 years

1: Within the past year
2: Within the past two years
3: Within the past 5 years
4: 5 or more years ago
5: Never
7: Don't know/not sure
9: Refused

OVERWGT2 Overweight or not overweight
based on BMI 

0: Not overweight
1: Overweight

BMICUTS Normal weight, overweight, obese
based on BMI

0: Not overweight
1: Overweight
2: Obese

EXCERREC Moderate or vigorous exercise #X
per week

1: Exercise less than 3 times per
week
2: Exercise more than 3 times per
week

Q69A Current smoker 1: Yes
2: No
7. Don't know/not sure
9: Refused

CHRONIC 60+ drinks per month 0: Less than 60 drinks per month
1: 60+ drinks in the past month

32



Chapter 4

A Genetic Algorithm System For Feature Selection

In this research, we implemented a genetic algorithm based system employing decision

trees to identify small, good subsets of data with high classification accuracy. To evaluate our

system  we  constructed  a  predictive  model  from  a  survey  dataset  to  identify  predictors  of

cardiovascular  disease  risk  factors  and  mental  health  status  in  a  regional  population.  The

predictive models also establish relationships within the data, especially between cardiovascular

disease risk factors and mental health status in a regional population. This chapter discusses our

proposed  method,  which  involves  preprocessing  and  modeling  of  data  to  construct  accurate

predictive  models.  First  we  discuss  our  proposed  system  in  brief.  Then  we  discuss  the

preprocessing technique used to eliminate features carrying redundant or irrelevant information.

Finally, we discuss the modeling done by our genetic algorithm system, which makes use of

decision trees. 

4.1 Machine Learning Modeling of Medical Variables

Large amounts of epidemiological data have been collected by various organizations and

collaboratives  to  assist  health  professionals  in  understanding  the  health  and  well-being  of

individuals.  Our  proposed  system  delves into  the  problem  of  finding  data  patterns  in

epidemiological datasets  and  provides  a  solution  to  examine  such  problems  and  establish

relationships  among  various  features  of such datasets.  This  section  describes  the  modeling

performed  by  our  system.  Predictive  models  are  constructed  to  identify  predictors  of  the

variables in question, in this case cardiovascular disease risk factors and mental health status in a

regional population. Our  predictive models also explore the relationships between variables, in

this case between cardiovascular disease risk factors and mental health status variables. In an

attempt  to  build  a  predictive  model  which  identifies  the  predictors  and  also  determines  the

relationships in  epidemiological data, we used a genetic algorithm system that builds decision

trees as shown in Figure 4.1. The system is divided into two stages: the preprocessing stage and

the feature subset selection stage. 
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Entire dataset

Preprocessing

      Feature Elimination

 Reduced dataset  with features 

             discarded

 Feature Subset Selection  

     Genetic Algorithms + Decision Trees

 
 Subset of features 

 

   Figure 4.1: The two stages of data analysis in our system

Epidemiological datasets such as the the BTH 2000 dataset consist of a large number of

features.  Machine learning algorithms are time intensive for  datasets  with a large number  of

features  and/or  large number  of  data  points. In addition,  many of  the  features  in  the  dataset

convey very little or no additional information. Finally, a large number of features can lead to

overfitting of data  when the decision trees are constructed, resulting in higher accuracy for the

training dataset, but poor overall performance. Hence we apply a preprocessing technique which

discards some of the features and presents the genetic algorithm based system with a dataset

containing a reduced number of features. We attempt to eliminate features in such a way that no

information is lost in the feature elimination process. 

To better describe our system we focus on the problem of identifying the predictors of

cardiovascular disease risk factors and mental health status, though our system can be applied to

any set of survey data. We propose to build a system which accurately predicts the value of one

of the variables listed in Table 3.1 and Table 3.2. Our proposed system determines the predictors
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for the cardiovascular disease risk factors and mental health status variables individually. The

variable for which the system identifies the predictors is regarded as the output variable. The

system focuses on determining small subsets of features which accurately predict the class of the

output  variable.  Our  system  implements  a  genetic  algorithm  based  feature  subset  selection

method. The subsets of features are evaluated by growing decision trees, which also provide a set

of rules to predict the class of the output feature. The following sections describe the two stages

of the system in detail.    

4.2 Preprocessing the Data 

This  section  describes  in  detail  the  preprocessing  method  used.  A  preprocessing

technique employing decision trees was used to narrow down the list of features to enable a fast

and efficient feature subset selection process to construct accurate data models. 

4.2.1 Motivation for feature elimination

Preprocessing of data is necessary for several reasons. The main motivating force behind

reducing the number of features in the dataset is preventing overfitting of the data in the decision

tree learning process. The decision tree learning algorithm can suffer from overfitting of data and

implements pruning to avoid overfitting of data.  Overfitting of data results in higher accuracy

over  the training examples,  but  results  in poor overall  future  performance.  The decision tree

learning process is an important factor of constructing the predictive model, as it is the process

which establishes relationships among features in the dataset. Hence in order to avoid overfitting

of  data,  the  system  focuses on  narrowing  down  the  excessive  features  by  discarding  the

irrelevant features and keeping only the useful features.

The BTH dataset consists of a large number of features. Several features in the dataset

convey very little or no additional information. The BTH 2000 dataset contains some features

which  were  used  to  assist  the  data  collection  and  the  data  integration  process.  The  dataset

includes maintenance features such as ID, which represents the record number of an individual

response  in  the  dataset,  SRVYMODE  that  indicates  how  the  survey  was  carried  out  and

numerous other features that have no bearing by definition in relation to cardiovascular disease

risk  factors  and  mental  health  status  variables.  The  BTH  2000  dataset  also  contains  some
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features that are used for statistical weighting of the data (such as STATEWT, COUNTYWT,

etc.  to  represent  state  weight  and  county  weight).  Such  variables  are  based  on  population

distribution  of  the  survey  area  and  have  limited  bearing  by  definition  with  relation  to

cardiovascular disease risk factors and mental health status variables. The BTH 2000 dataset also

contains several recoded features. These recoded variables contain almost the same information

as  that  of  the  original  feature  and  may not  convey  any  additional  information.  Hence  some

variables  can  be discarded  from the  dataset  to  avoid  overfitting  of  data  in  the  decision  tree

learning process to produce accurate learned models. Narrowing down the number of features

also accelerates the hybrid decision tree based genetic algorithm system. Hence there is a need to

incorporate the feature elimination process in the system to make it more efficient and accurate. 

4.2.2 Feature elimination process 

The feature elimination process tries to determine the importance of individual features

and  discards  less  important  features  while  maintaining  the  desired  accuracy.  The  feature

elimination process uses C4.5 decision trees as a classification mechanism to predict the class of

the output feature. The output feature is one of the cardiovascular disease risk factors listed in

Table 3.2 or mental health status variable listed in Table 3.1. In this approach we try to classify

the individual features from the dataset into three classes: very likely irrelevant features, possibly

irrelevant features and possibly relevant features. 

➢  Very Likely Irrelevant Features: Very likely irrelevant features are those features that convey

no  information  about  the  class  of  the  output  feature  that  the  decision  tree  classifier  is

predicting.  For  example,  if  we  are  trying  to  predict  whether  a  person  has  diagnosed

depression, then the feature representing the record number of an individual does not convey

any information about the individual being depressed. 

➢  Possibly Irrelevant Features: Possibly irrelevant features are those input features which carry

very little additional information about the class of the output feature that the decision tree

classifier is predicting. For example, if our learned decision tree is predicting the class of the

output  feature  CHRONIC (whether  an  individual  is  a  chronic  drinker),  then  the  feature

DRPERMO (number of drinks consumed by an individual in the past month) conveys very

little  additional  information  about  the  class  of  output  variable  CHRONIC because  of  the
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definition of the feature CHRONIC. The feature CHRONIC has a class '0' if DRPERMO<60

and has a class '1' if DRPERMO>60 (i.e. an individual is considered as a chronic drinker if

that individual consumes more than 60 drinks in the previous month).  

➢  Possibly Relevant Features:  Possibly  relevant features have the potential to be one of the

predictors of the output feature as they contain useful information about the output feature.

Features  from this  class  may convey  useful  additional  information  about  the  class  of  the

output variable. 

Many epidemiological datasets such as the BTH 2000 contain large number of features.

Many of these features might contain redundant or irrelevant information. In classification tasks,

using all the available features in the dataset might have detrimental effect on the classification

accuracy  because  some  of  the  features  are  dependent on  others  while  some  of  the  features

contain irrelevant information and act as noisy data. When we are using all the available features

of the dataset there is more chance that some feature will randomly fit the data increasing the

probability of overfitting. The dependent features contain useful information about the class of

output  feature,  but  the  information  they  carry  is  redundant  as  they  contain  almost  the  same

information about the class of the output feature as the information contained in the feature  on

which they depend. Hence there is a need to eliminate the dependent and noisy features from the

dataset  to  improve  the  comprehensibility  of  the  learned  classification  tree.  Eliminating  the

dependent  and  noisy  features  can  result  into  improved  accuracy  and  clearer  descriptions of

learned concepts. Hence, we can construct better predictive models if all of the dependent and

noisy  features  are  removed from the  dataset.  In  this  research  work,  we  use  a  preprocessing

technique which assesses the importance of individual features and classifies them into one of

the three categories of features discussed above. 

To determine the importance of individual features and to classify the features into three

distinct  classes  we  employ  a  decision  tree  based  heuristic  that  performs  reasonably  well  in

assessing  importance  of  individual  features  and  locating  dependent  and  noisy  features.  The

decision tree classifier uses a 10-fold cross-validation technique (discussed in Section 5.1) to

compute the accuracy of classification of a data instance into an appropriate class of the output

feature.  Initially features such as ID, SRVYMODE, STATEWT, etc. that have no bearing by

definition with relation to cardio-vascular disease risk factors and mental health status variables
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were  discarded  from the  dataset.  Then  the  accuracy  of  the  reduced  dataset  is  computed  by

learning  a  decision  tree.  To determine  the  importance  of  a  variable  in  terms  of  information

conveyed by the  variable,  the  feature  is  dropped from the dataset  and again  the  accuracy  is

computed for the dataset with the feature dropped. The change in the accuracy is observed by

taking  the  difference  between  the  accuracy  values  before  and  after  dropping  the  feature.

Similarly, changes in the accuracy value is observed for every feature. Every feature is assigned

a  score  reflecting  the  difference  between  overall  accuracy  and  accuracy  value  obtained  by

dropping the corresponding feature. Features are ranked in descending order of their scores. 

Once the changes in the accuracy values are observed and a score is assigned to every

feature, the features are divided into three classes depending upon the change observed in the

accuracy value. If there is no change or a very small increase in the accuracy, then the feature is

classified as very likely irrelevant  feature because even after dropping the feature, there was no

impact or a negative impact on the classification accuracy indicating that the feature contains

random data  and provides no useful information about the class of the output feature. Features

with a slight drop (we set a threshold of 0.1% drop in accuracy ) in the accuracy are classified as

possibly irrelevant  features because dropping the feature does not have a significant impact on

the  classification  accuracy.  The  possible  irrelevant  category  of  features  contains  dependent

features which do not contain any additional information about the class of the output variable.

All  the  features  classified  as  very  likely irrelevant  and possibly  irrelevant features  were

examined by a medical expert (Dr. Tim Van Wave, School of Medicine, University of Minnesota

Duluth) to verify that those features were not meaningful from medical perspective. All of the

remaining features which have  significant accuracy drops (i.e., more than the threshold value of

0.1%) are classified as possibly relevant features. The features in the possibly relevant category

of features contain useful information about the class of the output feature, and have significant

impact on the classification accuracy. The feature elimination approach reduces the number of

features used to construct the predictive models (discussed in Section 4.3) by discarding  very

likely irrelevant  and  possibly irrelevant  features. All the categories of features were inspected

and confirmed by a domain expert, which is mandatory, as the heuristic used by the system is

purely a machine learning component and does not  have any first-hand knowledge about the

importance of features from medical perspective. 
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Out of 334 features present in the BTH 2000 dataset, 76 features were discarded because

they  had  no  bearing  by  definition  with  relation  to  the  cardiovascular  disease  risk  factors  or

mental health status variables. Out of the remaining 258 features, 86 features were eliminated by

the  feature  elimination  process.  The  remaining  172  variables  still  contained  some  recoded

features. With the help of a domain expert (Dr. Tim Van Wave, School of Medicine, University

of Minnesota Duluth) we discarded 60 more features to give a reduced dataset of 112 features.

The feature subset selection method operates on the reduced dataset containing 6,251 data points

and 112 features.  

4.3 Building a predictive model using hybrid system

This section describes how the predictive models are built using our proposed system.

We use a hybrid system which combines two machine learning techniques: genetic algorithms

and decision trees  to  construct  the  predictive  model.  We use genetic  algorithms that  employ

decision trees in their fitness function to construct the predictive model. Our aim is to identify

predictors  of  cardiovascular  disease  risk  factors  and  mental  health  status  variables.  This  is

achieved by performing feature  subset  selection using genetic  algorithm.  We also attempt  to

establish relationship between the output variable and the predictors. The decision tree learning

algorithm is used to grow decision trees from good subsets of data to establish relationships

between the input features and the output feature. The following subsections describe how the

feature  subset  selection  is  carried  out  and  how  decision  trees  play  an  important  role  in

establishing relationships between the predictors and the output variable. 

 

4.3.1 Feature subset selection using genetic algorithms

We attempt to identify predictors of cardiovascular disease risk factors and mental health

status variables. To identify the predictors we first need to identify good small subsets with high

accuracy. We use genetic algorithms to perform the task of features subset selection. Table 2.5

depicts the general genetic algorithm process and explains the genetic algorithm learning process

in brief. In most of the genetic algorithm based systems, the basic algorithm is implemented with

slight variations. In this research, we use the same backbone of the genetic algorithm as depicted

in  Table  2.5.  However  the  encoding  of  chromosome,  selection  mechanisms  used,  crossover

mechanisms  used,  population  recombination  scheme  used  and the  fitness function  used  vary
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from problem to problem. Sections 4.3.2 and 4.3.3 describes in detail how the various aspects of

genetic algorithm were handled to identify good subsets of data. 

4.3.2 Establishing relationships using decision trees

The genetic algorithms are used to find the subset of features predicting the class of the

output features listed in Table 3.1 and Table 3.2. Genetic algorithms play an important role in

identifying a subset of relevant features. Decision trees also play an equally important role in the

system by determining the quality of the subsets. Decision trees are used to calculate the fitness

value of  all the chromosomes in the population. Decision trees are used to evaluate the quality

of  subsets  identified  by  the  feature  subset  selection  process.  Decision  trees  further  play  an

important  role  in  interpreting  the  results  obtained  from  the  genetic  algorithm.  The  results

obtained from the genetic algorithms indicate only the subset of features which most accurately

predict  the class of the output variable. We are also interested in finding out the relationship

between the subset  of  features  and the  output variable.  The decision tree  rules  (discussed in

Chapter 5) provide a complete relationship between the subset of features and the class of the

output feature. 

4.3.3 Encoding of feature subset selected problem as genetic algorithm.

 This  section  describes  how  the  feature  subset  selection  is  encoded  as  a  genetic

algorithm. We discuss how the various aspects of genetic algorithms are modified for identifying

good subsets of features containing minimal number of features and having high classification

accuracy. 

 Table 4.1 : A binary encoded chromosome for the feature subset selection. 0's
indicate that the corresponding features are not included in the subset. 1's indicate that the

corresponding features are included in the subset. 

Chromosome 00010000..............11011(112 bits)
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4.3.3.1 Encoding of chromosomes

The main aim of the feature subset selection stage is to identify small subsets of  features

which  have  high  classification  accuracy. Hence  the  candidate  solution for the feature  subset

selection problem is a subset of data containing some of the features of the dataset. In genetic

algorithms,  candidate  solutions  are  represented as  chromosomes.  In  this  case,  given  a set  of

features  we  need  to  find  good  subsets  of  the  features,  hence  the  candidate  solution  should

represent which features are included in the subset and which features are not included in the

subset. We use binary encoding to represent the candidate solution as a chromosome.  

The  chromosome  is  represented  as  a  binary  string  of  length  equal  to  the  number  of

features in the dataset. Each bit in the chromosome corresponds to a feature in the dataset. A '0'

in the chromosome represents that the corresponding feature is not included in the subset, and a

'1' in the chromosome represents that the corresponding feature is included in the subset. Hence

the  total  number  of  features  included  in  the  subset  is  equal  to  the  number  of  1's  in  the

chromosome. The reduced BTH 2000 dataset that is used to perform all the experiments contains

112 features. Hence, every chromosome contains 112 bits and represents one candidate solution

to  the  problem.  Table  4.1  shows  an example  of  an  encoded chromosome.  The  chromosome

would contain 112 bits, with each bit representing whether the corresponding feature from the

dataset in included in the subset or not. Only those features having the corresponding bit in the

chromosome set to '1' are included in the subset. 

4.3.3.2 Selection mechanisms 

As discussed in Chapter 2, the selection procedure is one of the most important factor

affecting the performance of genetic algorithms. It is essential that fit individuals be selected for

preservation and recombination to ensure that new traits are explored without losing the current

best solutions. In our system we have implemented four different selection mechanisms: random,

ranked,  fitness  proportional  and  tournament  as  described  in  Chapter  2.  In  this  section  we

describe their implementations in our system in brief. 

➢ Random selection:  A random number between 0 and the size of population (i.e., number of

chromosomes in the population) is generated and the chromosome at the index corresponding
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to the random number is returned.  

➢ Ranked selection: Chromosomes are selected probabilistically from the population depending

upon the rank of chromosomes in the population. The chromosomes are ranked in descending

order of their fitness values.  

➢ Fitness  proportional  selection:  Chromosomes  are  selected  probabilistically  from  the

population depending upon their fitness value. The larger the fitness value of a chromosome,

the higher the chance of being selected.  

➢ Tournament  selection:  We  use  the  standard  Boltzmann  tournament  selection  with  the

tournament size set to 25%  of the population size. (i.e., tournament size = 25)

The effect of each selection mechanism on the overall performance of the genetic algorithm is

discussed in Chapter 5.

4.3.3.3 Crossover and Mutation Operators

The crossover operator is responsible for recombination of individual chromosomes. The

main aim of applying crossover operator is to explore new adaptive traits by combining two fit

individual chromosomes. In this genetic algorithm system we implement single-point, two-point

and uniform crossover.  As discussed in Chapter  2, the  crossover operator  operates upon two

parent chromosomes and produces two offspring. This section describes the crossover operator

in brief. 

➢  Single-point crossover: The crossover-point is obtained by generating a random number. The

crossover mask is then set by inserting all 0's till the crossover-point and inserting all 1's after

the crossover point.

➢  Two-point crossover:  Two random numbers are generated to act as crossover-points.  The

crossover  mask  is  then  set  by  putting  0's  till  the  first  crossover  point,  1's  from the  first

crossover point to the second crossover point and 0's again from second crossover point till

the end of the chromosome. 
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➢  Uniform crossover:  The entire  crossover  is  generated  randomly  by generating  a  random

binary string of length equal to the number of features.  

The mutation operator is implemented in our system by generating a random number to choose

the bit position in the chromosome and then flipping the chosen bit. 

4.4.3.4 The fitness function

Every chromosome in the population represents a candidate solution. The quality of the

solution represented by a chromosome is determined by the fitness value of the chromosome.

The fitness function evaluates individual chromosomes of the population and assigns a fitness

value to each chromosome. In this section we discuss the fitness function used to evaluate the

subsets of features.

As discussed in section 4.3.3.1, our system uses binary encoding to encode the feature

subset  selection  problem  as  genetic  algorithm.  A  '1'  in  the  chromosome  indicates  that  the

corresponding feature is included in the subset and a '0' in the chromosome indicates that the

corresponding feature is not included in the subset. Thus, every chromosome represents a set of

predictors, identifying the class of the output feature. To determine how accurately each of these

sets of predictors predict the class of the output feature, we build a decision tree from the subset

of features encoded by the chromosome. Once the decision tree is constructed, it is applied to the

entire dataset to compute the number of examples which are correctly classified by the learned

decision tree. As we are interested in identifying good subsets of features which contain minimal

number of features, we penalize the component of the classification accuracy. We compute the

fitness value of the chromosome as shown in Equation 4.2.

Classification accuracy of the decision tree is computed as shown in Equation 4.1

accuracy=number of examples correctly classified
number of totalexamples

          (4.1)
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adjAcc=
numCorrectEx−factor∗max 0,numFeatures−minFeatures 

numTotalEx

FitnessValue=adjAcc2                (4.2)

where,

adjAcc:                     adjusted accuracy

numCorrectEx:        number of examples or data points correctly classified by the learned           

                     decision tree

numFeatures:            number of features included in the subset i.e., number of 1's in the         

        chromosome 

minFeatures:            minimum number of features used in any subset. i.e., minimum number  

            of 1's in chromosome in the population

numTotalEx:            total number of examples or data points

We  can  directly  use  the  classification  accuracy  to  evaluate  the  subsets  of  features

represented by the chromosomes. However we are interested in finding small subsets of features

having  high  classification  accuracy.  To  find  smaller  subsets,  we  penalize  the  classification

accuracy depending on the number of features included in the subset. We compute the adjusted

accuracy as shown in Equation 4.2, which is based on the minimum description length theory.

We identify the chromosome with least number of 1's and set a threshold value for the number of

features  to  be  included  in  the  subset.  If  a  chromosome  contains  more  features  then  it  gets

penalized by a factor obtained by subtracting the threshold value from the number of features in

the subset and multiplying it by some constant as shown in Equation 4.2. The constant factor is

determined experimentally and is set to 5. The fitness value is obtained by taking the square of

the adjusted accuracy so that  the fitness values are bit  more spread out  in the overall  fitness

region.

If  two  chromosomes  have  the  same  classification  accuracy,  but  one  chromosome

contains a smaller  number of features as compared to the other,  then the fitness value of the

chromosome with less number of features is higher than the fitness value of the chromosome

with  large  number  of  features  due  to  the  penalization  term  used  in  computing  the  adjusted

accuracy.  By using the fitness function as shown in Equation 4.2 we ensure  that  our system

identifies small subsets of features with high classification accuracies.
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4.4.3.5 Population generation and recombination

One of the factors affecting the convergence of the genetic algorithms is how the initial

population  is  generated.  In  this  implementation  we generate  the  initial  population  randomly.

Another  factor  affecting  the  convergence of  the  genetic  algorithms  is  how the  population  is

recombined  at  the  end of  each  iteration.  In  this  implementation  we maintain  the  size  of  the

population over generations. The population carried over to the next generation is same size as

the initial population size. The population size is kept constant throughout the entire evolution

process. We first perform crossover on the chromosomes depending upon the specified crossover

rate.  The  crossover  rate  specifies  how many  chromosomes  should  be  selected  and  used  for

recombination. For example, if the crossover rate is 60%, then 60 chromosomes out of 100 are

selected with the help of the selection mechanism for recombination. In the crossover operation,

two parent chromosomes are combined to produce two offspring. Both the parents and offspring

are evaluated by computing fitness values. Only two chromosomes out of the four chromosomes

(i.e,  two  parent  chromosomes  and  two  offspring  chromosomes)  are  promoted  to  the  next

generation on the basis of their fitness values.  

We then perform the mutation operation on the newly formed offspring depending upon

the  specified  mutation  rate.  The  mutation  rate  specifies  the  number  of  chromosomes  which

undergo mutation. For example if the mutation rate is 5%, then 5 chromosomes out of 100 are

selected for  mutation.  The chromosomes undergo mutation to produce 5 offspring which are

included in the population of the next generation. 

The remaining slots of the population are filled by promoting the best chromosomes in

the current generation to the next generation. This process of promoting the best chromosomes in

the  current  generation  to  the  next  generation  is  called  elitism  and  it  ensures  that  the  best

chromosomes are not lost due to changes in the chromosome by the crossover and the mutation

operations. For example, if the population size is 100, the crossover rate is 60% and the mutation

rate is 5%, then 60 chromosomes are formed by the crossover operation, 5 of the newly formed

children  chromosomes  are  selected  for  mutation  and  the  remaining  40  slots  are  filled  by

promoting the top 40 chromosomes of the current generation to ensure that the best solution is

not lost in the recombination process. 
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Chapter 5

Experiments and Results

This chapter  discusses various experiments carried out to evaluate  the  research work.

First, we discuss a performance estimation technique used to cross-validate the results obtained

from  various  experiments.  Then  we  discuss  the  results  obtained  from  the  preprocessing

technique to narrow down the number of features. All of the other experiments carried out were

performed on the subset of data obtained from the feature elimination process. We discuss the

results  obtained  by  constructing  our  predictive  model.  We  further  present  the  predictors  of

cardiovascular  disease  risk  factors  and  mental  health  status  variables  as  identified  by  our

predictive  model.  Next  we  present  comparison  of  results  obtained  by  varying  different

parameters  of  genetic  algorithms.  Finally  we  compare  the  results  obtained  from the  genetic

algorithm based system with results obtained from statistical methods and with results obtained

from decision  trees.  In  this  chapter  we  present  detailed  results  for  only  one  feature:  Q5_11

(diagnosed high blood pressure). We present predictors for the rest of the cardiovascular disease

risk factors and mental health status features in Appendix A and Appendix B.

5.1 N-fold cross-validation technique

This  section  describes  the  N-fold  cross-validation  technique  used  to  measure  the

performance of the system throughout the research (generally with N set to 10). We use the C4.5

decision tree learning algorithm as the classifier for the predicting the class of the output feature.

The decision tree classifier divides every data point into one of the output classes. The accuracy

is the  proportion of the total number of predictions made by our system that were correct (i.e.,

the prediction matched the teacher label). The accuracy is calculated from a confusion matrix as

shown  in  Table  5.1.  The  confusion  matrix  contains  the  information  about  the  actual  and

predicted  value  of  the  class  of  the  output  feature  as predicted  by   the   classifier   system.

Consider  an  output  feature  which  can  take  two possible values: positive and negative. The

confusion matrix for predicting the class of the output feature is shown in Table 5.1.
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Table 5.1: A confusion matrix to compute accuracy of the base classifier.

Predicted

Negative Positive

Actual
Negative A B

Positive C D

where, 

A is the number of correct predictions that an instance is negative.

B is the number of incorrect predictions that an instance is positive (false positives)

C is the number of incorrect predictions that an instance is negative (misses) 

D is the number of correct predictions that an  instance is positive.

Accuracy is calculated by performing the computation shown in Equation (5.1)

Accuracy= AD
ABCD

........................... 5.1

N-fold cross-validation is done by dividing the dataset into N equal parts. The  N equal

parts  of  the dataset are created by random sampling of the data instances.  For predicting the

accuracy, (N-1) parts of the data are used as training data and used for learning decision tree

rules. The learned decision tree is then tested on the N
th
 part and accuracy is computed. A similar

process  is  carried out  for  computing accuracy for  each set  of the data.  The total  accuracy is

obtained by totaling the predictions obtained from each of the N folds of the data. The N-fold

cross-validation technique is used because it allows for more accurate estimates and it guarantees

testing on every single data instance.  

5.2 Feature Elimination Results

As discussed in Chapter 4, we applied a preprocessing technique to eliminate features

that might contain irrelevant or redundant information from the BTH 2000 dataset. The feature

elimination process categorizes all the features into three classes: very likely irrelevant, possibly

irrelevant  and  possibly  relevant.  To  ensure  that  the  features   were  not  misclassified,  we

performed a 10-fold cross-validation test on each of the three  classes. Table 5.2 summarizes the

results of the 10-fold cross-validation applied to each of the three classes.
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Table 5.2 Accuracy obtained from 10-fold cross-validation for 
different classes of features.

Features included in the dataset Accuracy obtained by 10-fold
cross-validation

Entire dataset 93.96

Reduced  subset  (subset  of  data
used to perform experiments) 93.39

We performed  all  of  our  experiments  only on the  reduced dataset  obtained from the

possibly  relevant  features.  We can  see  from  Table  5.2  that  our  feature  elimination  process

eliminates significantly large number of features without affecting the desired accuracy. We can

observe from the Table 5.2 that the reduced dataset containing 112 features used for conducting

the  experiments  has  comparable  accuracy  (93.39%)  compared  to  the  entire  dataset  (93.96%)

although it has significantly fewer features. To observe the effect of eliminating each class of

features, we performed an experiment  in which  features were  dropped  progressively from the

dataset.  Initially  all  the  features  were  assigned  a  score  by  the  feature  elimination  process

depending upon the change in accuracy observed by eliminating the corresponding feature. Then

the features were classified into three different classes as discussed in Section 4.2.2. The features

were discarded from the dataset one at a time and the classification accuracy for the remaining

set of features was computed  using the 10-fold cross-validation technique. Figure 5.1 shows a

graph of the accuracy obtained from 10-fold cross-validation against the features dropped. 

From Figure 5.1 we can observe that as the features from the possibly relevant features

class are dropped,  there is a steady drop in accuracy. After the features from possibly relevant

features class are dropped, the features from the possibly irrelevant features class are dropped.

The feature elimination process classifies very few features in the  possibly irrelevant features

class. As the features from the possibly irrelevant features class are dropped first, the accuracy

drops  relatively  steadily.  Although  some  of  the  features  from the possibly  irrelevant  class

contain useful information, they do not contain any additional  information about  the class of the

output feature.  From the graph in Figure 5.1 we can see that the accuracy starts dropping rapidly

when all the features from  possibly relevant and possibly irrelevant class of features are dropped

(around the point when approximately 190-200 features are dropped). The accuracy  fluctuates

when the features from very likely irrelevant class are dropped. We observe a random pattern at

the  end of the process, as the features  remaining  in  the  dataset are not predictive of the output 
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Figure 5.1 A graph of accuracy computed by 10-fold cross-validation 
as features are dropped from the dataset.

feature and the accuracy fluctuates due to the random data patterns in the remaining subset of the

data.  

5.3 Predictive model for Q5_11 (Diagnosed high blood pressure)

In  this  section  we describe  in  detail  the  predictive  model  that  is  constructed  by  our

learning system. We describe the  learned data model  for  the feature  Q5_11 (Diagnosed high

blood pressure).  Similar data models were learned for  all  the features listed in Table 3.1 and

Table 3.2. We discuss the data models for the remaining features in brief in Appendix A and

Appendix B.. 

Our main goal is to identify the predictors of diagnosed high blood pressure,  Q5_11

(i.e., we want to identify features in the dataset which contain information about the class of the
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output  feature  Q5_11).  In  order  to  construct  the  data  model,  we  use   genetic  algorithms  to

identify good, small  subsets of features having high classification accuracy.  The system uses

decision trees to evaluate the quality of the subsets. Once the subsets of features are identified,

decision trees are further used to establish relationships between the subset of features and the

output feature. The learned data model thus consists of good, small subsets of features with high

classification accuracy and the relationships between the features in the subsets with the output

feature.  Table  5.3  indicates  the  parameters  of  the  genetic  algorithm  used  to  construct  the

predictive model. The parameters of the genetic algorithm that best suit the BTH 2000 dataset

are set by executing the genetic algorithm with various settings. We describe the experiments to

set the parameters in sections 5.4 to 5.9.

After the genetic algorithms are executed with the parameters indicated in Table 5.3, all

of the 100 chromosomes in the population represent good, small subsets of features. They are

arranged in descending order of their fitness values. Table 5.4 indicates the top 10 feature subsets

and  the  corresponding  accuracy.  The fitness  value  is  computed  by  observing  the  number  of

correct  predictions made by our system using 10-fold cross-validation and  penalizing for any

additional features that the subset contains. 

Table 5.3: Setting of the parameters of genetic algorithms 
to construct the predictive model.

No. of chromosomes in randomly generated population: 100
Number of iterations: 1000
Crossover Rate: 60%
Mutation Rate: 5%
Method of Parent Selection: Ranked
Crossover Mechanism: Uniform Crossover
Fitness Function: penalizing classification accuracy for missing features as shown in Formula
(4.1)
Dataset: Reduced Dataset (112 variables)
Other Constraints: Population carried over to next generation (population size maintained)
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Table 5.4: Top 10 feature subsets obtained from the feature subset selection 
process for variable Q5_11

(1) AGE, Q5_12, PCS12, BMI,  Q27, Q5_9, Q5_5,  Q24, Q5_4, (92.86)
(2) AGE, Q5_12,  PCS12, BMI, Q3, Q27, Q4, Q5_10, Q49REC, Q56, Q5_9, DOLLARS (92.79)
(3) Q5_12, Q5_9, PCS12, BMI, Q5_10, Q36, ALDPANX2, Q5_6, DBDPANX2, Q5_1, RACE,
DOLLARS, (92.75)
(4) AGE, Q5_12, PCS12, BMI, Q5_9, Q27, Q5_6, Q5_10, Q65A, EXCERREC, Q7A,
DEPRANX2, Q40, (92.68)
(5) AGE, BMI, PCS12, Q5_9, Q3, MCS12, Q5_10,  Q39, DBDPANX2, GENHLTH, Q5_9,
DOLLARS, (92.70)
(6) Q5_12, Q5_9, BMI, Q34, Q27, Q7A, Q27, Q43, EXCERREC, Q41, RACE, Q54NEW, Q56,
(92.62)
(7) PCS12, Q27,  Q39,  Q66A, Q42, ALDPANX2, Q49, Q24, Q4, Q49REC3, Q25, Q57,
Q5_15NEW2, Q5_5, Q58, Q56, (92.68)
(8) AGE, PCS12, Q5_12, BMI, Q34, Q27, EXCERREC, Q7A, Q4, Q5_10, DBDPANX2, RACE,
(92.57)
(9) Q5_12, PCS12, BMI, Q5_10, MCS12, Q7B, Q5_16NEW2, Q4, Q5_6, Q6, Q26_11, RACE,
(92.56)
(10) Q5_12, Q5_9, PCS12, BMI, Q34, Q40, Q5_6, MARITAL, Q5_10, MCS12, Q5_6, RACE,
(92.52)

Once the genetic algorithm has performed the task of feature subset selection, we get the

set  of  predictors  identifying  the  appropriate  class of  the  output  feature  Q5_11.  The solution

obtained from the feature subset selection task just lists a subset of features that most accurately

predict  the class of  the output  variable  Q5_11, but  do not convey any information regarding

importance of each individual feature in the subset or any kind of relationship between the subset

of features and the output feature. To determine the importance of each feature, we use the same

approach used in the feature elimination process. The feature is dropped from the subset and the

change in accuracy is  observed.  If a feature occurs in more than one feature subset,  then the

average change is accuracy is computed for that feature over the subsets in which it occurs. All

the features are ranked in descending order of their score, which is computed by observing the

change in accuracy after  the feature is  dropped from the subset.  Once the importance of  the

features is  determined,  we  build  a  decision  tree  with  all  the  features  that occur in the top

10  chromosomes. The learned decision tree is then converted to a set of  if-then rules to establish

the  relationship  between  input  features  and  Q5_11.  Table  5.5  gives  the  list  of  predictors  of

Q5_11  (diagnosed  high  blood  pressure)  arranged  in  descending  order  of  their  importance

assesses on the basis of change in accuracy after dropping the corresponding feature from the

subset of data. It lists a set of features which predict that an individual in the regional population

has diagnosed high blood pressure and states the relationships between the individual features
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and Q5_11. Table 5.6 lists the top five rules which predict the correct class of the output feature

Q5_11. The rules are ranked on the basis of number of correct examples classified by the rule.

The predictors obtained from our system were inspected by a medical expert and were tagged

with three classes as shown in Table 5.5. The predictors were tagged as: (1) predictors make

sense and have support  in  the  medical  field  for  that  predictor  being  meaningful  (2)  variable

makes sense but is interesting (something which the medical field has not seen before and (3)

variable does not make sense from medical perspective. The predictive model constructed by our

system gives useful information about the data from various perspectives as can be seen from

Table 5.4, Table 5.5 and Table 5.6. We construct similar predictive models for all of the mental 

Table 5.5 Top predictors identifying that an individual in the regional population 
has diagnosed high blood pressure (Q5_11 = 1) ranked in order of their 

importance and the relationship between top predictors and Q5_11

Feature Rule Description Tag

AGE AGE > 53.5 Age of the individual is greater than 53.5
years

Has support 

Q5_12 Q5_12 < 1.5 Has diagnosed high cholesterol Has support

Q5_9 Q5_9 < 1.5 Has diagnosed heart related problems Has support

PCS12 PCS12 < 44.618 Physical health score less than 44.618 Has support

BMI BMI > 26.019 Body mass index greater than 26.019 Has support

Q34 Q34 < 1.5 Limited: moderate activities  = limited a lot Has support

Q27 Q27 >= 1.5 Prescriptions written and filled for medicines Has support

Q3 Q3 >= 2.5 General health = good, fair or poor Has support

MCS12 MCS12 < 55.8 Composite mental health score less than 55.8 Interesting

Q39 Q39 < 1.5 Limited in kind of work Has support

Q5_10 Q5_10 < 1.5 Has diagnosed stroke related problem Has support

Q40 Q40 < 1.5 Accomplished less due to mental health Interesting

ALDPANX2 ALDPANX2 <
32.5

Accomplished less w/o depression or anxiety Interesting

Q24 Q24 > 1.5 Health insurance status (partially or
uninsured)

Interesting

DBDPANX2 DBDPANX2 =
31

Downhearted and blue w/o depression or
anxiety

Interesting

Q7B Q7B <=2 Servings of fruits/veg per day (less than 1
serving)

Has support
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Table 5.6 Top 5 rules predicting high blood pressure (Q5_11=1) in the regional population

(1) If AGE>43.5 and BMI>29.74 and DBDPANX2=31 and Q5_9=1 then Q5_11=1

(2) If Q5_12=1 and PCS12<46.085 and Q40=1 and Q5_10=1 and  MCS12<63.5 then Q5_11=1

(3) If Q5_12=1 and Q5_9=1 and ALDPANX2=31 and DBDPANX2=31 then Q5_11=1

(4) AGE>53.5 and Q5_12=1 and BMI>30.49 and Q4>=4 and Q5_10=1 and EXCERREC=1 then

Q5_11=1

(5) If Q5_12=1 and PCS12<35.41 and Q5_10=1 and Q5_16NEW2=2 then Q5_11=1

health features listed in Table 3.1 and all of the cardiovascular disease risk factors listed in Table

3.2.  The results  for  all  the  other  variables  are  listed  in  Appendix  A. The following sections

discuss  the  effect  of  the  parameters  of  genetic  algorithms on the overall  performance of  the

genetic algorithms.

5.4 Effect of Elitism on performance of genetic algorithms

Figure 5.2 shows a graph of accuracy of the subsets of features obtained by our system

against  the  number  of  iterations  performed by the genetic algorithm process. As  discussed  in

Figure 5.2 Results measuring the effect of elitism on performance of genetic algorithm.
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Chapter 2, elitism is a process in which few of the top chromosomes in the current generation are

promoted to the next generation to ensure that the best current solution is not lost. To observe the

effect  of  elitism  on  the  overall  performance  of  the  genetic  algorithms,  we  constructed  a

predictive model employing  elitism  and a predictive model without employing  elitism  keeping

all  the  parameters  of  genetic  algorithms  constant.  We  compute  average  accuracy  of  all  the

chromosomes after every iteration. We can see from the graph in Figure 5.2 that though both the

implementations  have  comparable  accuracy  after  1000  iterations,  the  genetic  algorithm

converges faster if we employ elitism, which is unsurprising given the fact that elitism preserves

the best solution by carrying over few of the top chromosomes to the next generation. 

5.5 Effect of selection mechanism on performance of genetic algorithms

Figure  5.3 shows a graph of  accuracy of subsets  of  features  obtained  by our  system

against  the  number  of iterations  performed  by the genetic algorithm. We  have implemented

four selection  mechanisms: random, ranked, fitness proportional and tournament selection. We

can observe from the graph in Figure 5.3, that ranked selection  has faster convergence rate than 

Figure 5.3: Results measuring the effect of selection mechanisms 
on performance of genetic algorithms.
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any other  selection  mechanisms.  This  is  because  of  the  fact  that  in  ranked  selection,  higher

ranked chromosomes have more probability of getting selected. We can also observe that ranked

selection and tournament selection perform better than fitness proportional and random selection.

In our system, the fitness proportional selection does not work well, as the fitness values of the

chromosomes are very close to each other. As expected the random selection performs the worst

and has slower convergence rate. Tournament selection performs better over time than ranked

selection.  However  proper  care  needs  to  be  taken  to  set  the  value  of  tournament  size.  The

tournament size in the tournament selection was set to 25. We observed experimentally that the

tournament selection performed reasonably well if the tournament size was set between 25% to

50% of the number of individuals in the population.

5.6 Effect of crossover mechanism on performance of genetic algorithms

 Figure 5.4 Results measuring the effect of crossover mechanisms 
on performance of genetic algorithms.
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Figure 5.4 shows a graph of average accuracy of subsets  of  features obtained by our

system  against  the  number  of  iterations  performed  by  the  genetic  algorithm.  We  have

implemented  three  crossover  mechanisms:  single-point,  to-point  and  uniform crossover.  The

graph indicates the average accuracy obtained from all the chromosomes in a generation when

each of the three crossover mechanisms are used. All the other parameters are kept constant. We

can  see  that  although  uniform  crossover  performs  better  than  the  rest  of  the  crossover

mechanisms,  we obtain comparable results using two-point crossover.  Uniform crossover and

two-point  crossover  tend to  perform better  than the  single-point  crossover  as  more traits  are

explored in two-point and uniform  crossover than in single-point crossover. 

5.7 Effect of population size on performance of genetic algorithms

Figure 5.5 shows a graph of average accuracy of subsets  of  features obtained by our

system against the number of iterations performed by the genetic algorithm. The graph shows

average  accuracies  of  all  the  chromosomes  in  the  population.  All  the  parameters  are kept

Figure 5.5: Results measuring the effect of population size
on performance of genetic algorithms.
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constant and only the population size is varied from 10 to 100. We can see that for a small value

of population size, the accuracies are significantly lower. This is due to the fact that the lower the

population  (i.e.,  less  the  number  of  chromosomes),  the  fewer  the  traits  observed  in  the

population. Hence with a small population size not all the adaptive traits are explored (i.e., all the

possible combinations of good features are not explored) and as a result the average accuracy

remains significantly lower than the desired accuracy. From the graph we observe that we get

good accuracies with a population  size  of  60 to 70 chromosomes. Although  large population

size enables more traits  to be explored, the  performance is slightly lower because the graph

shows the average accuracy of the population. 

5.8 Effect of crossover rates on performance of genetic algorithms

Figure 5.6 shows a graph of average accuracy of subsets  of  features obtained by our

system against the number of iterations when crossover rate is varied. Crossover rate is varied

from  0%  to 100%  while  all the other parameters of genetic algorithm are kept constant. From

Figure 5.6: Results measuring the effect of crossover rate
on performance of genetic algorithms.
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graph we can observe that high accuracy is obtained if crossover rate is set to 60%. For lower

crossover rates, lower accuracy is observed as fewer chromosomes are used for recombination

and as a result many adaptive traits are left unexplored. As the crossover rates approach 100%,

the performance of the system degrades as all the chromosomes are used up for recombination

and the chromosomes with high fitness values may be lost. 

5.9 Effect of number of iterations on performance of genetic algorithms

Figure 5.7 shows a graph of accuracy of subsets of  features obtained by our system

against the number of iterations when the number of iterations is varied. The graph shows the

average accuracy of all the chromosomes in a generation and the accuracy of the best subset of

features.  We  can  see  from  the  graph  that  the  average  accuracy  obtained  from  our  system

increases rapidly initially,  highlighting the adaptive nature of genetic algorithms. The genetic

algorithms are based on artificial evolution that follows the principle of natural evolution, and

they make the population (i.e., set of chromosomes which are candidate solutions to the problem)

more adaptive over time. 

Figure 5.7 Results measuring the effect of number of iterations
on performance of genetic algorithms.
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Table 5.7: A comparison between results obtained by statistical methods 
and results obtained by our system.

Top 10 Correlations Relationships in our system

EXCERREC, ALDPANX2  = 2.0 If ALDPANX2=31 then EXCERREC=1 

Q5_12, DEPRANX2  = 2.0 If Q5_12<1.5 then DEPRANX2=2

Q5_11, DEPRANX2 = 1.8 If Q5_11<1.5 then DEPRANX2=2

Q5_12, Q15NEW2 = 1.8 No relationship determined.

Q5_12, Q16NEW2 = 1.7 If Q5_12<=1.5 then Q16NEW2=2

EXCERREC, Q15NEW2 = 1.7 If Q15NEW2=1 then EXCERREC=1

EXCERREC, DEPRANX2 = 1.7 If DEPRANX2=2 then EXCERREC=1

EXCERREC, DBDPANX2 = 1.7 No relationship determined.

BMI, DEPRANX2 = 1.6 If BMI>28.35 then DEPRANX2=2

BMI, Q15NEW2 = 1.6 If BMI>=29.23 then then Q15NEW2=1

5.10 Comparison between our system and statistical methods.

The results  obtained  from our  system are  summarized  in  Sections  5.2  to  5.9  and  in

Appendix A and Appendix B. Dr. Tim Van Wave [Van Wave, 2004] used statistical methods to

establish  relationships  between  cardiovascular  disease  risk  factors  and  mental  health  status

variables in the BTH 2000 dataset. He used odds ratio and chi square to find correlation between

cardiovascular disease risk factors and mental health status variables. Table 5.7 summarizes the

comparison between the results obtained by statistical methods and the results obtained by our

system. The results obtained using odds ratios are arranged in descending order of their values.

We  consider  only  the  top  ten  correlations  obtained  by  Odds ratio.  Correlation  between

cardiovascular disease risk factors and mental health status features was found using odds ratio.

The table indicates the top ten correlated features with the value obtained from odds ratio using

contingency tables. The result space of the two features was observed to find a rule suggesting

relationship between the two features. From Table 5.7 we can observe that our system identifies

relationship  between  the  two  features  for  8  out  of  the  10  top  correlations  obtained  by  the

traditional  statistical  methods.  Table  5.7  lists  the  relationships between  the  two  correlated

features. We can see that in addition to identifying the predictors of cardiovascular disease risk

factors  and  mental  health  status  variables  our  system  also  establishes  relationships  between

them.  Hence  from the  comparison  we can  conclude  that  our  system identifies  predictors  of
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cardiovascular  disease  risk  factors  and  mental  health  status  variables  accurately  and  also

suggests the nature of the relationships between them. The predictive models constructed by our

system  may  provide  useful  information  to  health  professionals  in  addressing  cardiovascular

disease risk factors and mental health issues. We also believe that our predictive model may be

used to derive predictive models from other survey datasets using the specified parameters. 
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Chapter 6

Related Work

Machine learning and knowledge discovery in databases are closely related fields. Many

machine  learning  techniques  are  employed to  discover  patterns  in  data  for  decision  making.

Numerous methods have been proposed to extract useful information from the datasets. In this

work, we employed the feature subset selection process using genetic algorithms to filter features

containing useful information from a large set of features. In the first section we summarize the

findings of research related to the feature subset selection task and genetic algorithms. A large

amount of research work has been carried out to explore the patterns in epidemiological datasets

using machine learning techniques. In the second section, we summarize the work and findings

of selected related research in exploiting the patterns in epidemiological datasets. 

6.1 Genetic algorithms and feature subset selection.

In this section we discuss some of the research work carried out in the field of genetic

algorithms.  We  summarize  the  work  and  findings  of  some  research  work  concentrated  on

applying genetic algorithms to the feature subset selection task and improving performance of

the genetic algorithms. 

Oliveira et al. [2001] applied genetic algorithms for handwritten digit recognition. They

applied  genetic  algorithms  for  the  feature  subset  selection  task  for  handwritten  digital

recognition  through  a  modified  wrapper  based  multi-criterion  approach  in  conjunction  with

multilayer  perceptron neural  network.  They  implemented  two  approaches:  a  simple  genetic

algorithm and an iterative genetic algorithm for practical pattern recognition. They used a binary

encoding of chromosome and implemented fitness proportional selection mechanism. They also

attempted to find the optimal parameter setting for the digit recognition problem. They found out

experimentally that their system performed most accurately for the following set of parameters:

population  size  –  30,  number  of  generations  –  100,  crossover  probability  –  0.8,  mutation

probability  –  0.007.  They  also  found  out  that  although the  performance  of  simple  genetic

algorithms and iterative genetic algorithms were comparable and both approaches reduced the
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complexity of the classifier, the iterative genetic algorithm converged  a lot faster.   

Matsui et  al.  [1999]  used  genetic  algorithms  in  conjunction  with  neural  networks  to

select  an  optimal  combination  of  features  to  classify gray  matter  and  white  matter  in  MRI

segmentation. They applied genetic algorithms to carry out the feature subset selection task, and

used neural networks to test the predictive model. They used a new approach called the vector

quantized  conditional  class  entropy  to  evaluate  the  combination  of  features  rapidly  without

testing  the   actual  classifier.  They  used  the  following  set  of  parameters  to  conduct  their

experiments: population size – 30 , number of iterations – 30, selection mechanism – fitness

proportional selection. 

Both of these research works - Oliveira et al. [2001] and Matsui et al. [1999] - use a

combination of genetic algorithms and neural networks to construct the predictive models. Our

system uses a combination of genetic algorithms and decision trees to identify good predictors of

the output variable and to establish relationships between the predictors and the output variable.

We also  use  a  fitness  function  that  penalizes  the  classification  accuracy  based  on minimum

description length theory. 

Ever  since  the  evolution  of genetic  algorithms  in  late  1970's,  many researchers  have

concentrated their work on identifying optimal  parameters of genetic algorithms. Many sets of

parameters  have  been  identified,  however  none of  the  parameter  sets  serve  as  a  benchmark.

Optimal parameters vary for different  problem domains.  However,  DeJong's settings [DeJong

and  Spears,  1990]  and  Grefenstette's settings  [Grefenstette,  1986]  are  regarded  as  standard

settings for most of the genetic algorithm problems. Both of these research efforts were mainly

concentrated  on  identifying an  optimal  set  of  parameters  for  genetic  algorithms  applied  to

various  problem domains.  In  our  research  work  we mainly  concentrate  on  applying  genetic

algorithms to a survey dataset and find a set of parameters that could be used to apply the genetic

algorithm  learning  process  to  any  epidemiological dataset.  We  use  the  standard  settings  to

estimate the performance of our  predictive model and compare our settings with the standard

settings.  
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6.2 Exploring patterns in epidemiological datasets.

Demsar  et  al.  [2001]  attempted  to  construct  outcome  prediction  models  from

retrospective data of severe trauma patients after the first surgery. They used  decision trees and

naive Bayesian classifiers to induce the predictive models making it easier for trauma surgeons

to  decide  the  eligibility  of  patients  for  damage  control.  Damage  control  requires  a  massive

investment of medical resources which are limited and expensive. Their constructed prognostic

model helps optimize the use of limited medical resources. They used a preprocessing technique

based  on  RELIEFF [Kira  and  Rendell,  1992,  Kononenko,  1994]  to  narrow down the  list  of

features  used,  by  eliminating  irrelevant  features,  and  used  different  statistical  measures  to

estimate the performance of the derived prognostic model. However the model was built from a

small  dataset  (data  consisted  of  68  data  points  and  174  features  collected  from  Ben  Traub

General Hospital, Houston, TX) and is regarded as a pilot model to guide further studies and

researches. We build our predictive model from a large dataset consisting of  334 features and

6,251 data points. We also used genetic algorithms to identify good subsets of features from a

relatively large set of candidate features to construct the predictive model as opposed to feature

subset  selection  by  RELIEFF  done  by  Demsar  et  al.  In  addition  our  predictive model  is

constructed from a hybrid system of genetic algorithms and decision trees whereas Demsar et al.

initially perform the feature subset selection and then construct the predictive model. 

Inza et al. [2001] applied genetic algorithms and an estimation of distribution algorithm

to  predict the survival of cirrhotic patients treated with  transjugular intrahepatic portosystemic

shunt. They constructed a predictive model using feature subset selection and standard machine

learning classifiers. They found subsets with the best predictive accuracies by applying genetic

algorithm and estimation of distribution algorithm. They used four classifiers (naive Bayesian,

decision trees, rule learning and nearest  neighbor) in addition to the feature subset selection to

construct the predictive model. They got promising results from both genetic algorithm as well

as  estimation  of  distribution  algorithm.  However  they  used  a  small  dataset  to  construct the

predictive model. They used a dataset containing 107 cases with each case having 77 features.

The  constructed  predictive  model  helped  in  building  compact  models  which  could  be easily

understood and applied by the medical staff. Inza et al. used a hybrid genetic algorithm based on

estimation  of  distribution  of  the  data  whereas  we use  a  hybrid  genetic  algorithm combining

genetic algorithms with decision trees. In our research work, we use a relatively larger dataset
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making it important to use a preprocessing technique to filter out unwanted features. However,

the main variation is in the fitness function used to evaluate the subsets of features. Inza et al. use

the  classification accuracy to evaluate the subsets of features.  In our research work we use a

fitness  function  that  uses  a  component  of  classification  accuracy  and  penalizes  it  with  a

component based on number of missing features. We concentrate on identifying smaller yet good

subsets of features as compared to Inza et al. 

Gamberger  et  al.,  [2003]  examined  patient  groups  at  high  risk  for  coronary  heart

diseases. Using a data model  consisting of data gathering, data cleaning, data transformation,

subgroup discovery and statistical  characterization tasks. They constructed the data  model  by

combining machine learning techniques and statistical measures. They used a combination of

decision trees and statistical measures including sensitivity (true positive rate) and false alarm

(false positive rate). They performed subset selection using a heuristic expert guided subgroup

discovery algorithm, achieving promising results. Their dataset was collected from institute for

Cardiovascular Prevention and Rehabilitation in Zagreb, Croatia. The dataset consisted of 238

records with each record having 22 features.  Gamberger et al. used a heuristic  expert  guided

subgroup discovery algorithm, whereas  our work concentrates  on identifying good subsets of

features having high predictive accuracies using genetic algorithms.  

Dr. Timothy Van Wave [Van Wave, 2004] performed a secondary analysis of the BTH

2000  dataset  [Block  et  al.,  2000]  using  Pearson's chi-square  ratio  to  estimate  independence

between mental health status and cardiovascular disease risk factors. In his work, he used two-

way contingency table analysis to evaluate statistical relationship between mental health status

and  cardiovascular  disease  risk  factors.  His  work  suggests  that  self-assessed  and  physician

diagnosed  mental  health  status  is  significantly  associated  with  cardiovascular disease  risk

factors.  However,  his  work  only  identifies  association  between  cardiovascular  disease  risk

factors and mental health status variables and does not establish any relationships between the

two  categories  of  variables,  as  he  used  traditional  statistical methods.  In  our  work  we  use

machine learning techniques to address the same problem and establish the relationships between

cardiovascular disease risk  factors and mental health status variables. He further suggests that

early intervention addressing poor mental health and recognized risk factors for heart diseases

may work together to reduce heart disease risks more effectively. We use the results obtained

from his work as a benchmark to compare the results obtained from our predictive model.
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Kankaria [2004] has implemented a Bayesian network model to determine predictors of

cardiovascular  disease  risk  factors  and  predictors  of  mental  health  status  of  a  regional

population. In her thesis, she uses a Bayesian network structure learning to develop a web-based

tool box to view the Bayesian structure of data and to construct a predictive model from the BTH

2000 dataset [Block et al., 2000]. The tool box is based on a Construct-TAN method put forth by

Friedman et al. [Friedman et al., 1997] and tries to identify relationship between various features

of the data. This research work provides yet another perspective of examining the BTH 2000

dataset  in addition to  statistical methods [Van Wave,  2004]  and our hybrid  predictive model

constructed using genetic algorithm and decision trees. 
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Chapter 7

Future Work

In our research, we built  a system which constructed predictive models using genetic

algorithms  and  decision  trees.  The  system  identifies  small  subsets  of  features  having  high

classification  accuracy.  We  further  addressed  the  issue  of  identifying  predictors  of  cardio-

vascular  disease  risk  factors  and  mental  health  of  an  individual  in  a  regional  population  by

constructing a predictive data model. In this chapter we discuss possible improvements that can

be done to enhance our work in future. We discuss some factors that would make our predictive

data model more accurate and efficient. 

In  this  work  we are  interested  in  inferring  relationships  between variables  in  survey

datasets. The data in the survey datasets is collected by conducting surveys in a representative

population. In most of the surveys there is a high probability that the respondents did not answer

all the questions. Such unanswered responses are dealt by our system by treating them as missing

values in data which is then handled by the C4.5 decision tree learning algorithm. Hence the

missing values are handled from the machine learning point of view. However to build even

more accurate models we need to tackle the problem of handling missing responses and need to

build a predictive model which would also learn from the missing responses. The respondents

also had a choice to refuse to answer a question or choose the option of don't know / not sure if

the respondent was not sure about the answer to any of the question. In future we would like to

incorporate  some  technique  in  our  system  that  would  construct  a  predictive  model  for  the

missing responses and perhaps help in designing future surveys. 

In this work we focus on finding patterns in epidemiological datasets. There are many

organizations and collaboratives undertaking surveys in United States for collecting population

based information. Many population-based surveys have been carried out and the data collected.

Some  of  the  other  epidemiological datasets  are:  NHIS  (National  Health  interview  Survey),

BRFSS (Behavioral Risk factor Surveillance Systems), NHANES (National Health and Nutrition

Examination  Survey).  NLAES  (National  Longitudinal  Alcohol  Epidemiological  Survey)  and

YRBS (Youth Risk Behavior Surveillance System). These datasets are collected by government
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agencies and many of them are freely available. We would like to test our proposed system on

various  epidemiological datasets  and  test  the  performance  of  the  system  applied  to  various

survey  datasets.  We  would  concentrate  of  applying  our  system  to  epidemiological datasets,

however our system is generalized and can be used to find interesting data patterns in all types of

datasets by making slight variations in the system.

We implement a system which is a combination of genetic algorithms and decision trees.

Genetic algorithms are an iterative process and take time to converge. Hence we need to run the

genetic algorithm for several iterations before any useful results are obtained. Our system grows

decision trees for every chromosome in the population in every iteration. For datasets with large

number  of  features  and/or  data  points,  our  system  requires  significant  runtime.  Genetic

algorithms are naturally suited for  parallel  implementation.  Tanese [1989] and  Cohoon et.  al.

[1987] have explored approaches for parallelization of genetic algorithms. In future we would

like to explore the possibilities of parallelizing our system to reduce the runtime and increase the

efficiency. 

We would also like to incorporate our learning system in web-based tool, which can be

made freely  available  to explore  patterns  in  various  datasets.  We would also like  to  explore

various fitness functions to obtain good, small subsets of data. We believe that our predictive

model constructed from the BTH 2000 dataset might help physicians and health professionals by

identifying predictors of cardio-vascular disease risk factors and mental health status variables.

In  general,  the  system can be applied to  any epidemiological  dataset  to  determine important

features of the dataset and relationships within the dataset. 
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Chapter 8

Conclusions

In  this  research  work  we attempted  to  build  a  system  using  genetic  algorithms  and

decision trees to construct a predictive model which identifies good, small subsets of features

with high classification accuracy and establishes relationships within the dataset.  Our system

incorporates  a  preprocessing  technique  which  categorizes  features  of  dataset  based  on  the

variations observed in the classification accuracy when the feature was dropped from the dataset.

In this work, we also observe the effect of various parameters on the performance of the genetic

algorithms. We also determine a set of parameters of the genetic algorithms for which predictive

models with high accuracy are obtained. 

In this thesis work, we tested our system on an epidemiological  dataset. The predictive

model that we have created using the BTH 2000 dataset  effectively addresses the problem of

identifying predictors of cardiovascular disease risk factors and mental health status variables

and  discovering  interesting  relationships  within  the  data,  especially  between  cardiovascular

disease risk factors and mental health status variables. All the results obtained from the system

and their reasonableness from a medical perspective were inspected and confirmed by the expert.

From the results obtained from our system we can conclude that small subsets of features

are sufficient to build meaningful predictive models from the dataset. We can also conclude that

the  feature  elimination  preprocessing  technique  implemented  in  our  system  is  an  effective

technique  to  discard  likely  irrelevant  features.  The  reduced  number  of  features  prevents

overfitting of data while building decision trees and makes the system more effective, efficient

and accurate.  Our system produced results  which were useful in machine learning domain as

well  as  medical  domain.  Our  system will  be useful  in  exploring interesting patterns  in  data,

especially in epidemiological datasets, and would be useful to construct meaningful  predictive

models.

We believe that  our  predictive  model  built  from the BTH 2000 dataset  may provide

useful information to enable physicians and health professionals to intervene early in addressing

mental health issues and cardiovascular disease risks. The results obtained from our predictive
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model would be helpful for planning and evaluating health-related programs and services. 
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Appendix  A:  Predictors  of  Cardiovascular  Disease  Risk
Factors

Table A1: Top predictors identifying that an individual in the 
regional population has diagnosed high blood cholesterol (Q5_12 = 1) 

and the relationship between top predictors and Q5_12

Feature Rule Description Tag

Q5_9 Q5_9=1 Has diagnosed heart trouble Has support

Q49REC2 Q49REC2<1.5 Checked cholesterol in last 2 years Has support

AGE AGE>50.5 Age of the individual > 50.5 years Has support

PCS12 PCS12<49.62 Composite physical health score < 49.62 Has support

Q5_11 Q5_11<1.5 Has diagnosed high blood pressure Has support

Q46 Q46<=2 Felt downhearted and blue most of  the time Interesting

EXCERCIS EXCERCIS<=2 Does moderate and vigorous activities Has support

DBDPANX2 DBDPANX2=31 Felt downhearted and blue without
depression or anxiety

Interesting

BMI BMI>=27.082 Body mass index > 27.082 Has support

Q48 Q48<2.5 Checked blood pressure within past 2 years Has support

OVERWGT OVERWGT=1 Is overweight according to BMI value Has support

ALCWDNODA ALCWDNODA
<95.5

Accomplished less, careless work, down-
hearted and blue w/o depression or anxiety

Interesting

Q5_13 Q5_13<1.5 Diagnosed joint problems Interesting

MCS12 MCS12<59.76 Composite mental health score Irrelevant

Q55 Q55<1.5 Had a hysterectomy Interesting

Q27 Q27>1.5 Has prescriptions for medicine Has support

HHSIZE HHSIZE<=2 Household size Irrelevant

Q47 Q47=1 Had a flu shot Irrelevant

Table  A1  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population  has  diagnosed  high  cholesterol  (Q5_12=1).  The  features  are  listed  in  descending

order of their  importance assessed on the basis  of  change in the classification accuracy after

dropping the feature from the subset of data . The predictors are tagged by a medical expert into

three   categories:  (1)  predictors  make  sense  and  have  support  in  the  medical  field  for  that

predictor being meaningful (2) predictors make sense and are interesting (something which the

medical  field  has  not  seen before  and (3)  predictors  does  not  make any sense from medical

perspective. 
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Table A2: Top predictors identifying not overweight (BMICUTS=0) 
in a regional population

Feature Rule Description Tag

Q5_12 Q5_12>1.5 Told by doctor: high cholesterol Interesting

Q31BREC Q31BREC>=2 More than 3 days of moderate activity per
week

Has support

PCS12 PCS12<42.125 Composite physical health score < 42.125 Interesting

Q5_9 Q5_9>1.5 Told by doctor: Heart trouble Interesting

Q32BREC Q32BREC>=1 More than 1-2 days of vigorous activity per
week

Has support

Q15NEW2 Q15NEW2=5 Diagnosed depression Interesting

Q3 Q3<=3 Has good general health Has support

Q49 Q49>=2 Blood cholesterol not checked in last 2 years Interesting

Q38 Q38>=2 Not accomplished less due to physical health Has support

DEPRANX2 DEPRANX2>5 No diagnosed depression and anxiety Interesting

Q35 Q35>1.5 No limitation of moderate activity due to
health

Has Support

Q48REC Q48REC<1.5 Blood pressure not checked in last 2 years Interesting

Q40 Q40>1.5 Not accomplished less due to mental health Interesting

MCS12 MCS12>37.625 Composite mental health score > 37.625 Interesting

Q7A Q7A>=3 More than 1 serving of fruit/vegs per day Has support

Table  A2  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population  is  not  overweight  (BMICUTS=0).  The  feature  BMICUTS  can  take  three  distinct

values: 0(not overweight), 1 (overweight) and 2 (obese). Similarly the predictive model  can be

used to find the rules for predicting BMICUTS=1 and BMICUTS=2. The features are listed in

descending  order  of  their  importance  assessed  on  the  basis  of  change  in  the  classification

accuracy after dropping the feature from the subset of data.
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Table A3: Top predictors for EXCERREC=1: exercise less than 3 times a week

Feature Rule Description Tag

AGE AGE>=52 Age of the individual >= 52 Has support

Q15NEW2 Q15NEW2=1 Diagnosed depression Has support

Q3 Q3>=3 Has poor general health Has support

Q5_9 Q5_9<1.5 Told by doctor: Heart trouble Has support

OVERWGT2 OVERWGT2=
1

Overweight according to BMI value Has support

ALCWDBNODA ALCWDBNO
DA=93

Accomplished less, careless work,
downhearted and blue without anxiety or
depression

Interesting

BMI BMI>26.72 Body mass index > 26.72 Has support

PCS12 PCS12<44.176 Composite physical health score < 44.176 Has support

ALDPANX2 ALDPANX2
=31

Accomplished less without depression or
anxiety

Interesting

Q5_12 Q5_12<1.5 Told by doctor: high cholesterol Has support

Q27 Q27>1.5 Had prescriptions written for medicines Has support

DEPRANX2 DEPRANX2=2 Diagnosed depression and anxiety Interesting

Q45 Q45>2.5 Has lot of energy some of the time Interesting

BMICUTS BMICUTS>=1 Overweight or obese Has support

Q4REC Q4REC>3.5 Has poor general health Has support

Q49REC Q49REC>=3 Blood cholesterol not checked within last 5
yeas

Interesting

Q47 Q47<1.5 Had a flu shot Irrelevant

Table  A3  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population exercises for less than three days a week (EXCERREC=1). The feature EXCERREC

can take two values: 1(exercise less than three times per week) and 2 (exercise more than three

times per week). Similarly the predictive model   can be used to find the rules for predicting

EXCERREC=2. The features are listed in descending order of their importance assessed on the

basis of change in the classification accuracy after dropping the feature from the subset of data.
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Table A4: Top predictors identifying Q69A=1 (Current smoker) in a regional population

Feature Rule Description Tag

CHRONIC CHRONIC=1 Chronic drinker. 60+ drinks in the last
month

Has support

AGE AGE<=43.5 Age of the individual less than 43.5 Has support

BINGE BINGE=1 Binge drinker. 5+ drinks on one occasion Has support

Q44 Q44>=2 Felt calm or peaceful some of the time Has support

PCS12 PCS12<59.375 Composite physical health score < 59.375 Interesting

Q16NEW2 Q16NEW2=2 Diagnosed anxiety Has support

Q3 Q3>2.5 Fair general health Has support

DEPRANX2 DEPRANX2=2 Diagnosed depression and anxiety Interesting

Q40 Q40<2 Accomplished less due to physical health Has support

EXCERREC EXCERREC=1 Les than 3 times of moderate exercise per
week

Has support

ALDPANX2 ALDPANX2=31 Accomplished less without depression or
anxiety

Interesting

MCS12 MCS12<52 Composite mental health score < 52 Interesting

Q5_16 Q5_16=1 Diagnosed anxiety Interesting

Q32BREC Q32BREC<=2 Vigorous activities less than 3 times per
week

Has support

Q38 Q38<1.5 Accomplished less due to mental health Has support

CWDPANX2 CWDPANX2=31 Careless work Interesting

DOLLARS DOLLARS <
28700

Income in dollars less than 28700 per year Interesting

ALCWNODA ALCWNODA=62 Accomplished less and careless work
without depression or anxiety

Interesting

Table  A4  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population is a current smoker (Q69A=1). The feature Q69A can take four values: 1(yes), 2(no),

7(don't know/not sure) and 9 (refused). Similarly the predictive model  can be used to find the

rules for  predicting Q69A=2. The features  are listed in  descending order of their  importance

assessed on the basis of change in the classification accuracy after dropping the feature from the

subset of data.
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Table A5: Top predictors identifying CHRONIC=1 (individual is a chronic drinker)

Feature Rule Description Tag

Q40 Q40<1.5 Accomplished less due to mental health Has support

AGE AGE<=32 Age of the individual is less than 32 years Has support

Q69A Q69A=1 Currently a smoker Has support

SEX SEX=1 Male Has support

Q44 Q44>3.5 Felt calm or peaceful little of the time Interesting

Q38 Q38=1 Accomplished less due to physical health Has support

Q48 Q48<=2 Blood pressure check within past 5 years Interesting

MCS12 MCS12<=59 Composite mental health score<=59 Interesting

MARITAL MARITAL>1.5 Marital status: separate, married, widowed Has support

ALDPANX2 ALDPANX2=31 Accomplished without depression or anxiety Has support

PCS12 PCS12<44.75 Composite physical health score < 44.75 Has support

Q42 Q42<=3 Interference of work with pain most of the
time

Interesting

Table  A5  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population is  a  chronic  drinker  (CHRONIC=1).  The feature  CHRONIC can take two values:

0(not  a  chronic  drinker,  consumed  less  than  60  drinks  per  month)  and  1(chronic  drinker,

consumed more than 60 drinks per month). Similarly the predictive model  can be used to find

the  rules  for  predicting  CHRONIC=0.  The  features  are  listed  in  descending  order  of  their

importance assessed  on the basis  of  change  in  the  classification  accuracy  after  dropping  the

feature from the subset of data.
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APPENDIX B: Predictors of mental health variables

Table B1: Top predictors identifying Diagnosed Depression (Q15NEW2=1)  
in a regional population.

Feature Rule Description Tag

Q5_9 Q5_9<1.5 Has diagnosed heart trouble Has support

Q38 Q38<1.5 Accomplished less due to physical health Has support

Q45 Q45>=4.5 Has a lot of energy for little or none of the
time

Has support

Q27 Q27>1.5 Has prescriptions for medicines Has support

Q3 Q3>=3.5 Has fair or poor general health Has support

AGE AGE<72.5 Age of the person is less than 72.5 Has support

BMI BMI>=32.23 Body mass index > 32.23 Interesting

Q31B Q31B<4.5 Does moderate activity for upto 4 days per
week

Interesting

Q4REC Q4REc>=3.5 General health compared to others is poor Has support

PCS12 PCS12>=57.3 Composite physical health score >= 57.3 Interesting

Table  B1  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population has diagnosed  depression (Q5_15NEW2=1). The feature Q5_15NEW2  can take two

values: 1(has diagnosed depression) and 10 (does not have diagnosed depression). Similarly the

predictive model  can be used to find the rules for predicting Q5_15NEW2=10. The features are

listed  in  descending  order  of  their  importance  assessed  on  the  basis  of  change  in  the

classification accuracy after dropping the feature from the subset of data.
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Table B2: Top predictors identifying Diagnosed Anxiety (Q16NEW2=2)  
in a regional population.

Feature Rule Description Tag

MCS12 MCS12<39.41 Composite mental health score < 39.41 Has support

PCS12 PCS12<42.17 Composite physical health score < 42.17 Interesting

Q40 Q40<1.5 Accomplishes less due to mental health Has support

Q44 Q44>4 Felt calm or peaceful only some of the time Has support

SMOKECIG SMOKECIG>1.5 Is a current smoker Has support

Q5_8 Q5_8<1.5 Told by doctor: Headaches Interesting

Q27 Q27>2.5 Had prescriptions for medicines but never got
them filled

Interesting

Q45 Q45>=4 Had lot of energy for some of the time Has support

Q5_11 Q5_11<1.5 Told by doctor: High blood pressure Interesting

Q43 Q43<3.5 Interferes with social activity most of the time Interesting

Q42 Q42<3.5 Interference of pain with work most of the
time

Interesting

Q5_12 Q5_12<1.5 Told by doctor: High cholesterol Has support

Table  B2  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population has  diagnosed anxiety (Q5_16NEW2=2).  The feature  Q5_16NEW2  can take two

values:  2(has  diagnosed  anxiety)  and  20  (does  not  have  diagnosed  anxiety).  Similarly  the

predictive model  can be used to find the rules for predicting Q5_16NEW2=20. The features are

listed  in  descending  order  of  their  importance  assessed  on  the  basis  of  change  in  the

classification accuracy after dropping the feature from the subset of data.
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Table B3: Top predictors identifying Diagnosed Depression and Diagnosed Anxiety
(DEPRANX2=2)  in a regional population.

Feature Rule Description Tag

Q40 Q40<1.5 Accomplished less due to mental health Has support

MCS12 MCS12<35.71 Composite mental health score < 35.71 Has support

Q3 Q3>=3.5 Has poor general health Interesting

Q5_12 Q5_12 Told by doctor: high cholesterol Interesting

CHRONIC CHRONIC=1 Is a chronic drinker, 60+ drinks last month Has support

GENHLTH GENHLTH>3.5 Has poor general health Has support

PCS12 PCS12<47.216 Composite physical health score < 47.216 Interesting

Q43 Q43<3.5 Interfere with social activities most of the
time

Interesting

Q4 Q4>=4.5 Has poor general health compared to others Has support

BMI BMI>28.35 Body mass index > 28.35 Interesting

Q45 Q45>=4.5 Has a lot of energy some of the time Has support

Q38 Q38<1.5 Accomplished less due to physical health Interesting

Table  B3  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population  has  diagnosed  depression  and  diagnosed  anxiety  (DEPRANX2=1).  The  feature

DEPRANX2  can  take  two  values:  2(has  diagnosed  depression  and  diagnosed  anxiety)  and

5 (does not have diagnosed depression and diagnosed anxiety) Similarly the predictive model

can be used to find the rules for predicting DEPRANX2=5. The features are listed in descending

order of their  importance assessed on the basis  of  change in the classification accuracy after

dropping the feature from the subset of data.
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Table B4: Top predictors identifying Accomplished Less without depression or anxiety
(ALDPANX2=31)  in a regional population.

Feature Rule Description Tag

MCS12 MCS12<41.297 Composite mental health score < 41.297 Has support

Q39 Q39<1.5 Limited in kind of work Has support

PCS12 PCS12<=59.6 Composite physical health score <= 59.6 Interesting

Q43 Q43<5.5 Interfere with social activities most of the
time

Interesting

Q45 Q45>=3.5 Has lot of energy little or none of the time Has support

CWDPANX2 CWDPANX2
<32.5

Careless work without depression or
anxiety

Has support

Q48 Q48<1.5 Checked blood pressure with past 2 years Interesting

Q42 Q42>=1.5 Moderate interference of pain with work Has support

Q38 Q38<1.5 Accomplished less due to physical health Has support

Q34 Q34<2.5 Limited moderate activities: a lot Interesting

DBDPANX2 DBDPANX2 =
31

Downhearted an blue without depression or
anxiety

Has support

Q4 Q4>=3.5 Poor general health compared to others Has support

Q25 Q25<1.5 Needed but did not get medical care Interesting

Q55 Q55<1.5 Had a hysterectomy Interesting

CHRONIC CHRONIC=1 Is a chronic drinker, 60+ drinks last month Has support

DOLLARS DOLLARS<=
17500

Income in dollars per year Interesting

Table  B4  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population  accomplishes  less  without  depression  or  anxiety  (ALDPANX2=31).  The  feature

ALDPANX2 can take two values: 31(yes) and 33(no). Similarly the predictive model  can be

used to find the rules for predicting ALDPANX2=33. The features are listed in descending order

of their importance assessed on the basis of change in the classification accuracy after dropping

the feature from the subset of data.
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Table B5: Top predictors identifying Careless Work without Depression and Anxiety
(CWDPANX2=31)  in a regional population.

Feature Rule Description Tag

Q38 Q38=1 Accomplished less due to physical health Has support

Q40 Q40<1.5 Accomplished less due to mental health Has support

Q39 Q39<1.5 Is limited in kind of work Has support

MCS12 MCS12<=43.5 Composite mental health score<=43.5 Has support

Q45 Q45>=3.5 Has lot of energy little or none of the time Has support

OVERWGT2 OVERWGT2
>0.5

Is overweight according to the BMI value Interesting

Q42 Q42>3 Moderate to extreme interference of pain with
work

Interesting

EXCERREC EXCERREC
<1.5

preciser less than 3 times per week Interesting

Q3 Q3>3.5 Has poor general health Interesting

Q27 Q27<2 Did not have prescriptions for medicine for
some of the time

Interesting

AGE AGE<54 Age of the individual < 54 Interesting

Q5_8 Q5_8<1.5 Told by doctor: headaches Interesting

Table  B5  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population  did  careless  work  without  depression  or  anxiety(CWDPANX2).  The  feature

CWDPANX2 can take two values: 31(yes) and 34(no). Similarly the predictive model  can be

used to find the rules for predicting CWDPANX2=34. The features are listed in descending order

of their importance assessed on the basis of change in the classification accuracy after dropping

the feature from the subset of data.
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Table B6: Top predictors identifying Downhearted and Blue without depression and
anxiety(DBDPANX2=31)  in a regional population.

Feature Rule Description Tag

Q40 Q40<1.5 Accomplished less due to mental health Has support

Q44 Q44>=3 Felt calm or peaceful some of the time Interesting

Q3 Q3>3.5 Has poor general health Has support

Q69A Q69A<1.5 Smokes currently Interesting

Q38 Q38<1.5 Accomplished less due to physical health Has support

Q39 Q39<1.5 Is limited in kind of work Has support

Q35 Q35=1 Moderate activities limited due to health Interesting

OVERWGT2 OVERWGT2
=1

Is overweight according to BMI value Has support

Q4 Q4>2.5 Has fair or poor general health compared to
others

Has support

Q25 Q25<1.5 Needed but did not get medical care Interesting

Q49 Q49<=2 Has checked cholesterol in past 2 years Interesting

Q49REC2 Q49REC2=1 Has checked cholesterol in past 2 years Interesting

Table  B6  lists  the  top  predictors  for  identifying  that  an  individual  in  the  regional

population  is  downhearted  and  blue  without  depression  or  anxiety  (DBDPANX2=31).  The

feature DBDPANX2 can take two values: 31(yes) and 33 (no). Similarly the predictive model

can  be  used  to  find  the  rules  for  predicting  DBDPANX2=35.  The  features  are  listed  in

descending  order  of  their  importance  assessed  on  the  basis  of  change  in  the  classification

accuracy after dropping the feature from the subset of data.
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