
core
JAVASERVER™ FACES
SECOND EDITION

frontmatter.FM Page xxi Monday, April 2, 2007 12:44 PM

GETTING STARTED

Topics in This Chapter

• “Why JavaServer Faces?” on page 3

• “Software Installation” on page 4

• “A Simple Example” on page 6

• “Sample Application Analysis” on page 12

• “Development Environments for JSF” on page 21

• “JSF Framework Services” on page 28

• “Behind the Scenes” on page 30

getting-started-VM.fm Page 2 Monday, April 2, 2007 10:39 AM

ChapterChapter

3

1

Why JavaServer Faces?

Judging from the job advertisements at employment web sites, there are two
popular techniques for developing web applications:

• The “rapid development” style, in which you use a visual development
environment, such as Microsoft ASP.NET

• The “hard-core coding” style, in which you write lots of code to support a
high-performance backend, such as Java EE (Java Enterprise Edition)

Development teams face a difficult choice. Java EE is an attractive platform. It
is highly scalable, portable to multiple platforms, and supported by many ven-
dors. On the other hand, ASP.NET makes it easy to create attractive user inter-
faces without tedious programming. Of course, programmers want both: a
high-performance backend and easy user interface programming. The promise
of JSF (JavaServer Faces) is to bring rapid user interface development to server-
side Java.

If you are familiar with client-side Java development, you can think of JSF as
“Swing for server-side applications.” If you have experience with JSP (Java-
Server Pages), you will find that JSF provides much of the plumbing that JSP
developers have to implement by hand, such as page navigation and valida-
tion. You can think of servlets and JSP as the “assembly language” under
the hood of the high-level JSF framework. If you already know a server-side

getting-started-VM.fm Page 3 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started4

framework such as Struts, you will find that JSF uses a similar architecture but
provides many additional services.

NOTE: You need not know anything about Swing, JSP, or Struts to use this
book. We assume basic familiarity only with Java and HTML.

JSF has these parts:

• A set of prefabricated UI (user interface) components
• An event-driven programming model
• A component model that enables third-party developers to supply

additional components

Some JSF components are simple, such as input fields and buttons. Others are
quite sophisticated—for example, data tables and trees.

JSF contains all the necessary code for event handling and component organi-
zation. Application programmers can be blissfully ignorant of these details and
spend their effort on the application logic.

Perhaps most important, JSF is part of the Java EE standard. JSF is included in
every Java EE application server, and it can be easily added to a standalone
web container such as Tomcat.

For additional details, see “JSF Framework Services” on page 28. Many IDEs
(integrated development environments) support JSF, with features that range
from code completion to visual page designers. See “Development Environments
for JSF” on page 21 for more information. In the following sections, we show you
how to compose a JSF application by hand, so that you understand what your
IDE does under the hood and you can troubleshoot problems effectively.

Software Installation

You need the following software packages to get started:

• JDK (Java SE Development Kit) 5.0 or higher (http://java.sun.com/j2se)
• JSF 1.2
• The sample code for this book, available at http://corejsf.com

We assume that you have already installed the JDK and that you are familiar
with the JDK tools. For more information on the JDK, see Horstmann, Cay, and
Cornell, Gary, 2004, 2005. Core Java™ 2, vol. 2—Advanced Features (7th ed.). Santa
Clara, CA: Sun Microsystems Press/Prentice Hall.

getting-started-VM.fm Page 4 Monday, April 2, 2007 10:39 AM

Software Installation 5

Since JSF 1.2 is part of the Java EE 5 specification, the easiest way to try out JSF
is to use an application server that is compatible with Java EE 5. In this section,
we describe the GlassFish application server (http://glassfish.dev.java.net). You
will find instructions for other application servers on the companion web site
(http://corejsf.com).

NOTE: As this book is published, there are two major versions of JSF. The
most recent version, JSF 1.2, was released as part of Java EE 5 in 2006.
The original version, JSF 1.0, was released in 2004, and a bug-fix release,
named JSF 1.1, was issued shortly thereafter. This book covers both ver-
sions 1.1 and 1.2, but the main focus is on version 1.2.

NOTE: If you do not want to install a complete application server, you can
also use Tomcat (http://tomcat.apache.org), together with the JSF libraries
from Sun Microsystems (http://javaserverfaces.dev.java.net). See the
book’s companion web site (http://corejsf.com) for installation instructions.

Install GlassFish, following the directions on the web site. Then start the appli-
cation server. On Unix/Linux, you use the command

glassfish/bin/asadmin start-domain

(See Figure 1–1.) Here, glassfish is the directory into which you installed the
GlassFish software.

Figure 1–1 Starting GlassFish

On Windows, launch

glassfish\bin\asadmin start-domain

To test that GlassFish runs properly, point your browser to http://localhost:8080.
You should see a welcome page (see Figure 1–2).

getting-started-VM.fm Page 5 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started6

Figure 1–2 GlassFish welcome page

You shut down GlassFish with the command

glassfish/bin/asadmin stop-domain

or, on Windows,

glassfish\bin\asadmin stop-domain

A Simple Example

Now we move on to a simple example of a JSF application. Our first example
starts with a login screen, shown in Figure 1–3.

Figure 1–3 A login screen

getting-started-VM.fm Page 6 Monday, April 2, 2007 10:39 AM

A Simple Example 7

Of course, in a real web application, this screen would be beautified by a
skilled graphic artist.

The file that describes the login screen is essentially an HTML file with a few
additional tags (see Listing 1–1). Its visual appearance can be easily improved
by a graphic artist who need not have any programming skills.

We discuss the contents of this file in detail later in this chapter, in the
section “JSF Pages” on page 13. For now, note the following points:

• A number of the tags are standard HTML tags: body, table, and so on.
• Some tags have prefixes, such as f:view and h:inputText. These are JSF tags.

The two taglib declarations declare the JSF tag libraries.

Listing 1–1 login/web/index.jsp

1. <html>
2. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
3. <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
4. <f:view>
5. <head>
6. <title>A Simple JavaServer Faces Application</title>
7. </head>
8. <body>
9. <h:form>

10. <h3>Please enter your name and password.</h3>
11. <table>
12. <tr>
13. <td>Name:</td>
14. <td>
15. <h:inputText value="#{user.name}"/>
16. </td>
17. </tr>
18. <tr>
19. <td>Password:</td>
20. <td>
21. <h:inputSecret value="#{user.password}"/>
22. </td>
23. </tr>
24. </table>
25. <p>
26. <h:commandButton value="Login" action="login"/>
27. </p>
28. </h:form>
29. </body>
30. </f:view>
31. </html>

getting-started-VM.fm Page 7 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started8

• The h:inputText, h:inputSecret, and h:commandButton tags correspond to the text
field, password field, and submit button in Figure 1–3.

• The input fields are linked to object properties. For example, the attribute
value="#{user.name}" tells the JSF implementation to link the text field with
the name property of a user object. We discuss this linkage in more detail
later in this chapter, in the section “Beans” on page 12.

When the user enters the name and password, and clicks the “Login” button, a
welcome screen appears (see Figure 1–4). Listing 1–3 on page 14 shows the
source code for this screen. The section “Navigation” on page 16 explains how
the application navigates from the login screen and the welcome screen.

Figure 1–4 A welcome screen

The welcome message contains the username. The password is ignored
for now.

The purpose of this application is, of course, not to impress anyone but to
illustrate the various pieces that are necessary to produce a JSF application.

Ingredients

Our sample application consists of the following ingredients:

• Pages that define the login and welcome screens. We call them index.jsp
and welcome.jsp.

• A bean that manages the user data (in our case, username and password).
A bean is a Java class that exposes properties, usually by following a simple
naming convention for the getter and setter methods. The code is in the
file UserBean.java (see Listing 1–2). Note that the class is contained in the
com.corejsf package.

getting-started-VM.fm Page 8 Monday, April 2, 2007 10:39 AM

A Simple Example 9

• A configuration file for the application that lists bean resources and navi-
gation rules. By default, this file is called faces-config.xml.

• Miscellaneous files that are needed to keep the servlet container happy:
the web.xml file, and an index.html file that redirects the user to the correct
URL for the login page.

More advanced JSF applications have the same structure, but they can con-
tain additional Java classes, such as event handlers, validators, and custom
components.

Directory Structure

A JSF application is deployed as a WAR file: a zipped file with extension .war
and a directory structure that follows a standardized layout:

For example, the WAR file of our sample application has the directory structure
shown in Figure 1–5. Note that the UserBean class is in the package com.corejsf.

Listing 1–2 login/src/java/com/corejsf/UserBean.java

1. package com.corejsf;
2.

3. public class UserBean {
4. private String name;
5. private String password;
6.

7. // PROPERTY: name
8. public String getName() { return name; }
9. public void setName(String newValue) { name = newValue; }

10.

11. // PROPERTY: password
12. public String getPassword() { return password; }
13. public void setPassword(String newValue) { password = newValue; }
14. }

HTML and JSP files

WEB-INF/

configuration files

classes/

class files
lib/

library files

getting-started-VM.fm Page 9 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started10

The META-INF directory is automatically produced by the jar program when the
WAR file is created.

Figure 1–5 Directory structure of the sample WAR file

We package our application source in a slightly different directory structure,
following the Java Blueprints conventions (http://java.sun.com/blueprints/code/
projectconventions.html). The source code is contained in an src/java directory,
and the JSF pages and configuration files are contained in a web directory (see
Figure 1–6).

Figure 1–6 Directory structure of the sample application

Build Instructions

We now walk you through the steps required for building JSF applications
with your bare hands. At the end of this chapter, we show you how to auto-
mate this process.

getting-started-VM.fm Page 10 Monday, April 2, 2007 10:39 AM

A Simple Example 11

1. Launch a command shell.
2. Change to the corejsf-examples directory—that is, the directory that contains

the sample code for this book.
3. Run the following commands:

cd ch1/login/src/java
mkdir ../../web/WEB-INF/classes
javac -d ../../web/WEB-INF/classes com/corejsf/UserBean.java

On Windows, use backslashes instead:

cd ch1\login\web
mkdir WEB-INF\classes
javac -d ..\..\web\WEB-INF\classes com\corejsf\UserBean.java

4. Change to the ch1/login/web directory.
5. Run the following command:

jar cvf login.war .

(Note the period at the end of the command, indicating the current directory.)

6. Copy the login.war file to the directory glassfish/domains/domain1/autodeploy.
7. Make sure that GlassFish has been started. Point your browser to

http://localhost:8080/login

The application should start up at this point.

The bean classes in more complex programs may need to interact with the JSF
framework. In that case, the compilation step is more complex. Your class
path must include the JSF libraries. With the GlassFish application server,
add a single JAR file:

glassfish/lib/javaee.jar

With other systems, you may need multiple JAR files.

A typical compilation command would look like this:

javac -classpath .:glassfish/lib/javaee.jar
 -d ../../web/WEB-INF/classes com/corejsf/*.java

On Windows, use semicolons to separate the path elements:

javac -classpath .;glassfish\lib\javaee.jar
 -d ..\..\web\WEB-INF\classes com\corejsf*.java

Be sure to include the current directory (denoted by a period) in the class path.

getting-started-VM.fm Page 11 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started12

Sample Application Analysis

Web applications have two parts: the presentation layer and the business logic.
The presentation layer is concerned with the look of the application. In the con-
text of a browser-based application, the look is determined by the HTML tags
that specify layout, fonts, images, and so on. The business logic is implemented
in the Java code that determines the behavior of the application.

Some web technologies intermingle HTML and code. That approach is seduc-
tive since it is easy to produce simple applications in a single file. But for seri-
ous applications, mixing markup and code poses considerable problems.

Professional web designers know about graphic design, but they typically rely
on tools that translate their vision into HTML. They would certainly not want
to deal with embedded code. On the other hand, programmers are notoriously
unqualified when it comes to graphic design. (The example programs in this
book bear ample evidence.)

Thus, for designing professional web applications, it is important to separate the
presentation from the business logic. This allows both web designers and pro-
grammers to focus on their core competences.

In the context of JSF, the application code is contained in beans, and the design
is contained in web pages. We look at beans first.

Beans

A Java bean is a class that exposes properties and events to an environment
such as JSF. A property is a named value of a given type that can be read and/or
written. The simplest way to define a property is to use a standard naming con-
vention for the reader and writer methods, namely, the familiar get/set conven-
tion. The first letter of the property name is changed to upper case in the
method names.

For example, the UserBean class has two properties, name and password, both of type
String:

public class UserBean {
 public String getName() { . . . }
 public void setName(String newValue) {. . . }
 public String getPassword() { . . . }
 public void setPassword(String newValue) { . . . }
 . . .
}

getting-started-VM.fm Page 12 Monday, April 2, 2007 10:39 AM

Sample Application Analysis 13

The get/set methods can carry out arbitrary actions. In many cases, they simply
get or set an instance field. But they might also access a database or a JNDI
(Java Naming and Directory Interface) directory.

NOTE: According to the bean specification, it is legal to omit a read or write
method. For example, if getPassword is omitted, then password is a write-only
property. That might indeed be desirable for security reasons. However, JSF
deals poorly with this situation and throws an exception instead of taking a
default action when a read or write method is absent. Therefore, it is best to
give read/write access to all bean properties.

In JSF applications, you use beans for all data that needs to be accessible from a
page. The beans are the conduits between the user interface and the backend of
the application.

JSF Pages

You need a JSF page for each browser screen. Depending on your development
environment, JSF pages typically have the extension .jsp or .jsf. At the time of
this writing, the extension .jsp requires less configuration effort. For that rea-
son, we use the .jsp extension in the examples of this book.

NOTE: The extension of the page files is .jsp or .jsf, whereas in the preferred
configuration, the extension of the page URLs is .faces. For example, when
the browser requests the URL http://localhost:8080/login/index.faces, the
URL extension .faces is mapped to the file extension.jsp and the servlet con-
tainer loads the file index.jsp. This process sounds rather byzantine, but it is a
consequence of implementing JSF on top of the servlet technology.

Now we take another look at the first page of our sample application in
Listing 1–1.

The page starts out with the tag library declarations:

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

The JSF implementation defines two sets of tags. The HTML tags generate
HTML-specific markup. If you want your web application to render pages for
an alternative client technology, you must use a different tag library. The core
tags are independent of the rendering technology. For example, you need the
f:view tag both for HTML pages and for pages that are rendered by a cell phone.

getting-started-VM.fm Page 13 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started14

NOTE: You can choose any prefixes for tags, such as faces:view and
html:inputText. In this book, we use f for the core tags and h for the HTML tags.

Much of the page is similar to an HTML form. Note the following differences:

• All JSF tags are contained in an f:view tag.

• Instead of using an HTML form tag, you enclose all the JSF components in
an h:form tag.

• Instead of using the familiar input HTML tags, use h:inputText, h:inputSecret,
and h:commandButton.

We discuss all standard JSF tags and their attributes in Chapters 4 and 5. In the
first three chapters, we can get by with input fields and command buttons.

The input field values are bound to properties of the bean with name user:

<h:inputText value="#{user.name}"/>

You will see the declaration of the user variable in “Navigation” on page 16. The
#{...} delimiters are explained in “The Syntax of Value Expressions” on page 64
of Chapter 2.

When the page is displayed, the framework calls the getName method to obtain
the current property value. When the page is submitted, the framework
invokes the setName method to set the value that the user entered.

The h:commandButton tag has an action attribute whose value is used when specify-
ing navigation rules:

<h:commandButton value="Login" action="login"/>

We discuss navigation rules in “Navigation” on page 16. The value attribute is
the string that is displayed on the button.

The second JSF page of our application is even simpler than the first. It uses the
h:outputText tag to display the username (see Listing 1–3).

Listing 1–3 login/web/welcome.jsp

1. <html>
2. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
3. <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
4.

5. <f:view>
6. <head>
7. <title>A Simple JavaServer Faces Application</title>
8. </head>

getting-started-VM.fm Page 14 Monday, April 2, 2007 10:39 AM

Sample Application Analysis 15

NOTE: We use a plain and old-fashioned format for our JSF pages so that
they are as easy to read as possible.

XML-savvy readers will want to do a better job. First, it is desirable to use
proper XML for the tag library declarations, eliminating the <%...%> tags.
Moreover, you will want to emit a proper DOCTYPE declaration for the generated
HTML document.

The following format solves both issues:

<?xml version="1.0" ?>
<jsp:root version="2.0"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html">
 <jsp:directive.page contentType="text/html"/>
 <jsp:output omit-xml-declaration="no"
 doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>
 <f:view>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>A Simple Java Server Faces Application</title>
 </head>
 <body>
 <h:form>
 . . .
 </h:form>
 </body>
 </html>
 </f:view>
</jsp:root>

If you use an XML-aware editor, you should seriously consider this form.

9. <body>
10. <h:form>
11. <h3>
12. Welcome to JavaServer Faces,
13. <h:outputText value="#{user.name}"/>!
14. </h3>
15. </h:form>
16. </body>
17. </f:view>
18. </html>

Listing 1–3 login/web/welcome.jsp (cont.)

getting-started-VM.fm Page 15 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started16

CAUTION: You sometimes see naive page authors produce documents that
start with an HTML DOCTYPE declaration, like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
 <f:view>
 . . .

This may have been acceptable at one time, but nowadays, it is quite repre-
hensible. Plainly, this document is not an “HTML 4.01 Transitional” docu-
ment. It merely aims to produce such a document. Many XML editors and
tools do not take it kindly when you lie about the document type. Therefore,
either omit the DOCTYPE altogether or follow the outline given in the preceding
note.

Navigation

To complete our JSF application, we need to specify the navigation rules. A
navigation rule tells the JSF implementation which page to send back to the
browser after a form has been submitted.

In this case, navigation is simple. When the user clicks the login button, we
want to navigate from the index.jsp page to welcome.jsp. You specify this naviga-
tion rule in the faces-config.xml file:

<navigation-rule>
 <from-view-id>/index.jsp</from-view-id>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/welcome.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

The from-outcome value matches the action attribute of the command button of the
index.jsp page:

<h:commandButton value="Login" action="login"/>

In addition to the navigation rules, the faces-config.xml file contains the bean
definitions. Here is the definition of the user bean:

 <managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>
 com.corejsf.UserBean

getting-started-VM.fm Page 16 Monday, April 2, 2007 10:39 AM

Sample Application Analysis 17

 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

You can use the bean name, user, in the attributes of the user interface compo-
nents. For example, index.jsp contains the tag

<h:inputText value="#{user.name}"/>

The value attribute refers to the name property of the user bean.

The managed-bean-class tag specifies the bean class, in our case, com.corejsf.UserBean.
Finally, the scope is set to session. This means that the bean object is available
for one user across multiple pages. Different users who use the web application
are given different instances of the bean object.

Listing 1–4 shows the complete faces-config.xml file.

NOTE: JSF 1.2 uses a schema declaration to define the syntax of a configu-
ration file. The configuration tags are enclosed in

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 . . .
</faces-config>

JSF 1.1 uses a DOCTYPE declaration instead:

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">
<faces-config>
 . . .
</faces-config>

We recommend that you use an XML editor that understands XML Schema
declarations. If you use Eclipse, a good choice is the XMLBuddy plugin
(http://xmlbuddy.com).

getting-started-VM.fm Page 17 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started18

Servlet Configuration

When you deploy a JSF application inside an application server, you need to
supply a configuration file named web.xml. Fortunately, you can use the same
web.xml file for most JSF applications. Listing 1–5 shows the file.

Listing 1–4 login/web/WEB-INF/faces-config.xml

1. <?xml version="1.0"?>
2. <faces-config xmlns="http://java.sun.com/xml/ns/javaee"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
5. http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
6. version="1.2">
7. <navigation-rule>
8. <from-view-id>/index.jsp</from-view-id>
9. <navigation-case>

10. <from-outcome>login</from-outcome>
11. <to-view-id>/welcome.jsp</to-view-id>
12. </navigation-case>
13. </navigation-rule>
14.

15. <managed-bean>
16. <managed-bean-name>user</managed-bean-name>
17. <managed-bean-class>com.corejsf.UserBean</managed-bean-class>
18. <managed-bean-scope>session</managed-bean-scope>
19. </managed-bean>
20. </faces-config>

Listing 1–5 login/web/WEB-INF/web.xml

1. <?xml version="1.0"?>
2. <web-app xmlns="http://java.sun.com/xml/ns/javaee"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
5. http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
6. version="2.5">
7. <servlet>
8. <servlet-name>Faces Servlet</servlet-name>
9. <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

10. <load-on-startup>1</load-on-startup>
11. </servlet>
12.

getting-started-VM.fm Page 18 Monday, April 2, 2007 10:39 AM

Sample Application Analysis 19

The only remarkable aspect of this file is the servlet mapping. All JSF pages are
processed by a special servlet that is a part of the JSF implementation code. To
ensure that the correct servlet is activated when a JSF page is requested, the JSF
URLs have a special format. In our configuration, they have an extension .faces.

For example, you cannot simply point your browser to http://localhost:8080/
login/index.jsp. The URL has to be http://localhost:8080/login/index.faces. The serv-
let container uses the servlet mapping rule to activate the JSF servlet, which
strips off the faces suffix and loads the index.jsp page.

NOTE: You can also define a prefix mapping instead of the .faces extension
mapping. Use the following directive in your web.xml file:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

Then use the URL http://localhost:8080/login/faces/index.jsp. That URL
activates the JSF servlet, which then strips off the faces prefix and loads the
file /login/index.jsp.

NOTE: If you want to use a .jsf extension for JSF page files, then you need
to configure your web application so that it invokes the JSP servlet for files
with that extension. Use the following mapping in the web.xml file:

<servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>

13. <servlet-mapping>
14. <servlet-name>Faces Servlet</servlet-name>
15. <url-pattern>*.faces</url-pattern>
16. </servlet-mapping>
17.

18. <welcome-file-list>
19. <welcome-file>index.html</welcome-file>
20. </welcome-file-list>
21. </web-app>

Listing 1–5 login/web/WEB-INF/web.xml (cont.)

getting-started-VM.fm Page 19 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started20

You now need to tell the JSF implementation to map the .faces extension of
the URLs to the .jsf extension of the associated files.

<context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.jsf</param-value>
</context-param>

Note that this configuration affects only the web developers, not the users of
your web application. The URLs still have a .faces extension or /faces prefix.

NOTE: If you use an older application server that supports version 2.3 of
the servlet specification, you use a DTD (DOCTYPE declaration) instead of a
schema declaration in the web.xml file. The DTD is as follows:

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

The Welcome File

When a user enters a directory URL such as http://localhost:8080/login, the appli-
cation server automatically loads the index.jsp page when it is present. Unfortu-
nately, that mechanism does not work smoothly with JSF pages because the JSF
processing phase is skipped.

To overcome this issue, you can supply an index.html file that automatically redi-
rects the user to the proper faces URL. Listing 1–6 shows such an index file.

Finally, it is a good idea to specify index.html as the welcome file in web.xml. See
the welcome-file tag in Listing 1–5 on page 18.

Listing 1–6 login/web/index.html

1. <html>
2. <head>
3. <meta http-equiv="Refresh" content= "0; URL=index.faces"/>
4. <title>Start Web Application</title>
5. </head>
6. <body>
7. <p>Please wait for the web application to start.</p>
8. </body>
9. </html>

getting-started-VM.fm Page 20 Monday, April 2, 2007 10:39 AM

Development Environments for JSF 21

NOTE: The index.html file redirects the browser to the index.faces URL. It is
slightly more efficient to use a JSP forward action instead. Create a page,
say, start.jsp, that contains the line

<jsp:forward page="/index.faces"/>

Then set this page as the welcome-file in the web.xml configuration file.

Development Environments for JSF

You can produce the pages and configuration files for a simple JSF application
with a text editor. However, as your applications become more complex, you
will want to use more sophisticated tools. In the next three sections, we discuss
JSF support in integrated development environments, visual builder tools, and
build automation with Ant.

Integrated Development Environments

IDEs, such as Eclipse or NetBeans, are deservedly popular with programmers.
Support for autocompletion, refactoring, debugging, and so on, can dramati-
cally increase programmer productivity, particularly for large projects.

As this book is written, Eclipse has an experimental JSF plug-in that plainly
needs more work. Several commercial Eclipse derivatives (such as MyEclipse,
Exadel Studio, BEA Workshop Studio, and Rational Application Developer)
have better JSF support, but some of them are expensive. They all have trial
versions that you can download.

NetBeans, on the other hand, is free and has very good JSF support out of the
box. If you are not satisfied with the JSF support in your favorite IDE, we sug-
gest that you give NetBeans a try.

NetBeans gives you autocompletion in JSF pages and configuration files. With
NetBeans, it is very easy to launch or debug JSF applications just by clicking
toolbar buttons. Figure 1–7 shows the NetBeans debugger, stopped at a break-
point in the UserBean class.

NOTE: Since the user interfaces for IDEs can change quite a bit between
versions, we put a guide for getting started with NetBeans on the web
(http://corejsf.com) rather than in the printed book.

getting-started-VM.fm Page 21 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started22

Visual Builder Tools

A visual builder tool displays a graphical representation of the components
and allows a designer to drag and drop components from a palette. Builder
tools can be standalone programs such as Sun Java Studio Creator, or they can
be modules of integrated development environments.

Figure 1–8 shows Sun Java Studio Creator (http://www.sun.com/software/products/
jscreator). The component palette is in the lower-left corner. You drag the com-
ponents onto the center of the window and customize them with the property
sheet in the upper-right corner. The environment produces the corresponding
JSF tags automatically (see Figure 1–9).

Moreover, visual builders give you graphical interfaces for specifying the navi-
gation rules and beans (see Figure 1–10). The faces-config.xml file is produced
automatically.

Figure 1–7 Using NetBeans for JSF debugging

getting-started-VM.fm Page 22 Monday, April 2, 2007 10:39 AM

Development Environments for JSF 23

Figure 1–8 Visual JSF development environment

Figure 1–9 Automatically generated JSF markup

getting-started-VM.fm Page 23 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started24

Figure 1–10 Visually specifying navigation rules

Unfortunately, Java Studio Creator has a rather rigid page structure that is
not optimal for learning about JSF. We recommend that you use another
environment for working through the book examples. After studying the
book examples, you will know enough about JSF to use Java Studio Creator
effectively for your own projects.

Sun has announced that visual tools from Java Studio Creator will be inte-
grated into future versions of NetBeans. Future versions of Eclipse are also
expected to include visual builder features.

Automation of the Build Process with Ant

Many programmers prefer to stick with their favorite text editor or IDE, even if
it has little support for JSF. The manual build process that we described earlier
in this chapter can become tedious if you need to do it over and over. In this
section, we describe how you can automate the process with Ant. The material
in this section is not required for working with JSF—feel free to skip it if your
IDE has good JSF support or if the manual build process does not bother you.

getting-started-VM.fm Page 24 Monday, April 2, 2007 10:39 AM

Development Environments for JSF 25

Fortunately, you need not know much about Ant if you want to use the build
script that we prepared. Start by downloading Ant from http://ant.apache.org
and install it in a directory of your choice. Or, if you use GlassFish, use the asant
tool that is included in the glassfish/bin directory.

Ant takes directions from a build file. By default, the build file is named
build.xml. We provide a build.xml file for building JSF applications. This file is
contained in the root of the corejsf-examples directory. The build.xml file contains
the instructions for compiling, copying, zipping, and deploying to an applica-
tion server, described in XML syntax (see Listing 1–7).

Listing 1–7 build.xml

1. <project default="install">
2.

3. <property environment="env"/>
4. <property file="build.properties"/>
5. <property name="appdir" value="${basedir}/${app}"/>
6. <basename property="appname" file="${appdir}"/>
7. <property name="builddir" value="${appdir}/build"/>
8. <property name="warfile" value="${builddir}/${appname}.war"/>
9.

10. <path id="classpath">
11. <pathelement location="${javaee.api.jar}"/>
12. <fileset dir="${appdir}">
13. <include name="web/WEB-INF/**/*.jar"/>
14. </fileset>
15. </path>
16.
17. <target name="init">
18. <fail unless="app" message="Run ant -Dapp=..."/>
19. </target>
20.

21. <target name="prepare" depends="init"
22. description="Create build directory.">
23. <mkdir dir="${builddir}"/>
24. <mkdir dir="${builddir}/WEB-INF"/>
25. <mkdir dir="${builddir}/WEB-INF/classes"/>
26. </target>
27.

28. <target name="copy" depends="prepare"
29. description="Copy files to build directory.">
30. <copy todir="${builddir}" failonerror="false" verbose="true">
31. <fileset dir="${appdir}/web"/>
32. </copy>
33. <copy todir="${builddir}/WEB-INF/classes"
34. failonerror="false" verbose="true">

getting-started-VM.fm Page 25 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started26

To use this build file, you must customize the build.properties file that is con-
tained in the same directory. The default file looks like what is shown in
Listing 1–8.

35. <fileset dir="${appdir}/src/java">
36. <exclude name="**/*.java"/>
37. </fileset>
38. </copy>
39. <copy todir="${builddir}/WEB-INF" failonerror="false" verbose="true">
40. <fileset dir="${appdir}">
41. <include name="lib/**"/>
42. </fileset>
43. </copy>
44. </target>
45.
46. <target name="compile" depends="copy"
47. description="Compile source files.">
48. <javac
49. srcdir="${appdir}/src/java"
50. destdir="${builddir}/WEB-INF/classes"
51. debug="true"
52. deprecation="true">
53. <compilerarg value="-Xlint:unchecked"/>
54. <include name="**/*.java"/>
55. <classpath refid="classpath"/>
56. </javac>
57. </target>
58.
59. <target name="war" depends="compile"
60. description="Build WAR file.">
61. <delete file="${warfile}"/>
62. <jar jarfile="${warfile}" basedir="${builddir}"/>
63. </target>
64.

65. <target name="install" depends="war"
66. description="Deploy web application.">
67. <copy file="${warfile}" todir="${deploy.dir}"/>
68. </target>
69.

70. <target name="clean" depends="init"
71. description="Clean everything.">
72. <delete dir="${builddir}"/>
73. </target>
74. </project>

Listing 1–7 build.xml (cont.)

getting-started-VM.fm Page 26 Monday, April 2, 2007 10:39 AM

Development Environments for JSF 27

You need to change the directory for the application server to match your local
installation. Edit the first line of build.properties.

Now you are ready to build the sample application (see Figure 1–11).

1. Open a command shell and change into the corejsf-examples directory.
2. Run the command

apache-ant/bin/ant -Dapp=ch1/login

Here, apache-ant is the directory into which you installed Ant, such as
c:\apache-ant-1.6.5. With GlassFish, you can also use

glassfish/bin/asant -Dapp=ch1/login

Figure 1–11 Installing a web application with Ant

Listing 1–8 build.properties

1. appserver.dir=${env.GLASSFISH_HOME}
2. javaee.api.jar=${appserver.dir}/lib/javaee.jar
3. deploy.dir=${appserver.dir}/domains/domain1/autodeploy

getting-started-VM.fm Page 27 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started28

NOTE: Our Ant script is a bit different from the scripts that you often find
with sample applications. We use a single script that can build all applica-
tions in the book. You use the -Dapp=... flag to specify the name of the
application that you want to build. We think that approach is better than
supplying lots of nearly identical scripts. Note that you call the script from
the corejsf-examples directory, not the directory of the application.

JSF Framework Services

Now that you have seen your first JSF application, it is easier to explain the
services that the JSF framework offers to developers. Figure 1–12 gives a high-
level overview of the JSF architecture. As you can see, the JSF framework is
responsible for interacting with client devices, and it provides tools for tying
together the visual presentation, application logic, and business logic of a web
application. However, the scope of JSF is restricted to the presentation tier.
Database persistence, web services, and other backend connections are outside
the scope of JSF.

Figure 1–12 High-level overview of the JSF framework

Here are the most important services that the JSF framework provides:

Model-view-controller architecture—All software applications let users
manipulate certain data, such as shopping carts, travel itineraries, or
whatever data is required in a particular problem domain. This data is
called the model. Just as an artist creates a painting of a model in a studio,

getting-started-VM.fm Page 28 Monday, April 2, 2007 10:39 AM

JSF Framework Services 29

a software developer produces views of the data model. In a web applica-
tion, HTML (or a similar rendering technology) is used to paint these
views.

JSF connects the view and the model. As you have seen, a view compo-
nent can be wired to a bean property of a model object, such as

<h:inputText value="#{user.name}"/>

Moreover, JSF operates as the controller that reacts to the user by process-
ing action and value change events, routing them to code that updates the
model or the view. For example, you may want to invoke a method to
check whether a user is allowed to log on. Use the following JSF tag:

<h:commandButton value="Login" action="#{user.check}"/>

When the user clicks the button and the form is submitted to the server,
the JSF implementation invokes the check method of the user bean. That
method can take arbitrary actions to update the model, and it returns the
navigation ID of the next page to be displayed. We discuss this mecha-
nism further in “Dynamic Navigation” on page 73 of Chapter 3.

Thus, JSF implements the classical model-view-controller architecture.

Data conversion—Users enter data into web forms as text. Business
objects want data as numbers, dates, or other data types. As explained in
Chapter 6, JSF makes it easy to specify and customize conversion rules.

Validation and error handling—JSF makes it easy to attach validation
rules for fields such as “this field is required” or “this field must be a
number”. Of course, when users enter invalid data, you need to display
appropriate error messages. JSF takes away much of the tedium of this
programming task. We cover validation in Chapter 6.

Internationalization—JSF manages internationalization issues such as
character encodings and the selection of resource bundles. We cover
resource bundles in “Message Bundles” on page 42 of Chapter 2.

Custom components—Component developers can develop sophisticated
components that page designers simply drop into their pages. For exam-
ple, suppose a component developer produces a calendar component
with all the usual bells and whistles. You just use it in your page, with a
command such as

<acme:calendar value="#{flight.departure}" startOfWeek="Mon"/>

Chapter 9 covers custom components in detail.

getting-started-VM.fm Page 29 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started30

Alternative renderers—By default, JSF generates markup for HTML
pages. But it is easy to extend the JSF framework to produce markup for
another page description language such as WML or XUL. The book’s
companion site contains a chapter that shows you how to use JSF to com-
municate with Java ME-powered cell phones.

Tool support—JSF is optimized for use with automated tools. As these
tools mature in the coming years, we believe that JSF will be the must-
have framework for developing web interfaces with Java.

Behind the Scenes

Now that you have read about the “what” and the “why” of JSF, you may be
curious about just how the JSF framework does its job.

Next, we look behind the scenes of our sample application. We start at the
point when the browser first connects to http://localhost:8080/login/index.faces.
The JSF servlet initializes the JSF code and reads the index.jsp page. That page
contains tags such as f:form and h:inputText. Each tag has an associated tag han-
dler class. When the page is read, the tag handlers are executed. The JSF tag
handlers collaborate with each other to build a component tree (see Figure 1–13).

Figure 1–13 Component tree of the sample application

The component tree is a data structure that contains Java objects for all user
interface elements on the JSF page. For example, the two UIInput objects corre-
spond to the h:inputText and h:inputSecret fields in the JSF file.

Rendering Pages

Next, the HTML page is rendered. All text that is not a JSF tag is passed
through. The h:form, h:inputText, h:inputSecret, and h:commandButton tags are
converted to HTML.

getting-started-VM.fm Page 30 Monday, April 2, 2007 10:39 AM

Behind the Scenes 31

As we just discussed, each of these tags gives rise to an associated component.
Each component has a renderer that produces HTML output, reflecting the com-
ponent state. For example, the renderer for the component that corresponds to
the h:inputText tag produces the following output:

<input type="text" name="unique ID" value="current value"/>

This process is called encoding. The renderer of the UIInput object asks the frame-
work to look up the unique ID and the current value of the expression user.name.
By default, ID strings are assigned by the framework. The IDs can look rather
random, such as _id_id12:_id_id21.

The encoded page is sent to the browser, and the browser displays it in the
usual way (see Figure 1–14).

Figure 1–14 Encoding and decoding JSF pages

TIP: Select “View->Page source” from the browser menu to see the HTML
output of the rendering process. Figure 1–15 shows a typical output. This is
useful for debugging JSF problems.

getting-started-VM.fm Page 31 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started32

Figure 1–15 Viewing the source of the login page

Decoding Requests

After the page is displayed in the browser, the user fills in the form fields and
clicks the login button. The browser sends the form data back to the web server,
formatted as a POST request. This is a special format, defined as part of the
HTTP protocol. The POST request contains the URL of the form (/login/
index.faces), as well as the form data.

NOTE: The URL for the POST request is the same as that of the request
that renders the form. Navigation to a new page occurs after the form has
been submitted.

 The form data is a string of ID/value pairs, such as

id1=me&id2=secret&id3=Login

As part of the normal servlet processing, the form data is placed in a hash table
that all components can access.

Next, the JSF framework gives each component a chance to inspect that hash
table, a process called decoding. Each component decides on its own how to
interpret the form data.

The login form has three component objects: two UIInput objects that corre-
spond to the text fields on the form and a UICommand object that corresponds to
the submit button.

getting-started-VM.fm Page 32 Monday, April 2, 2007 10:39 AM

Behind the Scenes 33

• The UIInput components update the bean properties referenced in the value
attributes: they invoke the setter methods with the values that the user
supplied.

• The UICommand component checks whether the button was clicked. If so, it
fires an action event to launch the login action referenced in the action
attribute. That event tells the navigation handler to look up the successor
page, welcome.jsp.

Now the cycle repeats.

You have just seen the two most important processing steps of the JSF frame-
work: encoding and decoding. However, the processing sequence (also called
the life cycle) is a bit more intricate. If everything goes well, you do not need to
worry about the intricacies of the life cycle. However, when an error occurs,
you will definitely want to understand what the framework does. In the next
section, we look at the life cycle in greater detail.

The Life Cycle

The JSF specification defines six distinct phases, as shown in Figure 1–16. The
normal flow of control is shown with solid lines; alternative flows are shown
with dashed lines.

The Restore View phase retrieves the component tree for the requested page if it
was displayed previously or constructs a new component tree if it is displayed
for the first time. If the page was displayed previously, all components are set
to their prior state. This means that JSF automatically retains form information.
For example, when a user posts illegal data that is rejected during decoding,
the inputs are redisplayed so that the user can correct them.

If the request has no query data, the JSF implementation skips ahead to the
Render Response phase. This happens when a page is displayed for the first time.

Otherwise, the next phase is the Apply Request Values phase. In this phase, the JSF
implementation iterates over the component objects in the component tree. Each
component object checks which request values belong to it and stores them.

NOTE: In addition to extracting request information, the Apply Request Val-
ues phase adds events to an event queue when a command button or link
has been clicked. We discuss event handling in detail in Chapter 7. As you
can see in Figure 1–16, events can be executed after each phase. In spe-
cialized situations, an event handler can “bail out” and skip to the Render
Response phase or even terminate request processing altogether.

getting-started-VM.fm Page 33 Monday, April 2, 2007 10:39 AM

Chapter 1 ■ Getting Started34

In the Process Validations phase, the submitted string values are first converted
to “local values,” which can be objects of any type. When you design a JSF
page, you can attach validators that perform correctness checks on the local
values. If validation passes, the JSF life cycle proceeds normally. However,
when conversion or validation errors occur, the JSF implementation invokes
the Render Response phase directly, redisplaying the current page so that the
user has another chance to provide correct inputs.

NOTE: To many programmers, this is the most surprising aspect of the JSF
life cycle. If a converter or validator fails, the current page is redisplayed.
You should add tags to display the validation errors so that your users know
why they see the old page again. See Chapter 6 for details.

After the converters and validators have done their work, it is assumed that
it is safe to update the model data. During the Update Model Values phase, the
local values are used to update the beans that are wired to the components.

Figure 1–16 The JSF life cycle

getting-started-VM.fm Page 34 Monday, April 2, 2007 10:39 AM

Behind the Scenes 35

In the Invoke Application phase, the action method of the button or link compo-
nent that caused the form submission is executed. That method can carry out
arbitrary application processing. It returns an outcome string that is passed to
the navigation handler. The navigation handler looks up the next page.

Finally, the Render Response phase encodes the response and sends it to the
browser. When a user submits a form, clicks a link, or otherwise generates a
new request, the cycle starts anew.

You have now seen the basic mechanisms that make the JSF magic possible. In
the following chapters, we examine the various parts of the life cycle in more
detail.

getting-started-VM.fm Page 35 Monday, April 2, 2007 10:39 AM

