‘ éﬁ opensource-VM.fm Page 570 Monday, April 2, 2007 12:27 PM

*

OPEN SOURCE

Topics in This Chapter

e “Web Flow—Shale” on page 572

e “Alternate View Technologies—Facelets” on page 585
/ " H "
* “EJB Integration—Seam” on page 596

.

% ‘ éﬁ opensource-VM.fm Page 571 Monday, April 2, 2007 12:27 PM

*

When Sun first conceived of JSF, it counted on a vibrant open source commu-
nity to help drive innovation. Although it took longer than expected, that is
exactly what happened with the advent of projects such as Apache Shale, JBoss
Seam, and Facelets. Those open source projects—along with other projects
based on JSF, such as AjaxFaces—not only provide immediate benefit for JSF
developers, but are also shaping JSF’s future.

In this chapter, we take a look at three significant innovations:

e Web flow
e Alternate view technologies
o EJB (Enterprise JavaBeans) integration

Web flow is an industrial-strength version of JSF’s default navigation mecha-
nism. With web flow you can easily define complicated user interactions.

Starting with JSF 1.2 and JSP 2.1, the differences that caused incompatibilities
between the two have now been banished to the dustbin, and you should be
able to use them together without difficulty. However, even with that idyllic
scenario, there is still a considerable segment of the JSF developer community
that would like to replace JSP altogether with a lightweight templating mecha-
nism. Luckily, JSF was built to accomodate just such a scenario.

If you have not taken a look at EJB 3.0, you may be surprised at just how much
this most-maligned of specifications has matured to become a viable solution

%

571

i

%%@%

éﬁ opensource-VM.fm Page 572 Monday, April 2, 2007 12:27 PM

*

572 Chapter 12 ® Open Source

for many developers. Alas, the EJB and JSF component models are incompati-
ble, which opens the door for frameworks that provide a unified component
model.

Next, we take a look at these three innovations through the lens of three open
source frameworks that implement them: Shale, Facelets, and Seam.

Web Flow—Shale

From the folks that brought you Struts comes Shale, a set of services layered on
top of JSF. Shale has lots of features that make everyday JSF development much
easier:

e Web flow

¢ Remote method calls for Ajax

¢ Templating and Tapestry-like views

e (lient- and server-side validation with Apache Commons Validator

e Testing framework with support for unit and integration testing

e Spring, INDI, and Tiles integration

e View controllers (concrete implementation of the JSF backing bean
concept)

Shale web flow lets you implement a series of interactions between a user and
your application. That set of interactions is more commonly called a user con-
versation, dialog, or wizard. Shale uses the term dialog, so that is the term we will
use here.

A Shale dialog consists of one or more states. These states have transitions that
define how control is transferred from one state to another. Dialogs also have a
special state, called the end state, that exits the dialog and releases dialog state.
Here is an example of a Shale dialog definition:

<dialogs>
<dialog name="Example Dialog"
start="Starting State">

<view name="Starting State"
viewId="/viewForThisState.jsp">
<transition outcome="next"
target="The Next State"/>
<transition outcome="cancel"
target="Exit"/>
</view>

*@%

4~ 4

éﬁ opensource-VM.fm Page 573 Monday, April 2, 2007 12:27 PM

*

Web Flow—Shale

<view name="The Next State"
viewId="/nextView.jsp">
<transition outcome="next"
target="Yet Another State"/>
<transition outcome="cancel"
target="Exit"/>
</view>

<end name="Exit"/>
</dialog>

</dialogs>
In the preceding code fragment, we defined—in an XML configuration file—a
dialog named Example Dialog with three states: Starting State, The Next State, and Exit.
The transitions define how Shale navigates from one state to another—for
example, in a JSP page, you can do this:

<h:commandButton id="next"

value="#{msgs.nextButtonText}"
action="next"/>

If the preceding dialog’s state is The Next State and you click the button, Shale
uses that outcome—next—to send you to the next state, in this case named Yet
Another State. Because of The Next State’s second transition, clicking a button
whose action is cancel will end the dialog.

That contrived example shows the basics of Shale dialogs, but Figure 12-1
illustrates a more realistic example of a bill pay wizard. The wizard lets you
make an online payment and is composed of four steps: Payee Information,
Payment Method, Payment Schedule, and Summary. Each of those steps is
shown in Figure 12-1, from top to bottom, respectively.

But the bill pay wizard has a twist. If you select “Wire Transfer” for your
payment method and click the “Next” button, you do not go directly to the
“Payment Schedule” panel, as Figure 12-1 leads you to believe. Instead, a
subdialog intervenes that collects the wire transfer information.

That sequence of events is shown in Figure 12-2. Notice that the top and bot-
tom pictures in that figure are from the surrounding dialog, whereas the mid-
dle pictures are from the wire transfer subdialog.

So there is our finished application, with two dialogs, one nested in the other.
Now we take a look at the key steps in implementing those dialogs.

573

ﬁ

*@%

% opensource-VM.fm Page 574 Monday, April 2, 2007 12:27 PM

574 Chapter 12 ®m Open Source

[SNSXG) Bill Payment =

@ Q http://localhost:B080 /shale /start.jsf v

Payee Information Payment Method Payment Schedule Summary

Payee Name and Address
Bill Payment ()
Name |Clariry Training, Inc. 06 - L
Street Address 86 E. Amherst St <:ZI @j @ hup: //localhost:8080/shale/billpay/payment/wireTrans! v &% b o
Cil
St:ly el Payee Information |Payment Method Payment Schedule Summary
te New York

Zip Code 14218

Payment Amount and Method
_Next | previous | _cay |IZ00
Payment Amount [2000.00

St | | Payment Method Iwire Transfer ~|
Done
Next | Previous | Cancel | Finish

Bill Payment (&5

g Q http://localhost:B080/shale/billpay/payment/wireTransfer/wizard.jsf ¥

Payee Information Payment Method |Payment Schedule Summary

3 3

Payment Schedule

806 Bill Payment =
<::IY @ Q http: / /localhost:8080/shale /billpay/payment/wizard.jsf v g 3 3
®) One time e B A e s -
" Weekly Payee Information Payment Method Payment Schedule |Summary
" Monthly
Next | Previous | Cal Bill Pay Summary
Payee Name and Address
Name Clarity Training, Inc.
Street Address 86 E. Amherst St.
City Buffalo
State New York
Zip Code 14218
Payment Amount and Method

Payment Amount 2000.0

Payment Method Wire Transfer
Payment Schedule

Payment Schedule One time

Payment Method Wire Transfer
Bank Name and Address

Bank Name First Bank

Street Address 124 Oak Lane

Figure 12-1 The bill pay wizard

% opensource-VM.fm Page 575 Monday, April 2, 2007 12:27 PM

Web Flow—Shale Y43

ene Bill Payment (=)
‘QZI' @ Q http: / /localhost: 8080 /shale/billpay/payment/wireTrans! ¥ 3 & o
Payee Information |Payment Method Payment Schedule Summary
Payment Amount and Method 806 Bill Payment : Wire Transfer =
<::IY @ @ hup: //localhost:8080/shale/billpay/paymentjwizard.jsf v &% % o
Payment Amount [2000.00 —
Payment Method IWire Transfer j |Ba.|:|k Information Account Information Account Contact Summary
Next | Previous |_
Bank Name and Address
806 Bill Payment : Wire Transfer (&)
<::I* @ @ hup://localhost:8080/shale/billpay/payment/wireTransl ¥ &% B =
=== Bank Information |Account Information Account Contact Summary
Account Information
8686 Bill Payment : Wire Transfer (=)
<:ZIY @ Q http: / /localhost: 8080 /shale/billpay/payment/wireTrans! ¥ % & o ||
==) (4

Bank Information Account Information |Account Contact Summary

Account Contact
Recipient iames Wilson
Recipient's Phone Number 907 .886.9987 B
Recipient's Email Address james@wilson.org =
eme Bill Payment (=]
<::|v @ Q http:/ /localhost:B0B0 /shale /billpay/payment/wireTransfer/wizard.jsf ¥ §} Py 3!

Payee Information Payment Method |Payment Schedule Summary

Payment Schedule 8 4

%) One time
" Weekly
" Monthly

Next | Previous | Cancel Fimsh|

Done

8/
Figure 12-2 Wire transfer subdialog (summary panel not shown)

éﬁ opensource-VM.fm Page 576 Monday, April 2, 2007 12:27 PM

*

576

Chapter 12 B Open Source

Dialog Configuration

By default, you define your dialogs in an XML file named /WEB-INF/dialog-
config.xnl. We have two dialogs, so we have chosen to use two configuration

files, which we declare in the deployment descriptor:

<!-- this is WEB-INF/web.xml -->
<web-app>
<context-params

<param-name>org.apache.shale.dialog.CONFIGURATION</param-name>

<param-value>/WEB-INF/dialogs/payment.xml,
/WEB-INF/dialogs/wire-transfer.xml</param-value>
</context-param>

</web-app>

If you use a single file, named /WEB-INF/dialog-config.xml, you do not need to

declare it in your deployment descriptor.

Entering a Dialog

The next order of business is entering the dialog. In our example, we use a link,

as shown in Figure 12-3.

[SNaNG] Shale Web flow (&)
&~ é';_.}l @ hup://localhost:8080/shale/billpay/payment/wizard jsf v & &

Pay a bill ...

Done a8 4

Figure 12-3 Entering the bill payment dialog

The code for that link looks like this:

<h:commandLink action="dialog:Payment">
<h:outputText value="#{msgs.billpayPrompt}"/>
</h:commandLink>

%

ﬁ

*%

éﬁ opensource-VM.fm Page 577 Monday, April 2, 2007 12:27 PM

*

Web Flow—Shale 577

As you might suspect, Shale places special meaning on any action that starts
with the string dialog:. The name that follows the colon represents the name of
a dialog, which Shale subsequently enters when a user clicks the link.

Dialog Navigation

By default, Shale dialogs are defined in XML. Here is how the Payment dialog,
referenced in the preceding code fragment, is defined:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dialogs PUBLIC
"-//Apache Software Foundation//DTD Shale Dialog Configuration 1.0//EN"
"http://struts.apache.org/dtds/shale-dialog-config-1_0.dtd">

<dialogs>
<dialog name="Payment"
start="Setup">

<action name="Setup"
method="#{d1ialogLauncher.setupPaymentDialog}">
<transition outcome="success"
target="Payee Information"/>
</action>

<!-- Payee Information -->
<view name="Payee Information"
viewId="/billpay/payment/wizard.jsp">
<transition outcome="next"
target="Payment Method"/>
</view>

When you enter a dialog, Shale loads the state specified with the dialog ele-
ment’s start attribute. In our case, that state is Setup, which is an action state.
Action states execute a method and immediately transition to another state,
depending upon the string returned from the method (the action’s outcome).

When Shale enters our dialog’s Setup state, it invokes the setupPaymentDialog
method on a managed bean named dialoglauncher. That method stores some
objects in dialog scope (see “Dialog Scope” on page 578 for more information
about that method) and returns the string success.

That success outcome causes Shale to load the Payee Information state, which is a
view state. View states load a view, specified with the viewId attribute, and wait
for the user to click a button or a link, which generates an outcome that Shale
uses to navigate to the next state.

*@%

4~ 4

éﬁ opensource-VM.fm Page 578 Monday, April 2, 2007 12:27 PM

*

578

Chapter 12 B Open Source

So, to summarize, when you click the link to enter the dialog, Shale loads the
Setup action state, which invokes dialogLauncher.setupPaymentDialog(). That method
returns success, which causes Shale to load /bi11pay/payment/wizard. jsp and wait for
the next outcome.

At some point, our dialog ends with the end state:

<end name="Exit" viewId="/start.jsp"/>
</dialog>
</dialogs>
The end state is a special view state that exits the current dialog and subse-
quently loads the view specified with the vienId attribute.

Dialog Scope

Throughout the JSP pages in our wizards, we have input fields wired to an
object that is stored as the current dialog’s data object—for example:

<h:inputText id="name"
size="30"
value="#{dialog.data.name}"

styleClass="input"/>

When you enter a dialog, Shale puts an object, named dialog, in session scope
and when you exit the dialog, Shale removes the dialog object from the session,
thereby effectively creating a dialog scope.

You can store an object of your choosing in the dialog object by setting the dia-
log’s data property. In the preceding code, we access that data object to wire a

text field to the data object’s name property. As is often the case, our data object is
a simple collection of properties representing the fields in the wizard’s panels.

This all begs a question: How does our data object get associated with the dia-
log’s data property? Like the Payment dialog discussed in “Dialog Navigation” on
page 577, the Wire Transfer dialog also has a Setup action state that Shale executes
when you enter the dialog. That method stores the data object in the dialog’s
data property. Here is how we declare the Setup method:

<dialogs>
<dialog name="Wire Transfer Dialog"
start="Setup">

<action name="Setup"
method="#{dialogLauncher.setupWireTransferDialog}">

%

ﬁ

*@%

éﬁ opensource-VM.fm Page 579 Monday, April 2, 2007 12:27 PM

*

Web Flow—Shale 579

<transition outcome="success"
target="Bank Information"/>
</action>

<end name="Exit"/>
</dialog>
</dialogs>
Shale executes dialogLauncher.setupWireTransferDialog() when you enter the Wire
Transfer dialog. So we have two methods, setupPaymentDialog and setupWireTransfer-
Dialog, that Shale executes immediately after entering the Payment and Wire Trans-
fer dialogs, respectively. Those methods look like this:

public class DialogLauncher extends AbstractFacesBean {
private BillpayData billpayData = null;

// Called just afer entering the payment dialog
public String setupPaymentDialog() {
billpayData = new BillpayData();
billpayData.setTransfer(new WireTransferData());

setValue("#{dialog.data}", billpayData);
return "success";

}

// Called just afer entering the wire transfer dialog
public String setupWireTransferDialog() {
setValue("#{dialog.data}", billpayData.getTransfer());
return "success";
}
}

The setupPaymentDialog method creates two objects, that combined, contain all the
properties on all the panels for the Payment and Wire Transfer dialogs. Because the
Wire Transfer dialog is a subdialog of the Payment dialog, we likewise store the
wire transfer data object in the payment data object.

While a dialog is active, the dialog object and its associated data object, are avail-
able via JSF expressions like #{dialog.data.someProperty}. When the dialog exits,
Shale removes the dialog object from “dialog” scope and it is no longer accessi-
ble via JSF expressions. It is interesting to note that the data object for a dialog
could easily be a map, which effectively gives you a bona fide new scope.

*@%

éﬁ opensource-VM.fm Page 580 Monday, April 2, 2007 12:27 PM
m Chapter 12 B Open Source

EI NOTE: Notice that the DialogLauncher class in the preceding code extends
Shale’s AbstractFacesBean. That class has a number of handy methods,
some of which are listed below, that you will find useful for JSF development
in general. For example, Dialoglauncher uses AbstractFacesBean.setValue(),
which sets a bean property’s value to a given string, which can be a value
expression.

P org.apache.shale.faces.AbstractFacesBean

=

> (§

Object getBean(String beanName)

Returns a managed bean with the specified beanName, if one exists. This
method delegates to the JSF variable resolver, which, by default, searches
request, session, and application scope—in that order—for managed
beans. If no managed bean is found with the given name, the variable
resolver looks for a managed bean definition for the bean in question; if the
definition exists, JSF creates the bean. If the bean does not exist and has no
definition, this method returns null.

e (Object getValue(String expr)
Given a value expression, this method returns the corresponding object.
For example: LoginPage page = (LoginPage)getValue("#{loginPage}");

e void setValue(String expr, Object value)
This method is the inverse of getValue; it sets a value, given a value expres-
sion; for example: setValue("#{ToginPage}", new LoginPage());

Dialog Context Sensitivity

Look closely at the tabs and buttons for the dialog panels in Figure 12-1 on
page 574 and Figure 12-2 on page 575, and you will see that they are context
sensitive. That sensitivity is implemented in a page object and accessed in JSF
expressions. Here is how the sensitivity of the wizard buttons is controlled:

<h:commandButton id="next"
value="#{msgs.nextButtonText}"
action="next"
styleClass="wizardButton"
disabled="#{not dialog.data.page.nextButtonEnabled}"/>

If the page object stored in the dialog’s data returns true from isNextButtonEnabled(),
JSF enables the button. Similar properties, such as previousButtonEnabled, are con-
tained in the page object and accessed in wizardButtons. jsp. Here is how the CSS
styles for the tabs at the top of each wizard panel are set:

%

ﬁ&

*@ﬁ

éﬁ opensource-VM.fm Page 581 Monday, April 2, 2007 12:27 PM

*

Web Flow—Shale m

<h:panelGrid columns="5">
<h:outputText value="#{msgs.payeeTabPrompt}"
styleClass="#{dialog.data.page.payeeStyle}"/>
</h:panelGrid>

The page object accesses dialog state programatically. In our application, we
implemented a base class that encapsulates the basics:

public class BaseDialogPage {
protected BaseDialogPage() {
// Base class only...
}
protected Status getDialogStatus() {
Map sessionMap = FacesContext.getCurrentInstance()
.getExternalContext()
.getSessionMap();
return(Status)sessionMap.get(org.apache.shale.dialog.Globals.STATUS);
}
protected boolean stateEquals(String stateName) {
return stateName.equals(getDialogStatus().getStateName());
}
protected boolean isStateOneOf (String[] these) {
String state = getDialogStatus().getStateName();
for (int i=0; i < these.length; ++i) {
if(state.equals(these[i]))
return true;
}
return false;
}
}

Shale stores a status object in session scope, which we retrieve in the preceding
code. From that status object we can determine the current state. We subse-
quently put those base class methods to good use in subclasses. Here is the page
class for the Payment dialog:

public class BillpayPage extends BaseDialogPage {
// State constants
private static final String PAYEE_INFORMATION = "Payee Information";
private static final String PAYMENT_METHOD = "Payment Method";
private static final String PAYMENT_SCHEDULE = "Payment Schedule";
private static final String SUMMARY = "Summary";

pubTic String enterPaymentDialog() {
return "dialog:Payment";

}

// View Togic for panels:

*@%

éﬁ opensource-VM.fm Page 582 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

pubTic boolean isPayeeRendered() {
return stateEquals(PAYEE_INFORMATION);

}

pubTic boolean isPaymentMethodRendered() {
return stateEquals(PAYMENT_METHOD);

}

pubTic boolean isPaymentScheduleRendered() {
return stateEquals(PAYMENT_SCHEDULE);

}

pubTic boolean isSummaryRendered() {
return stateEquals(SUMMARY);

}

// View Togic for buttons:

pubTic boolean isNextButtonEnabled() {
return isStateOneOf(new String[] {
PAYEE_INFORMATION, PAYMENT_METHOD, PAYMENT_SCHEDULE });
}
pubTic boolean isPreviousButtonEnabled() {
return isStateOneOf(new String[] {
PAYMENT_METHOD, PAYMENT_SCHEDULE, SUMMARY });
}
pubTic boolean isCancelButtonEnabled() {
return true;
}
pubTic boolean isFinishButtonEnabled() {
return stateEquals(SUMMARY);
}

// View Togic for CSS style names

pubTlic String getPayeeStyle() {
return isPayeeRendered() ?
"selectedHeading" : "unselectedHeading";

}

pubTic String getPaymentMethodStyle() {
return isPaymentMethodRendered() ?
"selectedHeading" : "unselectedHeading";

}

pubTic String getPaymentScheduleStyle() {
return isPaymentScheduleRendered() ?
"selectedHeading" : "unselectedHeading";

*%

4~ 4

éﬁ opensource-VM.fm Page 583 Monday, April 2, 2007 12:27 PM J\E
Web Flow—Shale m

pubTic String getSummaryStyle() {
return isSummaryRendered() ?
"selectedHeading" : "unselectedHeading";
}
}

The preceding class controls the visibility of panels, enabled state of buttons,
and CSS tab styles, all by programatically determining the current dialog state.

Subdialogs

In our example, the Wire Transfer dialog is a subdialog of the Payment dialog. Here
is how that is defined:

<dialogs>
<dialog name="Payment"
start="Setup">

<!-- The following action navigates from the Payment
Method page depending upon the payment method
that the user selected from a drop-down Tist.
The action simply returns that value. -->

<action name="Navigate Based on Transfer Mechanism"
method="#{dialog.data.navigateTransfer}">
<transition outcome="Wire Transfer"

target="Wire Transfer"/>
</action>

<subdialog name="Wire Transfer"
dialogName="Wire Transfer Dialog">
<transition outcome="cancel"
target="Payment Method"/>
<transition outcome="success"
target="Payment Schedule"/>
</subdialog>

</dialog>
</dialogs>
Inside the Payment dialog we declare a Wire Transfer subdialog. We navigate to
that subdialog through an action state named Navigate Based on Transfer Mechanism
that returns the string selected from a drop-down list of transfer types. If that
string is Wire Transfer, Shale navigates to the Wire Transfer subdialog.

Notice the transitions for that subdialog: If those outcomes (cancel and success)
are not handled in the subdialog, Shale associates them with the states Payment
Method and Payment Schedule, respectively.

*@%

4~ 4

éﬁ opensource-VM.fm Page 584 Monday, April 2, 2007 12:27 PM

m Chapter 12 B Open Source

The Wire Transfer subdialog is a dialog, defined like any other:

<dialogs>
<dialog name="Wire Transfer Dialog"
start="Setup">

<action name="Setup"
method="#{dialogLauncher.setupWireTransferDialog}">
<transition outcome="success"
target="Bank Information"/>
</action>

<view name="Bank Information"
viewId="/bi11pay/payment/wireTransfer/wizard.jsp">
<transition outcome="next"
target="Account Information"/>
<transition outcome="cancel"
target="Exit"/>
</view>

<view name="Account Information"
viewId="/bi11pay/payment/wireTransfer/wizard.jsp">
<transition outcome="previous"
target="Bank Information"/>
<transition outcome="next"
target="Account Contact"/>
<transition outcome="cancel"
target="Exit"/>
</view>

<view name="Account Contact"
viewId="/bi11pay/payment/wireTransfer/wizard.jsp">
<transition outcome="previous"
target="Account Information"/>
<transition outcome="next"
target="Summary"/>
<transition outcome="cancel"
target="Exit"/>
</view>

<view name="Summary"
viewId="/billpay/payment/wireTransfer/wizard.jsp">
<transition outcome="previous"
target="Account Contact"/>
<transition outcome="finish"
target="Finish"/>
<transition outcome="cancel"

4~ ~¢/

éﬁ opensource-VM.fm Page 585 Monday, April 2, 2007 12:27 PM A\E

Alternate View Technologies—Facelets m

target="Exit"/>
</view>

<action name="Finish"
method="#{dialog.data.finish}">
<transition outcome="success"
target="Exit"/>
</action>

<end name="Exit"/>
</dialog>
</dialogs>
Shale’s dialog support is a powerful upgrade to JSF’s built-in navigation capa-
bilities. By itself, it is a compelling inducement to add Shale to your tool chest.

Alternate View Technologies—Facelets

In the early days of enterprise Java, developers dealt in HTML directly, by
emitting HTML from servlets. Over the years, we have moved to eradicate
HTML from our views with the advent of JSP and, especially, JSP custom tags,
which do a neat job of encapsulating Java code and removing it from JSP pages.

Everything is a trade-off, but overall the trend toward JSP tags has made JSP
pages more readable, maintainable, and extensible.

However, JSP has a dark side: When software developers and graphic design-
ers work independently, the JSP model breaks down badly. Graphic designers
are typically not familiar with JSP or the set of custom JSP tags that software
developers use on any given project.

Software developers, on the other hand, can have a devil of a time incorporat-
ing a look and feel into a web application laden with custom tags that ulti-
mately generate HTML, as is the case for a typical JSF application. If JSP is used
on a project in which software developers and graphic designers work sepa-
rately, only rigid discipline provides any hope of success. Fortunately, there is
an alternative.

XHTML Views

Now we cut to the chase. We are going to use Facelets, an open source display
technology for JSF, to implement our views in XHTML (Extensible HTML)
instead of JSP. In our XHTML files, we will have mock-up HTML that is edited
by a graphic designer, but at runtime, Facelets will swap out that mock-up HTML
with JSF components. This will allow graphic designers to create a look and feel

*@%

4~ 4

2
éﬁ opensource-VM.fm Page 586 Monday, April 2, 2007 12:27 PM

m Chapter 12 B Open Source

with mock-up markup that developers can replace with JSF components at

runtime. And here is the clincher: The |SF components absorb the mock-up’s look
and feel.

Feel free to take a moment to ponder the ramifications.

This sort of chicanery, first pioneered in the Java web application space by
Tapestry, truly borders on magic. Now we see how it works. First, an XHTML
page, shown in Figure 12—4.

8ene An plain-vanilla XHTML file =)
(:Zl' é’g Qhllp'.,f;’IocaIhosl'.8080,ffaceIels,fIogin—hlml—only.xhlml v
Name |
Password I

Log In |
Cone 9 A

Figure 12-4 A simple XHTML page

Here is the listing for that page:

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1">
<head>
<link href="styles.css" rel="stylesheet" type="text/css"/>
<title>An plain-vanilla XHTML file</title>
</head>

<body>
<form id="login">
<table cellpadding="2px;">
<tr>
<td>
<label for="name" class="Tabel">
Name
</1abel>
</td>
<td>
<input type="text"
id="name"
style="background: #ffa"/>
</td>
</tr>

%@%

4~ 4

2
éﬁ opensource-VM.fm Page 587 Monday, April 2, 2007 12:27 PM

—

Alternate View Technologies—Facelets 174

<tr>
<td>
<label for="password" class="Tabel">
Password
</1abel>
</td>
<td>
<input type="password"
id="password"
size="g8"
class="input"/>
</td>
</tr>
<tr>
<td></td>
<td>
<input type="submit"
value="Log In"/>
</td>
</tr>
</table>
</form>
</body>
</htm1>

You cannot get much more vanilla than that. Next we wire those HTML ele-
ments to JSF components.

Replacing Markup with JSF Components: The jsfc Attribute

We are going to use JSF components to turn our nonfunctional markup into a
thriving web page, as shown in Figure 12-5.

Done

ene A souped-up XHTML file =)
(:ZI' é’g @ http:/ localhost: 8080 ffacelets/login-soupedup.jsf v
Name |Phyllis

Passwor I******
8086

Log InJ

Facelets =

& &

Welcome, Phyllis

@ http:/ /localhost: 8080 ffacelets/login-soupedup.jsf v

Back...

Done

e

Figure 12-5 Replacing XHTML markup at runtime with JSF components

4~ 4

éﬁ opensource-VM.fm Page 588 Monday, April 2, 2007 12:27 PM

*

588 Chapter 12 ®m Open Source

Here is the transformation of our XHTML file:

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:f="http://java.sun.com/jsf/core">

<head>
<link href="styles.css" rel="stylesheet" type="text/css"/>
<f:1oadBundle basename="com.corejsf.messages" var="msgs"/>
<title>#{msgs.windowTitle}</title>

</head>

<body>
<form jsfc="h:form" id="login">
<table cellpadding="2px;">
<tr>
<td>
<label for="name"
class="Tabel"
jsfc="h:outputLabel">
#{msgs .namePrompt}
</1abel>
</td>
<td>
<input type="text"
id="name"
value="#{user.name}"
style="background: #ffa;"
jsfc="h:inputText"/>
</td>
</tr>
<tr>
<td>
<label for="password"
class="Tabel"
jsfc="h:outputLabel">
#{msgs .passwordPrompt}
</1abel>
</td>
<td>
<input type="password"
jsfc="h:inputSecret"
id="password"
value="#{user.password}"
size="8"
class="input"/>

*@%

4~ 4

éﬁ opensource-VM.fm Page 589 Monday, April 2, 2007 12:27 PM A\E

*

Alternate View Technologies—Facelets m

</td>
</tr>
<tr>
<td> </td>
<td>
<input type="submit"
jsfc="h:commandButton"
value="#{msgs.loginButtonText}"
action="Togin"/>
</td>
</tr>
</table>
</form>
</body>
</html>

Three things about this example:

* Notice the address bar URLs in Figure 12—4 on page 586 and Figure 12-5
on page 587. The former URLs end in .xhtm1, whereas the latter end in . jsf.
This means that Figure 124 shows what the graphic designer sees and
Figure 12-5 shows what software developers, and ultimately end users,
see.

* We use an XML namespace to enable Facelet tags that mimic the JSF core
tag library. Subsequently, we use the f:loadBundle tag from that namespace
to load a resource bundle. Finally, we use value expressions, such as
#{msgs.namePrompt}, directly in the page—no h:outputText is required—to
access keys in the resource bundle.

. We have added jsfc attributes to our form, labels, text fields, and button.
When you run this souped-up XHTML page through Facelets, it swaps
the markup for components of the specified type.

You might wonder what the graphic designer sees when she views this
souped-up XHTML file. Figure 12-6 provides the answer.

The browser does not know what to do with JSF value expressions. So it just
uses them as is, which is convenient for translators, who can glean the context
of a translation just by looking at the XHTML.

EI NOTE: What does the browser, or any other tool that lets you view XHTML,
do with those jsfc attributes? Nothing! So graphic designers can continue to
iterate over your XHTML files to refine the look and feel, while you work on

the components that will ultimately be used at runtime.

*@%

4~ 4

éﬁ opensource-VM.fm Page 590 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

ene #{msgs.windowTitle} =
@- E’:‘_,j @ htp:/ flocalhost: 8080 ffacelets/login-soupedup.xhtml ¥

#{msgs.namePrompt} I#[user.name}
#{msgs.passwordPrompi] |s+ssssssess *

#{msgs.loginButtonText} |

Done ‘,_:) A
Figure 12-6 What the graphic designer sees

EI NOTE: Shale has something similar to Facelets, called Clay. Like Facelets,
Clay gives you clean separation of graphic design and software develop-
ment concerns with HTML views. One advantage Clay has over Facelets is
that it works with ill-formed HTML, whereas Facelets requires XHTML.

Using JSF Tags

Fundamentally, Facelets, like Tapestry, cleanly separates graphic design from
software development. But if you are both a graphic designer and a software
developer, there are still viable reasons to prefer the more traditional J[SP-based
approach. For example, XHTML is more verbose than JSP and therefore can be
harder to maintain over the long run. If you yearn for the more traditional
approach with JSP tags, Facelets can easily accomodate. It’s just that you are
not really using JSP at all.

Facelets recognizes tags that look identical to their JSP counterparts, but it is
Facelets, not JSP, that processes the tags. As Facelets parses the XHTML, it
creates the resulting component tree.

Figure 12-7 shows the login application from page 587 with Facelet JSF tags.
Now our XHTML page looks like this:

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmins:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

*@%

4~ 4

éﬁ opensource-VM.fm Page 591 Monday, April 2, 2007 12:27 PM J\E
Alternate View Technologies—Facelets m

<head>
<link href="styles.css" rel="stylesheet" type="text/css"/>
<f:loadBundle basename="com.corejsf.messages" var="msgs"/>
<title>#{msgs.facesTagsWindowTitle}</title>

</head>

<body>
<h:form id="Togin">
<h:panelGrid columns="2" cellpadding="3px">

<h:outputLabel for="name"
value="#{msgs.namePrompt}"/>

<h:inputText type="text"
id="name"
value="#{user.name}"
class="input"/>

=

<h:outputLabel for="password"
class="Tabel"
value="#{msgs.passwordPrompt}" />
<h:inputSecret
id="password"
value="#{user.password}"
size="8"
class="input"/>

<h:outputText value=""/>
<h:commandButton value="#{msgs.loginButtonText}"
action="login"/>
</h:panelGrid>

</h:form>
</body>
</html>
8emne Using Faces Tags =]
<:ZI' é’g @ http:/ flocalhost: 8080 ffacelets/login-with-faces-tags.jsf v

Name |Phyllis

Password I
Log In |

Done 8 v
Figure 12-7 A Facelets view that uses JSF tags

%@%

4~ 4

A

éﬁ opensource-VM.fm Page 592 Monday, April 2, 2007 12:27 PM

Chapter 12 B Open Source

Notice that with the preceding code, we have purposely chosen to forego the
jsfc approach, which, as we have seen, lets software developers and graphic

designers work separately, in parallel.

In the end of course, it is your call whether to separate graphic design and soft-
ware development. Either way, Facelets adds some very appealing features to

this fundamental replacement of JSF’s default display technology.

Page Composition with Templates

Facelets lets you compose web pages from individual XHTML fragments,
similar to the popular Tiles framework. Figure 12-8 shows such a web page.

e06 Facelets ©
<":|v E’S} @ http:/ flocalhost: 8080 ffacelets /login-with-composition.jsf i
Facelets
What is it] Please log in to facelets.com
Demos |
Name |
[Best practices’
5L practices] Password I
Log In |
Cone 9 -

Figure 12-8 Using Facelets composition

Here is the XHTML page shown in Figure 12-8:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm]1-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets">
<body>
<ui:composition template="/layout.xhtml">
<!-- Header -->
<ui:define name="header">

%

ﬁ

*@%

éﬁ opensource-VM.fm Page 593 Monday, April 2, 2007 12:27 PM

*

Alternate View Technologies—Facelets m

</ui:define>

<!l-- Menu -->
<ui:define name="menu">

</ui:define>

<!-- Content -->
<ui:define name="content">
<uizinclude src="Togin-composition.xhtml"/>
</ui:define>
</ui:composition>
</body>
</htm1>

In the preceding code, we define a page composition that has a template, and we
define content that is displayed by the template. Since the word “template” is so
overloaded, it might help to think of the template as a layout instead. Here is
the template for the preceding composition.

<!DOCTYPE htm1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmins:h="http://java.sun.com/jsf/htm1"
xmlns:c="http://java.sun.com/jst1/core">

<link href="styles.css" rel="stylesheet" type="text/css"/>
<f:loadBundle basename="com.corejsf.messages" var="msgs"/>

<head>
<title>Facelets</title>
</head>

<body>
<div class="header">
<ui:insert name="header"/>
</div>

<div class="menu">
<ui:insert name="menu"/>
</div>

*@%

éﬁ opensource-VM.fm Page 594 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

<div class="content">
<ui:insert name="content"/>
</div>
</body>
</html>

Admittedly, there is not much layout there, other than three DIVs. The rest of
the layout is encapsulated in CSS for a further separation of concerns. But the
result is the same: the template, in this case an XHTML file and its stylesheet,
represent the layout for the composition.

Notice the three ui:define tags in the code beginning on page 592. The first
ui:define tag, representing the header of the page, contains a lone image. The
next tag, representing the menu, contains four images. The most interesting tag
is the third ui:define tag, which includes content from another XHTML file with
the ui:include tag. That XHTML file looks like this:

<ui:composition xmins:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/htm1"
xmlns:c="http://java.sun.com/jst1/core">
<!-- the contents of this tag are the same as the body of the
listing on page 586 -->
</ui:composition>

The body of the preceding ui:composition is the same as the body of the XHTML
file that begins on page 586.

NOTE: Why bother to use Facelets composition, when we can just neatly
encapsulate the layout and its content in one file? Because if we have multi-
ple views that share layout, we want to define that layout in only one place
and reuse it for multiple views, much the same as you include content with
JSP’s jsp:include, or Facelets’ ui:include. Realize that in the preceding
example, any composition that defines header, menu, and content regions can
reuse the same layout. That is pretty powerful.

Facelets Custom Tags

Facelets has many more features than we have covered here, so at this point we
refer you to the Faclets documentation, but before we do, we will show you
one more feature: Facelets custom tags.

You can easily create your own XHTML tags and use them in your Facelets
views. For example, Figure 12-9 shows the application discussed in “Page
Composition with Templates” on page 592, equipped with a custom tag that

*@ﬁ

4~ 4

A

éﬁ opensource-VM.fm Page 595 Monday, April 2, 2007 12:27 PM J\E

Alternate View Technologies—Facelets m

shows the HTTP headers for the current request, but only when there is a
request parameter named debug whose value is true.

A severely abbreviated listing of Figure 12-9 follows:

<html xmIns="http://www.w3.0rg/1999/xhtm1"
xmins:ui="http://java.sun.com/jsf/facelets"
xmlns:debug="http://corejsf/facelets/debug">
<debug:headers/>

</htm1>

oo Facelets (=]
@ E:‘_; @ hup:/ /localhost: 8080/ facelets /login-with-composition.jsf v

What is it?] Please log in to facelets.com
Demos |
Name |

Best praclices_]
T Password
Log In |

Done B 4
Figure 12-9 A debug tag that is triggered by a request attribute

We must include our namespace declaration and then we are free to use the
tag. The tag is defined in an XML file:

<facelet-taglib>
<namespace>http://corejsf/facelets/debug</namespace>
<tag>
<tag-name>headers</tag-name>
<source>tags/corejsf/debug/headers.xhtml</source>
</tag>
</facelet-taglib>

We specify the name of the tag, headers, and the file it represents: tags/corejsf/
debug/headers.xhtml. Here is that file:

%@%

4~ 4

éﬁ opensource-VM.fm Page 596 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

<ui:composition xmlns:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/htm1"
xmlns:c="http://java.sun.com/jst1/core">
<c:choose>
<c:when test="#{not empty param.debug and param.debug == "true'}">
<h:outputText value="#{msgs.debugHeaders}"/>
<p><h:outputText value="#{header}" style="color: red;"/></p>
</c:when>
</c:choose>
</ui:composition>

That's it. A Facelets custom tag in three easy steps.

EJB Integration—Seam

One of the things that makes developing web applications in Java harder than

it should be is a mismatch between user interface and persistence frameworks.

The two sides of the enterprise Java coin exist and mature independently, with-
out much collaboration or synergy.

Traditionally, implementing Java-based web applications meant learning two
frameworks—one for the user interface (UI) and another for the backend. For
example: JSF and Hibernate; Tapestry and EJB3; Webwork and IBATIS, etc.
Then you must learn to use the two frameworks together. Synergy between the
two could make development much easier, if only Ul and persistence frame-
works could somehow be united.

Enter Seam, from JBoss. Seam is a new approach to web development that
unites JSF and EJB3 (or Hibernate) into a single potent framework with com-
pelling productivity gains over traditional Java-based web frameworks. Seam
works with either Hibernate or EJB3, and you can run it either in the JBoss
server or Tomcat 5.5. Next, we see how it works.

An Address Book

To illustrate Seam fundamentals, let’s explore the implementation of a Seam
address book application, which maintains a list of contacts in a database. The
address book is a typical create-read-update-delete application. Figure 12-10
shows how to add contacts to the database. Figure 12-11 on page 599 and
Figure 12-12 on page 600 show how to delete and edit contacts, respectively.

The address book has three JSP pages: the address book page, which lists all
the contacts in the address book, a page to add a contact, and a page to edit a
contact. From looking at those JSP pages, you cannot discern that this is a Seam
application.

*@%

4~ 4

% opensource-VM.fm Page 597 Monday, April 2, 2007 12:27 PM

EJB Integration—Seam 597

en0e Address Book (=
<::Iv 1%1 9 http://localhost: 8080 /seam/addContact.seam >

e

Add a contact to the address book

Name |Dagwood Yardley

Street Address |8963l Forrest Place
City W eoe Users (=)
State W <:ZI* lfg @ hup: //localhost: 8080/ seam faddContact.seam v

Country |United States
Add contact| | Address Book

e

Name Street Address City State Country
delete |Dagwood Yardley 89631 Forrest Place Castle Rock California United States
Done
Create more contacts...
en0e Address Book (=)
<:ZI' 1%1 9hrlp:,f,f\ocalhoslzs0Sujseam,faddConlacl.seam?comersalionld=3 v | g

Add a contact to the address book

Name IDanieI Briere a s
Street Address |8692 Oublier Lane

City Weedon e06

Users (=]
State I uebec =
@ <:ZI' f’g?j @ hup:/ /localhost:8080/seam/addContact.seam v 7
Country ICanada i 4
Add contact
— N | Address Book
Name Street Address City State Country
delete |Dn wood Yardley 89631 Forrest Place Castle Rock California United States
Dorie delete | Daniel Briere 8692 Qublier Lane Weedon Quebec Canada
Create more contacts...
k
Cone Q A

Figure 12-10 Adding two contacts to an empty address book

éﬁ opensource-VM.fm Page 598 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

For example, here is an excerpt from addressBook.jsp, as shown in Figure 12-10:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="http://java.sun.com/jsf/htm1" prefix="h" %
9@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<frviews
<html>
<head>
<titlesUsers</title>
<Tink href="styles.css" type="text/css" rel="stylesheet"/>
</head>
<body>
<div class="heading">
<h:outputText value="Address Book"
styleClass="headingText"/>
</div>

<h:forms>
<h:dataTable value="#{contacts}"
var="currentContact"
styleClass="contacts"
rowClasses="contactsEvenRow, contactsOddRow">
<h:column>
<h:commandButton value="delete"
action="#{addressBook.delete}"/>
</h:coTumn>
<h:column>
<f:facet name="header">
<h:outputText value="Name"/>
</f:facet>
<h:commandLink value="#{currentContact.name}"
action="#{addressBook.beginEdit}"/>
</h:coTumn>

<%-- The rest of the columns in the table have been ommitted to
save space.
--%>

</h:dataTable>
<h:commandLink value="Create more contacts...
</h:form>
</body>
</htm1>
</fiview>

n

action="addContact"/>

*%

2
opensource-VM.fm Page 599 Monday, April 2, 2007 12:27 PM

EJB Integration—Seam m

As you might expect, the contacts table is implemented with an h:dataTable tag.
The value attribute for that tag points to a managed bean named contacts, and in
the body of the h:dataTable tag we access another managed bean named address-
Book. We use this bean to wire buttons and links to JSF action methods.

The application’s other two JSP pages, addContact.jsp and editContact.jsp, are
equally innocuous, plain-vanilla JSF views without the slightest hint of any
framework other than JSE.

The interesting part of this application lies in its managed beans. You would
never know it from the JSP page alone, but the contacts and addressBook beans
from the preceding code are both EJBs. The former is an entity bean, whereas
the latter is a stateful session bean. Now we see how it all fits together.

006 Users =
-(:ZI' E‘;’J @ htep:/ /localhost:8080/seam/editContact.seam v
Address Book
Name Street Address City State Country
delete | Dagwood Yardley 89631 Forrest Place Castle Rock California United States
delete | Daniel Briere 1866 Crestwood Avenue Buffalo New York United States
delete |Lynn Seckinger 77 West 15th Street San Bernadino California United States
delete | Maxim Afinepenov 887611 East Way Buffalo New York USA
delete | Phillip Edwards 125 Lost Way ‘White Plains New York United States
Create more contacts...
006 Users =
-(:ZI' E‘;’J @ htep:/ /localhost:8080/seam/faddressBook.seam v
Done
Address Book
Name Street Address City State Country
delete |Dagwood Yardley 89631 Forrest Place Castle Rock California United States
delete | Daniel Briere 1866 Crestwood Avenue Buffalo New York United States
delete | Maxim Afinegenov 887611 East Way Buffalo New York USA
delete | Phillip Edwards 125 Lost Way White Plains New York United States
Create more contacts...
Cone Q A

Figure 12-11 Deleting a contact in the address book

% opensource-VM.fm Page 600 Monday, April 2, 2007 12:27 PM

Chapter 12 B Open Source

eee Users =)
Q:ZIY g @ hitp: //localhost: 8080 /seam/addContact.seam v &
Address Book
Name Street Address City State Country
delete |Dagw00d Yardley 89631 Forrest Place Castle Rock California United States
delete |Da.nie1 Bri%eﬁ 8692 Qublier Lane Weedon Quebec Canada
_delete g e Address Book [=]
_Idelere @ g @ http://localhost:8080/seam/addressBook.seam v | 3

delete ||

Create mord | Edit @ contact

Name Daniel Briere
hitp://locaind Street Address |8692 Oublier Lane
city Weedon T
State IQ._,eT
Country W

006 Address Book [)
& = @ hup:/ /Iocalhost:8080/seam /addressBook.seam ¥ ¢

Edit a contact

Name Daniel Briere
Street Address IlSEE Crestwood Avenue

City |Buffalo
State |
YoYe) New York
ij l‘g m Country |Unired States
i P Rt i s e el S L Save editskjﬂl

Address Book
Name
delete |Dagwood Yardley| p,pne B
delete |Da.nie1 Briere 1866 Crestwood Avenue Buffalo New York United States
delete |Lgnn Seckinger 77 West 15th Street San Bernadino California United States
delete | Maxim Afinegenov 887611 East Way Buffalo New York USA
delete | Phillip Edwa:ds\k 125 Lost Way White Plains New York United States

Create more contacts...

Done B 4
Figure 12-12 Editing a contact in the address book

éﬁ opensource-VM.fm Page 601 Monday, April 2, 2007 12:27 PM

*

EJB Integration—Seam m

Configuration

Our application’s configuration consists of two XML files: one for JSF and
another for persistence. As is typical for Seam applications, our JSF configura-
tion file contains no managed bean declarations—those have been transformed
into annotations. In fact, our JSF configuration file consists almost entirely of
navigation rules for navigating from one web page to another. The JSF configu-
ration file is so unremarkable that it deserves no further mention.

The persistence XML file is marginally more interesting:

<persistence>
<persistence-unit name="userDatabase">
<providersorg.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>
<property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2dd1.auto" value="create-drop"/>
</properties>
</persistence-unit>
</persistence>

In the preceding XML file, we declare our database intentions, including the
database name, data source, and Hibernate SQL dialect.

That is essentially all there is for configuration. For our implementation, we
used the JBoss embedded EJB server with Tomcat 5.5.

To understand the address book implementation, we start on the ground floor:
the database.

Entity Beans
We are storing contacts in a database, so we need an entity bean:

@Entity

@Name("contact")

@Scope(ScopeType.EVENT)

@Table(name="contacts")

pubTic class Contact implements Serializable {
private static final long serialVersionUID = 48L;
private String name, streetAddress, city;
private String state, country;

pubTic Contact(String name) {
this.name = name;
}

*@%

éﬁ opensource-VM.fm Page 602 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

public Contact() {}

@Id @NotNull @Length(min=5, max=25)
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

// Standard JavaBeans setters and getters for the
// remaining variables are ommitted.

public String toString() {
return "Contact(" + name + ")";
}
}

The annotations before the class declaration state that the Contact class repre-
sents an entity bean. We access that bean, named contact, in addContact. jsp:

<h:panelGrid columns="2">
<h:outputText value="Name"/>
<h:panelGroup>
<h:inputText id="name"
value="#{contact.name}"
size="20"/>
<h:message for="name"/>
</h:panelGroup>

<h:outputText value="Street Address"/>
<h:panelGroup>
<h:inputText id="streetAddress"
value="#{contact.streetAddress}"
size="25"/>
<h:message for="streetAddress"/>
</h:panelGroup>

<h:outputText value=""/>
<h:commandButton value="Add contact"
action="#{addressBook.addToBook}" />
<h:commandButton value="Cancel"
action="#{addressBook.cancel}"/>
</h:panelGrid>

*%

4~ 4

éﬁ opensource-VM.fm Page 603 Monday, April 2, 2007 12:27 PM A\E
EJB Integration—Seam m

By virtue of the annotations in the Contact class, when Seam first encounters the
name contact in a value expression, it creates an instance of com.corejsf.Contact
and places it in request scope (Seam refers to request scope as event scope). We
also specify the name of the database table—contacts—that corresponds to our
entity bean.

The @Id annotation designates the name property as the primary key for the
contacts table. The @NotNu11 and @Length annotations specify that the name property
cannot be nu11 and must contain between five and 25 characters.

EI NOTE: In the preceding code fragment, we used a total of seven annotations
to add persistence to a plain old Java object (POJO) and to transform it into a
JSF managed bean. In fact, we used three distinct types of annotations:

e EJB3
e JSF
¢ Hibernate validator framework

The @Entity, @Table, and @Id annotations are EJB3 annotations, whereas the
@ame and @Scope annotations are JSF-related. Finally, the @otNull and
@Length annotations are for the Hibernate validator framework, which can be
used with either Hibernate or EJB3.

EI NOTE: Seam performs validation at the model level, not the view level, as is
typical for JSF applications.

Stateful Session Beans

Now we have a relatively simple-minded entity bean that we can persist to the
database, so it is time to look at the class where the real action is: the stateful
session bean that harbors JSF action methods called from JSP pages. First, we
declare a local interface:

package com.corejsf;
import javax.ejb.local;

@Local

pubTic interface AddressBook {
pubTic String addToBook();
pubTic String delete();
public String beginEdit();

*@ﬁ

éﬁ opensource-VM.fm Page 604 Monday, April 2, 2007 12:27 PM

*

m Chapter 12 B Open Source

pubTic String edit();
pubTic void findContacts();
}

Next, we implement the stateful session bean:

// NOTE: this is not a complete Tisting. Parts of this class are purposely ommitted
// pending further discussion.

@Stateful

@Scope(ScopeType.SESSION)

@Name("addressBook")

public class AddressBookAction implements Serializable, AddressBook {
@In(required=false) private Contact contact;

@PersistenceContext(type= PersistenceContextType.EXTENDED)
private EntityManager em;

@IfInvalid(outcome=0utcome.REDISPLAY)
pubTic String addToBook() {
List existing = em.createQuery("select name from Contact where name=:name")
.setParameter("name", contact.getName())
.getResultLlist();

if (existing.size()==0) {
// save to the database if the contact doesn't
// already exist
em.persist(contact);

return "success";

}

else {
facesContext.addVMessage(null,

new FacesMessage("contact already exists"));

return null;

}

}

@Remove @estroy
pubTlic void destroy() {}
}

The @ame annotation specifies the name of a managed bean. We referenced that
addressBook bean from addressBook. jsp, listed on page 598. We use the @Scope anno-
tation to specify the addressBook bean’s scope.

*@%

4~ 4

éﬁ opensource-VM.fm Page 605 Monday, April 2, 2007 12:27 PM

*

EJB Integration—Seam m

With the @In annotation, we inject the contact instance, which means that Seam
will intercept all AddressBookAction method calls, and if a scoped variable named
contact exists, Seam will inject it into AddressBookAction’s contact property before
invoking the method. For the contact property, injection is not required; other-
wise, Seam would throw an exception for any method called when there was
no contact scoped variable for Seam to inject.

In the addToBook method, we use the E]B entity manager to save the contact to the
database. The addToBook method is called from addContact. jsp:

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Name"/>
<h:panelGroup>
<h:inputText id="name"
value="#{contact.name}"
size="20"/>
<h:message for="name"/>
</h:panelGroup>

<h:outputText value=""/>
<h:commandButton value="Add contact"
action="#{addressBook.addToBook}" />
</h:panelGrid>
</h:form>
</body>
</htm1>
</fiview>

Here is how the scenario unfolds: When you load addContact. jsp, Seam encoun-
ters the expression #{contact.name}. Since the contact bean is request-scoped (or
event-scoped in Seam-speak), Seam creates an instance of com. corejsf.Contact and
stores it in request scope under the name contact. Then Seam calls contact.get-
Name() to populate the name text field as the page loads. Subsequently, the contact
bean is available throughout the rest of the page.

When the user submits the form, assuming all submitted values pass valida-
tion, Seam invokes the corresonding setter methods for the contact object’s
properties and invokes addressBook.addToBook().

When Seam intercepts the call to addressBook.addToBook(), it first injects the value
of the request-scoped contact variable into the addressBook’s contact property; thus,
addToBook() has access to the contact entity bean, and from there it uses the EJB
entity manager to drive the changes home to the database.

*@%

4~ 4

éﬁ opensource-VM.fm Page 606 Monday, April 2, 2007 12:27 PM

m Chapter 12 B Open Source

EI NOTE: The address book has two EJBs: an entity bean representing a con-
tact and a stateful session bean. The contact entity beans are stored in the
database, whereas the stateful session bean contains JSF action methods
and maintains the list of contacts in the database. The stateful session bean
could just as easily have been implemented as a JavaBean. But we wanted
the convenience of database access in our JSF actions, so we opted for a
session bean, as is often the case for Seam applications.

JSF DataMode] Integration

Seam has built-in support for JSF tables. Once again, take a look at a severely
truncated listing of the contacts table in addressBook. jsp:

<h:dataTable value="#{contacts}"
var="currentContact"
styleClass="contacts"
rowClasses="contactsEvenRow, contactsOddRow">

</hdataTables

Now we revisit the stateful session bean, AddressBookAction, that we discussed in
“Stateful Session Beans” on page 603. In that discussion, we ommitted some
details, which we explore in the next couple of sections. Here, we look at the
@ataModel and @DataMode1Selection annotations and their corresponding proper-
ties. First, we discuss @ataMode]l:

pubTic class AddressBookAction implements Serializable, AddressBook {
@ataModel
@0ut(required=false)
private List<Contact> contacts;

@Factory("contacts")
pubTic void findContacts() {
contacts = em.createQuery("from Contact")
.getResultList();

}

When Seam comes across <h:dataTable value="#{contacts}"...>...</h:dataTable> in
addressBook. jsp, it looks for a scoped variable named contacts. If the contacts vari-
able does not exist, Seam creates it with a call to the variable’s factory method:
AddressBookAction.findContacts(). That method performs a database query to ensare

- e

éﬁ opensource-VM.fm Page 607 Monday, April 2, 2007 12:27 PM

*

EJB Integration—Seam 607

all the contacts in the database and stores the resulting list in the contacts vari-
able. At the end of the factory method call, Seam exports the contacts variable to
page scope, at the behest of the @0ut annotation.

As you can see from this example, Seam factory methods let you wire a JSF
component to a persistent object; in the preceding example, we wired a list of
contacts from the database to a JSF table.

Seam also has special support for handling table selections. In AddressBookAction,
we add a @ataModeSelection annotation:

public class AddressBookAction implements Serializable, AddressBook {
@DataModel
@0ut(required=false)
private List<Contact> contacts;

@DataModelSelection
@0ut(required=false, scope=ScopeType.CONVERSATION)
private Contact selectedContact;

@End

pubTlic String edit() {
em.persist(selectedContact);
contacts = em.createQuery("from Contact").getResultList();
return "edited";

// This method is called from addressBook.jsp.
pubTlic String delete() {
// Deletes the selected contact from the database
contacts. remove(selectedContact);
em. remove(selectedContact);
return "deleted";

}

When the user clicks a button or link from the contacts table, Seam injects

the selected contact into the AddressBookAction’s selectedContact variable before
entering the action method associated with the button or link. For example,
when the user clicks a “delete” button on the address book page, Seam invokes
AddressBookAction.delete(). But before it does, it injects the selected contact into
the AddressBookAction’s selectedContact variable. Interestingly, setter and getter

*@%

4~ 4

éﬁ opensource-VM.fm Page 608 Monday, April 2, 2007 12:27 PM

608

Chapter 12 B Open Source

methods are not required for the selectedContact variable—it is enough to declare
the variable and its annotation, and Seam takes care of the rest.

In addition to injecting the selectedContact variable, we also export (or outject, if
you must) it to conversation scope, so we can access it in editContact. jsp. Next, we
see what conversation scope is all about.

Conversation Scope

In web applications, we have request scope, which spans a single HTTP
request, and session scope, which sticks around indefinitely. Often, when
implementing a series of interactions, such as a wizard, for example, it would
be nice to have a scope in between request and session. In Seam, that’s conver-
sation scope.

When we delete a contact from the address book, it is a one-step process. The
user clicks a “delete” button, and Seam invokes AddressBookAction.delete(), as out-
lined in the previous section. Seam takes care to inject the selected contact
before making the call (this is discussed in “JSF DataModel Integration” on

page 606). The delete method deletes the contact from the database and updates
the list of contacts.

However, editing a contact is a two-step process. It starts when the user clicks
the link representing the contact’s name:

<h:dataTable value="#{contacts}" var="currentContact"
styleClass="contacts"
rowClasses="contactsEvenRow, contactsOddRow">
<h:column>
<h:commandButton value="delete"
action="#{addressBook.delete}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Name"/>
</f:facet>
<h:commandLink value="#{currentContact.name}"
action="#{addressBook.beginEdit}"/>
</h:coTumn>
</h:dataTable>

Seam invokes AddressBookAction.beginEdit(), once again injecting the selected con-
tact into the selectedContact variable before making the call. Here is how
beginEdit() is implemented:

éﬁ opensource-VM.fm Page 609 Monday, April 2, 2007 12:27 PM A\E
EJB Integration—Seam m

pubTic class AddressBookAction implements Serializable, AddressBook {

@ataModeTSeTection

@In(required=false)

@0ut(required=false, scope=ScopeType.CONVERSATION)
private Contact selectedContact;

@Begin public String beginEdit() {
return "edit";

}

@End public String edit() {
em.persist(selectedContact);
contacts = em.createQuery("from Contact").getResultList();
return "edited";

}

The beginkdit method is a JSF action method that returns a string outcome used
by JSF to navigate to the next view. That is unremarkable. What is remarkable
is the @Begin annotation, which signifies that beginEdit() starts a conversation.
When we leave beginEdit(), Seam exports the selectedContact to conversation
scope, where we subsequently access it in editContact.jsp.

The @End annotation, attached to the edit method, signifies the end of the con-
versation. When we exit that method, Seam removes the selectedContact from
conversation scope.

NOTE: We could have eschewed conversations and instead stored the
selected contact in session scope. In the edit method, we could have manu-
ally removed the selected contact from session scope, thereby creating a
psuedo-conversation scope. In fact, many developers have done just that
sort of thing; however, it is tedious and error prone. It is much more conve-
nient to let the framework take care of that bookeeping so you can concen-
trate on higher-level concerns.

