
Transportation Data Research Laboratory, Doc #2004021

Unified Transportation Sensor Data Format (UTSDF): Introduction

By Dr. Taek M. Kwon
Transportation Data Research Laboratories (TDRL)

Northland Advanced Transportation Systems Research Laboratories (NATSRL)
University of Minnesota Duluth

Feb, 2004

1. Introduction

Today’s transportation systems have been increasingly utilizing a wide range of sensors
to monitor, control, and analyze many parts of transportation system components. The sensor
usage has been further accelerated by the US DOT’s emphasis on Intelligent Transportation
Systems (ITS) technologies in recent years. On the other hand, while the usage of sensors has
increased, archiving (or saving) of the sensor data has not increased at the same rate [1]. In fact,
only a small fraction of sensor data from the today’s transportation systems has been archived.
For example, each intersection typically includes a number of vehicle detecting sensors to
optimize the timing of the traffic controller, but the data is rarely archived.

There are a number of reasons that archiving of transportation sensor data (TSD) has not
been eagerly pursued by transportation departments. First and the most influential factor is the
cost, i.e., while the cost of sensors is low, the cost of archiving their data is expensive. As a result,
archiving has been frequently unwelcome by maintenance engineers and managers. Second,
continuous flow of data from transportation sensors adds an additional burden to the management
of data and archiving. Sensors continuously generate data once they are activated, and the amount
of data can be quickly accumulated to a large amount. Moreover, all parts of the data acquisition
system must continuously work without faults. In effect, archiving often reveals the weakness or
reliability of the system, which sometimes is not a pleasant thing. For maintenance personnel,
archiving is an additional work but it can also lead to a substantial pressure because missing or
lost data can be a responsibility. Third, when data is collected from many different types of
sensors, which would be the case in Road Weather Information Systems (RWIS), management of
data is complicated. To date there exists no uniform and efficient data format that can be used for
archiving all types of sensor data. As a result, management of data from various sensors and data
acquisition systems developed by many different types of manufacturers is in itself a challenge.
For example, it requires a large amount of work to keep up with the data format differences and
modifications, incompatible file formats, version changes of software tools and operating
systems, etc. Therefore, acquisition, archiving, and maintenance of data from a large number of
sensors used in today’s transportation systems are often more difficult than what individual
sensor shows.

The next question is then “Why do we need archiving?” or “Do we really need
archiving?” The answer would depend upon the needs. However, if we assume that system
analysis (performance, reliability, etc.) is needed at some point in the future, archiving of data
would be a necessary part since analyzing a system without data is difficult and unreliable.
Therefore, the more important question on archiving is not in the need of or not, but in what
extent, i.e., which selected locations, what sensors, and how long the data should be archived. The
Unified Transportation Sensor Data Format (UTSDF) introduced in this documentation is an

 1

Transportation Data Research Laboratory, Doc #2004021

attempt towards making TSD collection and archiving simple and easy regardless of the number
of sensors, sensor types, and variability such as location change or removal.

Our main objective of developing UTSDF was to simplify the archiving task of TSD. An
important step in this process is to create a uniform and efficient data format that is simple and
independent of operating systems and programming languages. The users of transportation
sensors should only need to learn a single type of data format for archiving and for the use of the
archived data. Based on the UTSDF we also intend to build reliable data acquisition models and
efficient methodologies for archiving large-scaled TSD such as a statewide system.

At our Transportation Data Research Laboratory (TDRL), the need for the development
of UTSDF was born out of the needs in developing statewide archives of TSD that have
characteristics of large scaled data and variety of data types including non-numeric data. In
developing UTSDF, the following list was set as the objectives.

• A single unified data format for all types of transportation sensors

• Simple to understand and use

• Easy to manage

• Compatible with all types of computers, OS, and programming languages

• Easy to distribute or share large amount of data

• Compact, compressed form

• No or low cost in adopting the technology

• Fast and easy retrieval of a large amount of data from the archived data

• Adaptable for changes in sensor locations or configuration

• Inclusion of description of data (meta data)

This documentation describes the format of UTSDF and archiving methodologies that
could be applied for statewide TSD archives.

2. Assumption on Transportation Sensor Data (TSD)
We refer all types of sensors (electrical, magnetic, mechanical, optical, chemical, etc) that

are used in transportation systems as transportation sensors. Transportation sensors are typically
used in monitoring the state or conditions of a transportation system component and often placed
under the pavement or near the roadways. The digitized values or decision results of the sensor
state comprise the sensor data. We assumed that all sensor readings are obtained from a fixed
sampling rate, which would be the case for the most of the real-world TSD. For example, if traffic
counting was done at every 30-second interval, we expect 2,880 data points per day. We further
assume that the sampling rate is determined based on the sampling theorem, i.e. twice the
bandwidth (also called a Nyquist rate) of the original signal [2]. If sensor readings are sampled at
a Nyquist rate, the sampling theorem guarantees that the complete original signal can be
reconstructed from the sampled data [2]. Consequently, it is assumed that re-sampling is possible
from the reconstructed signal without loss of information.

Some sensors do not produce numerical values but descriptive conditions. For example,
pavement sensors produce pavement conditions such as wet, dry, ice, etc. As long as those
readings are recorded at a fixed rate, the data can be stored in UTSDF. A single sensor may

 2

Transportation Data Research Laboratory, Doc #2004021

produce multiple types of values. For example, a single inductive loop detector produces two
types of values, volume and occupancy. In order to differentiate between the sensor and values
produced, we refer each type of sensor values as parameter, i.e., volume and occupancy are
parameters of inductive loop detectors. These parameters are the final data (or variables) that are
stored as sensor values in UTSDF.

3. Basic UTSDF Archive File

 A single UTSDF archive file (or simply called UTSDF file) is a zip-compressed archive
file of many small data files called daylets (described in the Section 4). More specifically, a single
UTSDF file is created based on the time unit of a single day, in which it is a collection of daylets
from the same day and adheres the following name convention:

 yyyymmdd.Class_Name

where the date of the archived data is encoded as the file name with eight digits, i.e., yyyy is the
year, mm is the month, and dd is the day. The Class_Name is the name of the sensor class such as
RWIS, traffic, or WIM (Weigh-in-Motion). For example, an RWIS archive file on Feb 23, 2003
would have the name 20030223.rwis. Similarly, the traffic file on the same day would have the
name 20030223.traffic. As a result, when the archived files are viewed as a sorted list, it should
be in a chronological order. In general, different classes of the archived files are stored in separate
directories, and one year of complete RWIS or traffic archive would consist of 365 UTSDF files.
The structure of a single UTSDF file is illustrated as a block diagram in Figure 1. The size of a
daylet would depend on the type of parameters it stores and described in Section 4.

 Daylet n

 Daylet 3

 Daylet 2

 Daylet 1

Figure 1: UTSDF archive consisting of n daylets. The number of daylets in an archive file
would depend on the different types of parameters and the number of sensor locations.
 3

Transportation Data Research Laboratory, Doc #2004021

4. Daylets

 Daylets are the basic components of UTSDF file and contain the actual sensor data. The
name of each daylet is assigned based on the spatial information (i.e., location) and the parameter
type of the sensor, while the name of UTSDF file is assigned using the temporal information
(date) and the sensor class name. The reason behind the choice of this name convention is to
utilize the temporal and spatial properties of TSD, which are discussed in [3]. The basic name
format consists of several fields separated by dots and is shown below:

 SysID.SiteID.SensorID.ParaName

SysID: System ID. It is a unique number assigned for system characteristics such as a
manufacturer type.

SiteID: Site ID. It is a unique numeric number assigned to each site based on the
geographical location of sensor.

SensorID: Sensor ID. It is a unique number assigned for multiple sensors of identical
types within a site (same location). For example, if three pavement temperature
sensors are installed at a site, the sensors are assigned with SensorID, 0, 1, and 2.

 ParaName: Parameter Name. It is a shortened parameter name without any space. For
example, air temperature is shortened as “atemp” in this field. Please refer to
Appendix A and B for RWIS and traffic data.

 UTSDF itself does not define each field. The four-field name convention is provided as a
recommendation. It is the archive provider’s responsibility that each field is defined, documented,
and provided along with the archive. An example documentation of theses definitions are
provided in Appendix A and B based on the actual UTSDF archives of the Mn/DOT (Minnesota
Department of Transportation) RWIS and traffic data used in TDRL.

For illustration, the name convention of daylets for statewide RWIS used in Mn/DOT
data is used. Say, we wish to create a daylet for air temperature at System ID=330, Site ID=17,
and Sensor ID=0, then the daylet’s name would be assigned as “330.17.0.atemp”.
 If the statewide system consists of only one type of systems and no duplicated sensors
exist in a single site, the first three fields can be combined as a single field of site ID number, but
this will limit the flexibility and future extensibility. Again, a proper documentation must be
provided for the definition of the daylet’s name. At a minimum two fields must exist, i.e. the Site
ID and the Parameter Name to be qualified as UTSDF.

The content of daylet files is simply a long string of ASCII characters that represent a
single day data for the parameter it stores. Use of ASCII string provides excellent portability and
allows storage of both numeric and non-numeric data. Each datum within a daylet must have the
same length (the same number of characters per datum), so that the string length of a daylet is
always computed by the datum length multiplied by the number of data items in the daylet. If a
null datum exists, repetition of “N” characters for the allocated datum length is entered.
Repetition of the same characters for null data is later efficiently compressed by the compression
process. Since each datum has the same length, sampling period is precisely determined by
dividing 24 hours by the number of data entries in the daylet, or vice versa. For example, if wind
direction data is sampled at every 10 minutes and three digits are allocated for each datum to
represent an angle in clockwise degrees from north, then the total string length of the wind-
direction daylet would be 432 and it contains 144 data entries. Time stamp is not entered for each

 4

Transportation Data Research Laboratory, Doc #2004021

datum since we assume that all data is sampled at a fixed sampling rate within that day. We
assume that data can be always reconstructed from the sampled data and resampled to produce
data for any time of the day based on the sampling theorem [1]. For the negative numbers, a
single character “ – “ is used as a prefix, but positive numbers do not use any prefix character.

Example: Suppose that air temperature was sampled from a sensor for a single day with a 10
minute sampling period. The data collected from the sensor are degrees in Celsius and shown
below:

00:00 27.5
00:10 10.5
00:20 5.8
00:30 N/A ; missing data
00:40 0.5
 .
 .
 .
23:40 -13.5
23:50 -10.5
23:50 -5.5

Suppose that four digits are allocated for each datum representing a unit of one-tenth

degrees in Celsius. Then, the string for the above data is packed as an ASCII string by simply
concatenating four digit numbers in chronological order, i.e.,

 027501050058NNNN0005…-135-100-055
When this string is saved as a file with the predefined daylet name, it becomes the daylet for the
air temperature for the given date of the UTSDF file.

In the daylet ASCII string, it is important to notice that no line breaks, commas, or spaces
are used to separate the data. Such data separators are not needed, since we are using the same
number of ASCII characters for each datum within a daylet. One may concern about the increased
size of the data due to the use of ASCII string and fixed length. However, since the daylets are
later zip-compressed to an archive file, the size of the initial data should not be of concern.
According to our study, zip compression algorithm efficiently compresses the ASCII strings with
fixed data length. The size was often smaller than the zip-compressed result of the equivalent size
of binary data [3].
 One advantage of using daylets in archiving is that since each daylets are independent
each other in terms of storage, they can be easily added or removed without any modification in
overall data structure. For example, as more sensors are installed at new locations or removed
from old location, daylets can be simply added or removed. This parallelism with hardware
makes the overall management of the archive simple.

5. Log and missing information

 Each UTSDF archived file includes two special files. They are yyyymmdd.missing and
yyyymmdd.log files where yyyymmdd is the numerical values of the year, month, and day of the
archived date. The yyyymmdd.missing file includes the list of names of missing daylets (null data
for the entire day) on that day. The daylet list is separated by a comma.

The yyyymmdd.log file serves as meta data and includes information about the data in
the archive file. The format of this file is not defined except that ASCII characters should be used.

 5

Transportation Data Research Laboratory, Doc #2004021

The archive provider should supply the documentation on the *.log file where the detailed format
should be defined. Any information the user of the archive must know, should be stored in this
file such as the number of active sites, the sites in out of service, special events, etc.

6. Data Compression

A UTSDF archive file is simply a zip-compressed file of daylets. When a single UTSDF
file is uncompressed (unzipped), it should reproduce all of the original daylets that were
compressed into a single archive file. Since most unzip tools allow unzipping of a single or just
few files, daylets can be selectively retrieved from a UTSDF file.

Zip compression uses a compression algorithm referred to as the Deflate. Deflate
combines the LZ77 algorithm [4] for marking common sub-strings and Huffman coding [5] to
take an advantage of the different frequencies of occurrence of byte sequences in the file. Deflate
does have an important advantage in that it is not patented (no need to obtain licenses). Thus, it
is presently the most widely used file compression method. It is used in the WinZip™ freeware in
Windows™ and the gzip program in Unix, and the jar files in Java. The Deflate algorithm is also
a standard for the Internet IP payload compression (RFC 2394). Today, the term, zip or unzip, is
commonly used replacing the algorithm name Deflate. For programmers, free source codes are
available from Internet for zip and unzip. Also, many convenient commercial software tools, such
as dynaZip, Sax.net, Xceed, ComponentOne, etc., are available for embedding unzip or zip
function into application programs. At TDRL, a freeware WinZip™ and DynaZip™ utilities have
been used as the basic tool for compression and decompression.

7. Organization of Archive Directories

 The recommended organization of UTSDF archives is a hierarchical organization based
on a file directory structure. File directory structure (or system) has been successfully used in
storing all types of data since the beginning of the computer age and has proven very effective in
handling large complicated data. There are a number of benefits in using a file system as the
structure of archive organization. First, file system is such a familiar form to any computer users
that it is probably one of the easiest structures to understand and manage. Second, it is one of the
most stable and reliable parts of any computer operating system. Third, temporal, spatial, and
computational hierarchies of the TSD properties nicely fit into the hierarchical nature of the file
directory structure [3].
 The organization of archives should be based on clarity and efficiency in retrieval of the
data. We will consider organization of two types of common transportation sensor data, i.e.,
RWIS and traffic data. First, consider that we wish to build a statewide archive for traffic data.
Since the number of traffic detectors used in a state is such a huge number, it is convenient to
divide the data into districts to form a reasonable size of the archive files. Within each district, the
sensors can then be given unique ID numbers or can be organized using dot separated fields as
shown in Section 4. Each district directory is then further divided into year directories where
daily UTSDF archives are stored. This directory structure is simply and utilizes the division of
data that we are familiar with, which has benefits of clarity. This directory structure is illustrated
in Figure 2. In this case, if the district, year, date, and the detector ID number are known, the data
can be quickly searched. Notice that the spatial and temporal hierarchies of traffic data properties
are alternatively utilized in the directory tree.

Next, consider a statewide RWIS archive. Since the number of RWIS stations in a state is
typically less than 1,000 and the stations are centrally managed, dividing them into districts can
result in small fragmented archived files. The presence of too many fragmented archived files

 6

Transportation Data Research Laboratory, Doc #2004021

leads to lack of efficiency in sharing data. Therefore, it is more logical to organize the archive
directories into year directories as shown in Figure 2. In this case, each UTSDF archive file
would contain RWIS daylets for the entire state for a single day. TDRL presently uses this
organization to archive the Mn/DOT’s statewide RWIS data. However, if the number of stations
in a state were very large such as exceeding 5,000s, then dividing the directories into Districts
would be more sensible. Again, the overall structure utilizes temporal and spatial relations since
daylet’s names are organized based on spatial relations.

One important part of the UTSDF directory structure is the inclusion of /docs directory at
the next to the root level as shown in Figure 2. In the /docs directory, the archive provider should
include all documentations necessary to understand the archive. It helps the users of the archive
as well as the maintenance. The documentation could include daylet field name definitions, string
length allocated for each parameter, basic units, sensor locations, sensor manufacturer
information, maintenance history, addition or removal of sensors, etc. Inclusion of the /docs
directory follows the sprit of the inclusion of a log file inside the daily UTSDF archive file, i.e.,
description of the data is provided at multiple levels, directory level and daylet level.

Traffic

District 1
District 2

District P

District i
 …

 …

Year 1
Year 2

Year M

Year i
 …

 …

Day1.traffic

RWIS

Year 1
Year 2

Year M

Year i
 …

 …

Day1.rwi
Day2.rwi

DayN.rwis

 …
 …

 …

docs

docs

DayN.traffic

Day2.traffic

 …
 …

 …

Figure 2: Directory structure of statewide UTSDF archives: RWIS and traffic data
example

 7

Transportation Data Research Laboratory, Doc #2004021

8. More Complex Structure of UTSDF: Monthlets and Yearlets

 Until now, we only discussed archiving of raw sensor data in which daily operation of
archiving is assumed, where daylets are utilized. However, we frequently need processed data
such as Average Annual Daily Traffic (AADT) or daily average/low/high of pavement
temperatures. For those processed data, expressing the data in a larger time scale is necessary
such as a year rather than a single day. These types of needs can be met using monthlets and
yearlets, which are similar to daylets except that they contain a whole month of data or a whole
year of data.

Unlike daylets, monthlets and yearlets would require multiple parameters in a single file.
For example, a yearlet storing daily average/low/high air temperatures for the entire year requires
three parameters. In such a case, the yearlet should contain three strings one for average, one for
low, and one for high air temperatures. Each string should follow the same principle used in
daylets, i.e., fixed length for each datum. Each string should be separated by a pair of carriage
return and line feed ASCII characters for distinction. Figure 3 illustrates a yearlet with three
strings.

String for daily high air temperature

String for daily low air temperature

Yearlet containing avg/low/high air temperature string

String for daily average air temperature

Figure 3: Yearlet example of daily avg/low/high
temperature for the entire year.

 In reference [3], we described a computational hierarchy in which processed data can be
organized and archived as a hierarchical directory structure. In a very large system such as a
statewide network of sensors, archiving processed data for sharing is considered highly
beneficial. Examples include AADT or daily average of RWIS parameters. For developing a
directory structure for processed data, we recommend to follow the structure of the examples
given in Figure 2. More specifically, additional root directory can be created for the
computational hierarchies for each class of data. In the above example, we could create one
directory for processed RWIS data and another directory for processed traffic data. The children
directories of the computational hierarchy would depend on the type of computation and
outcome, so it would require a development of subdirectories for the specific needs.

9. Binary UTSDF

 In a standard UTSDF, all of the sensor data in daylets, monthlets, and yearlets are stored
using ASCII characters. However, if the data consists of only numerical values and fixed sizes,
binaries could be used instead of ASCII characters. When the data in daylets are stored in binary
form, we refer the archive as binary UTSDF. In general, we do not recommend binary UTSDF

 8

Transportation Data Research Laboratory, Doc #2004021

since they are less portable between different operating systems and programming languages.
Binary data can create a compatibility problem of byte orders known as Little-Endian and Big-
Endian as well as the size definition in integers and floating points. Since the benefits of using
binary for a smaller file size is diminished after zip-compression as demonstrated in [3], binary
UTSDF is not recommended for archiving TSD.

10. Conclusion

 We presented UTSDF in this introductory documentation. UTSDF was developed for
archiving a very large set of transportation sensor data that include many different types of
sensors. It is a simple and easy to use, and can be used in developing well-organized large
archives. It is our hope that UTSDF is adopted in other states so that transportation sensor data
can be easily archived and shared. At TDRL, we are continuously working on developing data
visualization and analysis tools for UTSDF data we are providing. These software tools are
presently distributed through http://www.d.umn.edu/~tkwon/TDRLSoftware/Download.html or
links from http://tdrl1.d.umn.edu/services.htm.

References

1. U.S. DOT ITS, Archived Data User Service (ADUS), “ITS Data Archiving: Five-Year
Program Description,” March 2000, Published by U.S. DOT, ADUS Program.

2. Alan V. Oppenheim, Alan S. Willsky, Ian T. Young, Signals and Systems, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1983.

3. T.M. Kwon and N. Dhruv, “Unified Transportation Sensor Data Format (UTSDF) for
Efficient Archiving and Sharing of Statewide Transportation Sensor Data,” Proc. of the
Transportation Research Board 83nd Annual Meeting, Washington D.C., Jan. 2004.

4. Ziv J. and Lempel A., "A Universal Algorithm for Sequential Data Compression", IEEE
Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343.

5. Huffman, D. A., "A Method for the Construction of Minimum Redundancy Codes",
Proceedings of the Institute of Radio Engineers, September 1952, Volume 40, Number 9, pp.
1098-1101.

 9

http://www.d.umn.edu/~tkwon/TDRLSoftware/Download.html
http://tdrl1.d.umn.edu/services.htm

Transportation Data Research Laboratory, Doc #2004021

Appendix A: RWIS Daylet Definitions
Table A.1 Parameter Definitions

Index Parameter File extension Digits Values
Atmospheric Parameters
0 Air Temp atemp 4 Tenths of degree Celsius
1 Dew Temp dtemp 4 Tenths of degree Celsius
2 RH relhum 2 Percent, 100=PP
3 Wind Speed Avg. avgspd 4 Tenths of meters/sec
4 Wind Spd Gust gstspd 4 Tenths of meters/sec
5 Wind Direction Avg. avgdir 3 Clockwise degrees from North
6 Wind Direction Max. maxdir 3 Clockwise degrees from North
7 Precip Intensity pinten 1 See Table A.2*
8 Precip Type ptype 1 See Table A.3*
9 Visibility visib 5 Tenths of meter
10 Air Pressure apress 5 Tenths of millibar
11 Precip Rate prate 3 Tenths of Cm/hr.
12 Precip Accum paccum 4 Tenths Cm over 24 hr starting at

Midnight local time
13 10 min Solar 10msol 5 Tenths Joule/sq. meter
14 24 hr Solar 24hsol 6 Tenths Joule/sq. meter
15 24 hr Sun 24hsun 4 Minutes over 24hr
16 Air Temp Max amaxtemp 4 Tenths of degree Celsius
17 Air Temp Min amintemp 4 Tenths of degree Celsius
18 Wet Bulb Temp Wbtemp 4 Tenths of degree Celsius
19 Last Precip start Pstart 14 yyyymmddHHMMSS
20 Last Precip end Pend 14 yyyymmddHHMMSS
21 1 hr Precip Accum 1hpaccum 4 Tenths Cm
22 3 hr Precip Accum 3hpaccum 4 Tenths Cm
23 6 hr Precip Accum 6hpaccum 4 Tenths Cm
24 12 hr Precip Accum 12hpaccum 4 Tenths Cm
25 24 hr Precip Accum 24hpaccum 4 Tenths Cm
Surface Parameters

0 Surface condition surcond 1 See Table A.4*
1 Surface Temp surtemp 4 Tenths of degree Celsius
2 Freeze Temp frztemp 4 Tenths of degree Celsius
3 Chemical Pct. chmpct 2 Percent, 100=PP
4 Depth dpth 3 Hundredth of millimeter
5 Ice Pct. Icepct 2 Percent, 100=PP
6 Salinity Salin 5 Parts/100,000
7 Conductivity Conduc 4 Mhos

Sub-Surface Parameters
0 Surface Sensor Id surid 2 Integer
1 Subsurface temp subtemp 4 Tenths of degree Celsius
2 Subsurface moisture submoist 2 Percent
3 Delta-t delta 5 Picoseconds

 10

Transportation Data Research Laboratory, Doc #2004021

Table A.2 Precipitation Intensity
Classification Code
None 0
Light 1
Slight 2
Moderate 3
Heavy 4
Other 5
Unknown 6
Anything else 7

Table A.3 Precipitation Type Table A.4 Surface Condition

Classification Code
None 0
Yes 1
Rain 2
Snow 3
Mixed 4
Light 5
Light Freezing 6
Freezing Rain 7
Sleet 8
Hail 9
Frozen A
Unidentified B
Unknown C
Other D
Anything else E

Classification Code
Dry 0
Wet 1
Chemically Wet 2

Snow/Ice Watch 3
Snow/Ice Warning 4
Damp 5
Frost 6
Wet Above Freezing 7
Wet Below Freezing 8
Absorption 9
Absorption at Dewpoint A
Dew B
Black Ice Warning C
Other Slush D

Daylet field definition:

SysID.SiteID.SensorID.ParaName

SysID: A unique number assigned for the system characteristics of the RWIS stations based on
manufacturer or specially categorized group.

SiteID: A unique numeric number assigned to each site based on geographical location.
SensorID: A unique number assigned within multiple sensors of identical types in a site. For

example, if three pavement temperature sensors are installed at a site, the sensors are
assigned with SensorID, 0, 1, and 2.

 ParaName: Shortened parameter name described in Table A.1

 11

Transportation Data Research Laboratory, Doc #2004021

Appendix B: Traffic Daylet Definitions

Table B: Traffic daylet definitions and parameters
Index Parameter File Extension Digits Values
1 30sec volume v30s 2 Veh counts/30 sec
2 30sec occupancy o30s 3 Tenths of percent, 100.0=PPP
3 30sec speed s30s 3 Tenths of Miles/hr
4 1min volume v1m 2 Veh counts/1min
5 1min occupancy o1m 3 Tenths of percent, 100.0=PPP
6 1min speed s1m 2 Tenths of Miles/hr
7 5min volume v5m 3 Veh counts/5min
8 5min occupancy o5m 3 Thenths of percent, 100.0=PPP
9 5min speed s5m 3 Tenths of Miles/hr
10 1hr volume v1h 4 Veh counts/1hr
11 1hr occupancy o1h 3 Thenths of percent, 100.0=PPP
12 1hr speed s1h 3 Tenths of Miles/hr

 12

