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1 Number System (Lecture 1 and 2 supplement) 
 
By Dr. Taek Kwon 
 
Many different number systems perhaps from the prehistoric era have been developed and 
evolved. Among them, binary number system is one of the simplest and effective number 
systems, and has been extensively used in digital systems. Studying number systems can help you 
understand the basic computing processes by digital systems. 
 
 
1.1 Positional Number Systems 
 
A good example of positional number system is the decimal number system in which we use 
them almost everywhere number is needed. Another example is the binary system that is used as 
the basic number system for all computers. In positional number systems, a number is represented 
by a string of digits where the position of each digit is associated with a weight. In general, a 
positional number is expressed as: 
 
    
d d d d d d dm m n− − − − −⋅ ⋅ ⋅ ⋅ ⋅ ⋅1 2 1 0 1 2.  
 
       
where dm−1  is referred to as the most significant digit (MSD) and d n−  as the least significant digit 
(LSD). Each digit position has an associated weight bi  where b is called the base or radix. The 
point in the middle is referred to as a radix point and is used to separate the integer and fractional 
part of a number. Integer part is in the left side of the radix point; fraction part is in the right side 
of the radix point. Fraction is a portion of magnitude of a number which is less than unit (e.g. 
fraction < 1) and thus it is called a fraction. Let D denote the value (or magnitude) of a positional 
number, then D can be always calculated by: 
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Example 1.1.1: Find the magnitude of 245.378 
 

 
D = ⋅ + ⋅ + ⋅ + ⋅ + ⋅

=

− −2 8 4 8 5 8 3 8 7 8
165484375

2 1 0 1 2

10.  
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A binary (base=2) number system is a special case of the positional number system in which the 
allowable digits are 0 and 1 that are called “bits”. The leftmost digit of a binary number is called 
the most significant bit (MSB) and the rightmost is called the least significant bit (LSB). Because 
the base of binary numbers is two, bit bi   is associated with weight 2i . 
 
 
Example 1.1.2: Magnitude of Binary number 
   
   
11010010 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22

7 6 5 4 3 2 1 0= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅  
  

 
11010011 1 2 1 2 0 2 1 2 0 2 0 2 1 2 1 22

3 2 1 0 1 2 3 4. = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅− − − −
 

 
If the base of a number system is larger than ten, the digits exceeding 9 are expressed using 
alphabet letters as a convention. For example, hexadecimal number system uses 1-9 and A-F; 
base-32 number system uses 1-9 and A-V. This example is shown in Table 1. One may then 
wonder how large-base number systems such as a base-64 are expressed. Fortunately, we rarely 
use such a high-base number system because we find no real advantages of using them in 
applications. Moreover, we can always convert them from any high-base number system to a 
lower base number system, which is the subject of the next section. 
 
 
1.2 Conversion between 2k  bases 
 
Number systems with 2k  bases have an interesting property in that the conversion between them 
can be achieved without the computation of Eq. (1). Such number systems include binary, octal, 
hex, and base-32 number systems. Note that since these number systems possess base 2k , all 
numbers within these systems can be uniquely represented by k binary bits. For example, octal 
numbers can be represented by three bits; hex numbers can be represented by four bits, etc. This 
relation allows us to easily convert between them by simply grouping their binary representation 
with k bits. Two examples are given in Example 1.2.1. 
        
Since the binary representation of 2k  base numbers can be directly associated by simple grouping 
of k digits, the conversion from octal to hex or vice versa can be easily achieved through 
intermediate step of binary conversion. Example 1.2.2 illustrates this conversion step. 
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 Table 1.  Decimal, binary, hexadecimal, and base-32 Number Systems  
 

Decimal Binary Octal Hexadecimal Base-32 
0 00000 0 0 0 
1 00001 1 1 1 
2 00010 2 2 2 
3 00011 3 3 3 
4 00100 4 4 4 
5 00101 5 5 5 
6 00110 6 6 6 
7 00111 7 7 7 
8 01000 10 8 8 
9 01001 11 9 9 
10 01010 12 A A 
11 01011 13 B B 
12 01100 14 C C 
13 01101 15 D D 
14 01110 16 E E 
15 01111 17 F F 
16 10000 20 10 G 
17 10001 21 11 H 
18 10010 22 12 I 
19 10011 23 13 J 
20 10100 24 14 K 
21 10101 25 15 L 
22 10110 26 16 M 
23 10111 27 17 N 
24 11000 30 18 O 
25 11001 31 19 P 
26 11010 32 1A Q 
27 11011 33 1B R 
28 11100 34 1C S 
29 11101 35 1D T 
30 11110 36 1E U 
31 11111 37 1F V 
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11010010.10110 011010010.101100 322.54
11010010.1011 2.D B

= =

= =

Example 1.2.1: Binary to hexadecimal or octal conversion 
  

 

���

��

110101102 0110101102 3268

110101102 616

= =

= = D  

 

 
 

 
 
Example 1.2.2: Octal to hexadecimal or vice versa      

 
���

�

2738 0101110112

101110112
16

=

=

=

���

BB
 

⇒

 

We have seen that the conversion between numbers with power of  radix 2 can be readily 
achieved through binary expression and regrouping of bits.  This convenience led to utilization of 
hexadecimal (or octal) numbers in representing binary numbers for many computer architecture 
related issues. For example, the instruction LDAA (Load Accumulator A) of 68HC11 is encoded 
as the binary number 100001102 , but for convenience of writing and reading it is usually 
expressed in hexadecimal 8616 , from which we save time and spaces. Very often, hexadecimal, 
octal, and binary numbers are interchangeably used in the computer architecture or 
microprocessor related fields. 
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1.3 General Positional Number System Conversion 
 
This section discusses conversion of numbers from any base to any other base. Due to our 
familiarity and representation of decimal, a convenient way of base-conversion is conversion 
through the use of decimal. That is, for the conversion from base-k to base-p, we first convert a 
base-k number to a decimal, and then convert the decimal to a base-p number. 
 
Using Eq. (1) we can easily convert from any base to decimal by simply expressing the digits and 
weights using decimal as shown in Example 1.3.1. Therefore, this is the simple case. 
 
 
Example 1.3.1: Base-k to decimal conversion 
 

1 816 1 163 11 162 14 161 8 160 714410
437 58 4 82 3 81 7 80 5 8 1 287 62510

bE

. .

= ⋅ + ⋅ + ⋅ + ⋅ =

= ⋅ + ⋅ + ⋅ + ⋅ − =
 

 
 
When a decimal number is converted to a base-p number system, thing get little bit more 
complicated. This process usually requires more computation. Let a general position number be 
denoted as an addition of integer and fractional part: 
 
 
    
D I F= + .         (2) 
    
Then, with some manipulation we can express the integer part as  
   
I d b d b b d b dp p= ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ +− −(( (( ) ) ) )1 2 1 0   (3) 
 
 
Although this formula looks complicated at a first glance, its structure is exactly the same as the 
integer part of Eq. (2) except that the weights bk  is now expressed as b b bk1 2 ⋅ ⋅ ⋅ . Example 1.3.2 
illustrates conversion of a decimal number  5432

10  into the form given by Eq. (3). 
 
 
 Example 1.3.2: Integer expressions of positional numbers 

 
5410 5 10 4

54310 5 10 4 10 3
543210 5 10 4 10 3 10 2

= ⋅ +

= ⋅ + ⋅ +

= ⋅ + + ⋅ +

( )
(( ) )
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From Example 1.3.2, notice that if the last expression is divided by 10 the remainder is the least 
significant digit 2 and the quotient is (( ) )5 10 4 10 3⋅ + ⋅ + .  The next significant digit can be 
obtained by dividing 53510  again by 10. Due to this relation, the conversion to an arbitrary base 
number can be obtained by repeated division of quotient and collection of remainders. A simple 
hand-calculation method can be devised using the above relation. Let's express the integer 
division by the following form. 

 
    Divisor )Dividend 
                                Quotient............Remainder 
 
Using this expression, Example 1.3.3  shows conversion from a decimal to a binary.   
 
 Example 1.3.3: Convert 17910  to a binary. 
 
    2 )179 
    2  )89  .....1   LSB 
    2  )44  .....1 
    2  )22  .....0 
    2  )11  .....0 
    2  )5    .....1     
    2  )2    .....1 
        1    .....0 
     MSB 
 
The final conversion result reads 

17910 101100112= .  
It should be noted that the above method can be extended to conversion of any other base. For 
example, consider that we wish to convert a hexadecimal number to a base-5 number. Then, the 
base-5 number can be directly converted by repeated division by 5 and collecting remainders. 
However, this direct division means, you must divide the base-16 number by 5, which is not 
simple because we are only used to decimal numbers. Thus, it is essentially wise to first convert 
the hexadecimal to a decimal, and then convert it to base-5. 
 
Similarly to the expression of integer part in Eq. (3), the fractional part can be written in the 
following form: 
 
   
F d d b d b b bn= + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− −

−
−

− − −( ( ( ) ) )1 2
1 1 1 1    (4) 

 
Note that multiplying b to F in Eq. (4) produces d−1  as a part of the product. This representation 
of number system is illustrated using Example 1.3.3. 
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Example 1.3.3: Fraction expression of positional numbers  
 

012 1 2 10 10
0123 1 2 3 10 10 10

01234 1 2 3 4 10 10 10 10

0 1 15 1 16 16
0 1 15 1 10 16 16 16

0 1 15 1 10 12 16 16 16 16

10
1 1

10
1 1 1

10
1 1 1 1

16
1 1

16
1 1 1

16
1 1 1 1

. ( )
. ( ( ) )

. ( ( ( ) ) )

. ( )
. ( ) )

. ( ( ) ) )

= + ⋅
= + + ⋅
= + + + ⋅

= + ⋅
= + + ⋅
= + + + ⋅

− −

− − −

− − − −

− −

− − −

− − − −

F
F A
F AC

 

 
Due to the structure described above, a fractional number expressed by decimal can be converted 
into a base “b” number by collecting the integer part from left to right after each multiplication by 
b, i.e., see Example 1.3.4. 
 
Example 1.3.4: Convert a decimal number 0.625 to binary. 
 
  0.625   0.250   0.5 
  × 2   × 2   × 2 
  ____    ____    ______ 
  1.250   0.5   1.0 
   

d− =1 1            d− =2 0             d− =3 1    
 
Thus, 

0 62510 01012. .=  
 
One should be careful to note that a closed form fraction in one number system does not always 
lead to a closed form in other number system. This case is illustrated in Example 1.3.4. 
 
 Example 1.3.4: Decimal to base-x conversion: Convert 0 710.  to a binary. 
 0.7  0.4  0.8  0.6  0.2  0.4 
 x 2  x 2  x 2  x 2  x 2  x 2 
 ___  ___  ___  ___  ___  ___ 
 1.4  0.8  1.6  1.2  0.4  0.8 
  
d− =1 1 d− =2 0  d− =3 1  d− =4 1   d− =5 0  d− =6 0  
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Thus, 
0 7 0101100110011010 2. .= ⋅ ⋅ ⋅  

 
This example implies that the base conversion of fractional part can introduce errors by the 
conversion process itself.  If a fractional has a repeating pattern, it is a repeating fraction. If a 
fractional part does not repeat but goes forever, it is called an irrational number. 
 
1.4 Negative Numbers 
 
1.4.1 Signed Magnitude Number System 
 
Negative numbers can be represented in many ways. In our daily transactions, a signed 
magnitude system is used, where a number consists of a magnitude and a symbol indicating 
whether the magnitude is positive or negative.  For example, 
 

− + + −57 98 10001267 34534510 10 10 10, , . , . .  
 
In the above example, the symbols “+” and “-“ were used to represent the sign of a number. An 
alternative is to use an extra digit to represent positive and negative instead of introducing a new 
symbol. This technique is frequently used in the binary number system, e.g., bit “1" is appended 
at MSB to represent negative and bit ``0'' appended for positive. Example 1.4.1 illustrates this 
relation by 8-bit numbers with 7-bit magnitude and one sign-bit, which is called signed 
magnitude binary numbers. 
 
 Example 1.4.1: Examples of signed magnitude binary numbers 
 

00101101 2
10101100 2
01111111 7
11111111 7

16

16

16

16

= +
= −
= +
= −

D
D
F
F

 

 
          sign bit 
 
 
 
 
 
1.4.2 Complement Number System 
 
In the complement number system, a negative number is determined by taking its complement as 
defined by the system. Radix complement and diminished-radix complement are the two basic 
methods in this system. 
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i) Radix complement: The complement of an n-digit number is obtained by subtracting it from  
bn .  See Example 1.4.2 
 
 
 Example 1.4.2: Radix complements 
 

                      10's complement:1849 10000 1849 815110 10 10 10⇒ − =  
8's complement:1547 10000 1547 62318 8 8 8⇒ − =  
4's complement: 1320 10000 1320 20204 4 4 4⇒ − =  
2's complement:1010 10000 1010 01102 2 2 2⇒ − =  

 
As in the above example, direct subtraction from bn  is inconvenient or at least cumbersome to 
calculate because of borrows. A simpler and easier way is derived by modifying the subtraction 
as: 
 
b D b Dn n− = − − +( )1 1 
 
Notice that bn − 1  has the form that all digits are the highest digits in the number system. For 
example, in decimal 10 1 999910

4
10− = , in octal 10000 1 77778 8− = , in binary 

10000 1 11112 2− = , etc. This means that  the computation never needs borrow, so it makes the 
radix computation easier. 
 
 ii) Diminished-Radix complement:  
 
The complement of an n-digit number D is obtained by substituting it from bn − 1 . This can be 
accomplished by complementing the individual digits of D without adding 1. 
 
 Example 1.4.3: 9's complement  
In decimal, the diminished-radix complement is called the 9's complement because the 
complement is obtained by independently subtracting each digit from 9. 
 

Complement of 1849 9999 1849 8150 184910 10 10 10 10⇒ − = = −   
Complement of 7932 9999 7932 2067 793210 10 10 10 10⇒ − = = −   
Complement of 0007 9999 0007 9992 000710 10 10 10 10⇒ − = = −   

 
 Example 1.4.4: 1's complement  
Similarly to the decimal case, the diminished-radix complement of a binary number is called 1's 
complement because the complement is obtained by subtracting each digit from 1. 
 

Complement of 1011 1111 1011 0100 10112 2 2 2 2⇒ − = = −   
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Complement of 0101 1111 0101 1010 01012 2 2 2 2⇒ − = = −   
Complement of 0000 1111 0000 1111 00002 2 2 2 2⇒ − = = −  

 
Note from Example 1.4.4 that 1's complement is simply obtained by inverting each digit, i.e.  
1 0→  and 0 1→ .  Thus, the main advantage of 1's-complement system is its simplicity of 
conversion and the symmetry of complements. However, this symmetry causes the existence of 
two zeros, i.e., a positive zero 00 00⋅ ⋅ ⋅  and a negative zero 11 11⋅ ⋅ ⋅ .  Hence implementing 
addition of 1's complement numbers to a digital computer system leads to significant inefficiency 
because the system must check for both representations of zeros or it must convert one to another 
zero.  This is the main reason why 2's complement number system is used for all of today's digital 
computers, which has a unique zero ( 00 00⋅ ⋅ ⋅ ). Observe the differences between the different 
sign systems from Table 2. 
 
 
Table 2.  4-bit Numbers in Different Signed Systems 
 

Decimal 2's 
Complement 

1's 
complement 

Signed 
Magnitude 

-8 1000 - - 
-7 1001 1000 1111 
-6 1010 1001 1110 
-5 1011 1010 1101 
-4 1100 1011 1100 
-3 1101 1100 1011 
-2 1110 1101 1010 
-1 1111 1110 1001 
0 0000 1111 or 0000 1000 or 0000 
1 0001 0001 0001 
2 0010 0010 0010 
3 0011 0011 0011 
4 0100 0100 0100 
5 0101 0101 0101 
6 0110 0110 0110 
7 0111 0111 0111 
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1.5 Signed Addition/Subtraction  
 
In signed computation, subtraction is achieved by adding the negated (i.e. complemented) 
subtrahend to the minuend.  In hardware implementation this means that computers need only 
adders but not subtractors, which would be the main advantage of using signed number systems.  
Of course the flexibility of using negative numbers provides convenience in other computational 
applications such as multiplication and division.  Another important aspect of addition/subtraction 
in computer systems is the overflow errors, which are caused by the limited bit-width of the data 
path in a computer.  A detailed treatment of overflow conditions is discussed in this section. 
 
 
1.5.1 Signed Overflow  
 
If an addition or a subtraction produces a result that exceeds the range of the number system (the 
data width allocated to the result), overflow is said to occur.  Overflow is essentially an error 
condition that requires a special treatment in order to make the current result valid.  A simple rule 
exists for detecting overflow.  Addition of two numbers with different signs can never produce 
overflow, but addition of two numbers of like sign can.  This simple rule can be used for screening 
the candidates of overflow condition. As the next step one of the following two rules can be 
applied, if the two addends have the same sign. 
 
1. An addition (same if subtraction is done by adding the complemented number) overflows 
if the signs of the addends are the same and the sign of the sum is different from the 
addends' sign. 
2. An addition overflows if the carry bits into and out of the sign position are different. 
 
The overflow detection rule is often built into a piece of hardware called an arithmetic logic unit 
(ALU) inside the computer.  The status register of ALU almost always includes a bit called the 
overflow-bit which indicates detection of an overflow condition whenever it is set. The following 
example illustrates overflowed computation for 4-bit arithmetic.  Keep in mind that the range of 
4-bit number can represent is from -8 to +7.  Exceeding this range causes the overflow. 
 
 Example 1.5.1: Overflow examples in 4-bit computation  
 
     
    ( )−310            11012   ( )+ 510      01012  

+ −( )610  + 10102   + ( )610    + 01102  

________ ________  ________ ________ 
    − 910     101112   + 1110               10102  
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    ( )−810      11012      ( )+ 710             01112  

+ −( )810  + 10102   + +( )710  + 01112  

________ ________   ________ ________ 
    − 1610    100002   + 1410          11102  

 
All of the examples given in Example 1.5.1 have the overflow error condition. What that means is 
that you cannot compute the given numbers with only four bits. You need more bit positions, if 
you wish to correct the error. 
 
1.5.2  Signed subtraction  
 
Signed subtraction in most computers is done by taking 2's complement of the subtrahend and 
then adding it to the minuend following the normal rules of addition.   Overflow condition must 
be checked after the addition in order to obtain the correct computational result.  If no overflow 
condition is detected, the correct answer of the subtraction is obtained from the result by simply 
discarding the carry-out bit of the MSB if a carry-out bit exists.  If an overflow condition is 
detected, there are two ways of dealing with this error.  The first approach is simply reporting an 
error message that indicates the overflow condition.  Most computers use this approach and leave 
the responsibility of handling the error to the user.  The second approach is modifying the result 
to a correct one by allocating more bits to the addends.  Whenever an overflow occurs, only one 
more bit extension to operands is needed to express the overflowed number.  However, due to the 
fixed data width of computers, the data width is usually extended twice of the data width, i.e., if a 
single precision computation is overflowed, a double precision (twice the data width) is used to 
correct the error. 
 
Example 1.5.2:  Signed subtraction with no overflow  
Compute 0100 - 0011=?   
 
   Step 1) Compute the 2's complement of 0011, i.e., 1100 + 1 = 1101 
   Step 2) Add the complemented number to the minuend:  
      0100 
              +1101 
                10001  
  Step 3) Check overflow.  Since the signs of the addends are different, there is no 

overflow. Simply discard the MSB carry-out bit and the correct answer of this 
computation is 0001.      

        
Example 1.5.3:  Signed subtraction with overflow and the correction 
 Compute 0110 - 1101 = ? 
 
  Step 1) Compute the 2's complement of 1101, i.e., 0010 + 1 = 0011 
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  Step 2) Add the complemented number 0011 to the minuend:  
 
   0110  
            + 0011  
   1001     
            Step 3) Check overflow.  Since the sign of sum is different from the sign of addends, 

overflow has occurred. Therefore, the computational result 1001 is incorrect. 
Report an overflow error message.  

 
  
If one wishes to obtain a correct answer instead of just giving an overflow error message, one can 
redo the operation by allocating extended bits to operands. In this example, we shall extend the 
computation to a double-precision (8-bit in this case) arithmetic.  That is, compute 
00000110 - 11111101 = ?.  Notice that the positive number is extended by appending 0's, while 
the negative number is extended by appending 1's to the MSB of the number. This is because we 
must preserve the sign and magnitude of the original number when bits are extended. Below 
shows the double precision computation. 
 
 Step 1) Compute the 2's complement of 11111101 : 00000010 + 1 = 00000011 
  Step 2) Add the complemented number to the minuend:  
 
    00000110   
              +00000011   
          00001001     
     
  Step 3) Overflow check. Since the sum and addends are the same, no overflow error was 

observed. Therefore, the correct answer is 00001001.    
 
 
In Example 1.5.3, the correct result was obtained by extending the operands to double precision 
and by recalculating them after detecting an overflow condition.  In reality, this recalculation is 
not necessary. The result of operation can be corrected by recognizing the signs of two addends  
(i.e., Step 2)).  Since the two addends are both positive, the correct answer is obtained by 
appending zeros to the MSB side until all the extended bits are filled.  If both addends are 
negative, the correct answer is obtained by appending ones to the MSB side until all the extended 
bits are filled. An example for this case is illustrated in Example 1.5.4. 
  
 
Example 1.5.4:  Signed subtraction with overflow correction 
 
Compute 1101 - 0111 = ? 
 
  Step 1) Compute the 2's complement of 0111 : 1000 + 1 = 1001 
   Step 2) Add the complemented number to the minuend:  
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    1101 
  +1001        
  10110    →  Overflow Error. 
 
 
    Since the final two addends are negative, the correct result is obtained by appending four ones 
to the MSB side. Therefore, the correct answer is 11110110.                                                                                               
   
           
1.6 Unsigned Addition/Subtraction  
 
In an unsigned number system, all numbers are considered positive.  For instance, four bits in 
binary represent positive numbers from 010  to 1510 .  This approach uses the single bit assigned 
for sign representation as a part of the magnitude, and thus twice the magnitude of the signed 
representation is achieved. 
  
 
 1.6.1 Unsigned Addition 
 
Since all numbers are positive in unsigned numbers, the two addends are always positive.  Hence, 
an unsigned overflow condition occurs only if the computation produces a carry-out at the MSB 
of the allocated bit. The computation must be carried out using normal addition rules, but if an 
unsigned-overflow condition is detected, the correct answer is obtained by simply appending 
zeros to the MSB side of the extended bits. 
 
 
 
 Example 1.6.1:  Unsigned addition 
 Compute 1100 + 1001 
         1101 
  +1001 

 10110  
 
  Carry-out exists. An unsigned-overflow has occurred. The correct answer in double precision is 
00010110.           
 
 Example 1.6.2:  Unsigned addition 
 Compute 0110 + 0101 
 
    0110 
  +0101 

  1011      
No carry-out exists, so the result is correct. The correct answer is 10112 or 1110 in decimal. 
However, please notice that if it was signed computation, it generates an overflow error. 
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1.6.2 Unsigned Subtraction 
 
In unsigned subtraction, the minuend must be larger than the subtrahend.  Otherwise, the result 
would become negative, which violates the definition of unsigned computation.  If the subtracted 
result is actually negative, an occurrence of error should be indicated.  In a computer 
implementation, this error condition is shown through a borrow bit.  If the borrow bit is set, it 
means that the minuend is smaller than the subtrahend and indicates an error condition for 
unsigned computation.  
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