
ECE 1315, Number System Supplement 1

1 Number System (Lecture 1 and 2 supplement)

By Dr. Taek Kwon

Many different number systems perhaps from the prehistoric era have been developed and
evolved. Among them, binary number system is one of the simplest and effective number
systems, and has been extensively used in digital systems. Studying number systems can help you
understand the basic computing processes by digital systems.

1.1 Positional Number Systems

A good example of positional number system is the decimal number system in which we use
them almost everywhere number is needed. Another example is the binary system that is used as
the basic number system for all computers. In positional number systems, a number is represented
by a string of digits where the position of each digit is associated with a weight. In general, a
positional number is expressed as:

d d d d d d dm m n− − − − −⋅ ⋅ ⋅ ⋅ ⋅ ⋅1 2 1 0 1 2.

where dm−1 is referred to as the most significant digit (MSD) and d n− as the least significant digit
(LSD). Each digit position has an associated weight bi where b is called the base or radix. The
point in the middle is referred to as a radix point and is used to separate the integer and fractional
part of a number. Integer part is in the left side of the radix point; fraction part is in the right side
of the radix point. Fraction is a portion of magnitude of a number which is less than unit (e.g.
fraction < 1) and thus it is called a fraction. Let D denote the value (or magnitude) of a positional
number, then D can be always calculated by:

D d bi

i

i n

m
= ⋅

=−

−∑1
 (1)

Example 1.1.1: Find the magnitude of 245.378

D = ⋅ + ⋅ + ⋅ + ⋅ + ⋅

=

− −2 8 4 8 5 8 3 8 7 8
165484375

2 1 0 1 2

10.

ECE 1315, Number System Supplement 2

A binary (base=2) number system is a special case of the positional number system in which the
allowable digits are 0 and 1 that are called “bits”. The leftmost digit of a binary number is called
the most significant bit (MSB) and the rightmost is called the least significant bit (LSB). Because
the base of binary numbers is two, bit bi is associated with weight 2i .

Example 1.1.2: Magnitude of Binary number

11010010 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22

7 6 5 4 3 2 1 0= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

11010011 1 2 1 2 0 2 1 2 0 2 0 2 1 2 1 22

3 2 1 0 1 2 3 4. = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅− − − −

If the base of a number system is larger than ten, the digits exceeding 9 are expressed using
alphabet letters as a convention. For example, hexadecimal number system uses 1-9 and A-F;
base-32 number system uses 1-9 and A-V. This example is shown in Table 1. One may then
wonder how large-base number systems such as a base-64 are expressed. Fortunately, we rarely
use such a high-base number system because we find no real advantages of using them in
applications. Moreover, we can always convert them from any high-base number system to a
lower base number system, which is the subject of the next section.

1.2 Conversion between 2k bases

Number systems with 2k bases have an interesting property in that the conversion between them
can be achieved without the computation of Eq. (1). Such number systems include binary, octal,
hex, and base-32 number systems. Note that since these number systems possess base 2k , all
numbers within these systems can be uniquely represented by k binary bits. For example, octal
numbers can be represented by three bits; hex numbers can be represented by four bits, etc. This
relation allows us to easily convert between them by simply grouping their binary representation
with k bits. Two examples are given in Example 1.2.1.

Since the binary representation of 2k base numbers can be directly associated by simple grouping
of k digits, the conversion from octal to hex or vice versa can be easily achieved through
intermediate step of binary conversion. Example 1.2.2 illustrates this conversion step.

ECE 1315, Number System Supplement 3

 Table 1. Decimal, binary, hexadecimal, and base-32 Number Systems

Decimal Binary Octal Hexadecimal Base-32
0 00000 0 0 0
1 00001 1 1 1
2 00010 2 2 2
3 00011 3 3 3
4 00100 4 4 4
5 00101 5 5 5
6 00110 6 6 6
7 00111 7 7 7
8 01000 10 8 8
9 01001 11 9 9
10 01010 12 A A
11 01011 13 B B
12 01100 14 C C
13 01101 15 D D
14 01110 16 E E
15 01111 17 F F
16 10000 20 10 G
17 10001 21 11 H
18 10010 22 12 I
19 10011 23 13 J
20 10100 24 14 K
21 10101 25 15 L
22 10110 26 16 M
23 10111 27 17 N
24 11000 30 18 O
25 11001 31 19 P
26 11010 32 1A Q
27 11011 33 1B R
28 11100 34 1C S
29 11101 35 1D T
30 11110 36 1E U
31 11111 37 1F V

ECE 1315, Number System Supplement 4

�����
���

22 8

2 16

11010010.10110 011010010.101100 322.54
11010010.1011 2.D B

= =

= =

Example 1.2.1: Binary to hexadecimal or octal conversion

���

��

110101102 0110101102 3268

110101102 616

= =

= = D

Example 1.2.2: Octal to hexadecimal or vice versa

���

�

2738 0101110112

101110112
16

=

=

=

���

BB

⇒

We have seen that the conversion between numbers with power of radix 2 can be readily
achieved through binary expression and regrouping of bits. This convenience led to utilization of
hexadecimal (or octal) numbers in representing binary numbers for many computer architecture
related issues. For example, the instruction LDAA (Load Accumulator A) of 68HC11 is encoded
as the binary number 100001102 , but for convenience of writing and reading it is usually
expressed in hexadecimal 8616 , from which we save time and spaces. Very often, hexadecimal,
octal, and binary numbers are interchangeably used in the computer architecture or
microprocessor related fields.

ECE 1315, Number System Supplement 5

1.3 General Positional Number System Conversion

This section discusses conversion of numbers from any base to any other base. Due to our
familiarity and representation of decimal, a convenient way of base-conversion is conversion
through the use of decimal. That is, for the conversion from base-k to base-p, we first convert a
base-k number to a decimal, and then convert the decimal to a base-p number.

Using Eq. (1) we can easily convert from any base to decimal by simply expressing the digits and
weights using decimal as shown in Example 1.3.1. Therefore, this is the simple case.

Example 1.3.1: Base-k to decimal conversion

1 816 1 163 11 162 14 161 8 160 714410
437 58 4 82 3 81 7 80 5 8 1 287 62510

bE

. .

= ⋅ + ⋅ + ⋅ + ⋅ =

= ⋅ + ⋅ + ⋅ + ⋅ − =

When a decimal number is converted to a base-p number system, thing get little bit more
complicated. This process usually requires more computation. Let a general position number be
denoted as an addition of integer and fractional part:

D I F= + . (2)

Then, with some manipulation we can express the integer part as

I d b d b b d b dp p= ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ +− −(((())))1 2 1 0 (3)

Although this formula looks complicated at a first glance, its structure is exactly the same as the
integer part of Eq. (2) except that the weights bk is now expressed as b b bk1 2 ⋅ ⋅ ⋅ . Example 1.3.2
illustrates conversion of a decimal number 5432

10 into the form given by Eq. (3).

 Example 1.3.2: Integer expressions of positional numbers

5410 5 10 4

54310 5 10 4 10 3
543210 5 10 4 10 3 10 2

= ⋅ +

= ⋅ + ⋅ +

= ⋅ + + ⋅ +

()
(())

ECE 1315, Number System Supplement 6

From Example 1.3.2, notice that if the last expression is divided by 10 the remainder is the least
significant digit 2 and the quotient is (())5 10 4 10 3⋅ + ⋅ + . The next significant digit can be
obtained by dividing 53510 again by 10. Due to this relation, the conversion to an arbitrary base
number can be obtained by repeated division of quotient and collection of remainders. A simple
hand-calculation method can be devised using the above relation. Let's express the integer
division by the following form.

 Divisor)Dividend
 Quotient............Remainder

Using this expression, Example 1.3.3 shows conversion from a decimal to a binary.

 Example 1.3.3: Convert 17910 to a binary.

 2)179
 2)89 1 LSB
 2)44 1
 2)22 0
 2)11 0
 2)5 1
 2)2 1
 1 0
 MSB

The final conversion result reads

17910 101100112= .
It should be noted that the above method can be extended to conversion of any other base. For
example, consider that we wish to convert a hexadecimal number to a base-5 number. Then, the
base-5 number can be directly converted by repeated division by 5 and collecting remainders.
However, this direct division means, you must divide the base-16 number by 5, which is not
simple because we are only used to decimal numbers. Thus, it is essentially wise to first convert
the hexadecimal to a decimal, and then convert it to base-5.

Similarly to the expression of integer part in Eq. (3), the fractional part can be written in the
following form:

F d d b d b b bn= + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− −

−
−

− − −((()))1 2
1 1 1 1 (4)

Note that multiplying b to F in Eq. (4) produces d−1 as a part of the product. This representation
of number system is illustrated using Example 1.3.3.

ECE 1315, Number System Supplement 7

Example 1.3.3: Fraction expression of positional numbers

012 1 2 10 10
0123 1 2 3 10 10 10

01234 1 2 3 4 10 10 10 10

0 1 15 1 16 16
0 1 15 1 10 16 16 16

0 1 15 1 10 12 16 16 16 16

10
1 1

10
1 1 1

10
1 1 1 1

16
1 1

16
1 1 1

16
1 1 1 1

. ()
. (())

. ((()))

. ()
. ())

. (()))

= + ⋅
= + + ⋅
= + + + ⋅

= + ⋅
= + + ⋅
= + + + ⋅

− −

− − −

− − − −

− −

− − −

− − − −

F
F A
F AC

Due to the structure described above, a fractional number expressed by decimal can be converted
into a base “b” number by collecting the integer part from left to right after each multiplication by
b, i.e., see Example 1.3.4.

Example 1.3.4: Convert a decimal number 0.625 to binary.

 0.625 0.250 0.5
 × 2 × 2 × 2
 ____ ____ ______
 1.250 0.5 1.0

d− =1 1 d− =2 0 d− =3 1

Thus,

0 62510 01012. .=

One should be careful to note that a closed form fraction in one number system does not always
lead to a closed form in other number system. This case is illustrated in Example 1.3.4.

 Example 1.3.4: Decimal to base-x conversion: Convert 0 710. to a binary.
 0.7 0.4 0.8 0.6 0.2 0.4
 x 2 x 2 x 2 x 2 x 2 x 2
 ___ ___ ___ ___ ___ ___
 1.4 0.8 1.6 1.2 0.4 0.8

d− =1 1 d− =2 0 d− =3 1 d− =4 1 d− =5 0 d− =6 0

ECE 1315, Number System Supplement 8

Thus,
0 7 0101100110011010 2. .= ⋅ ⋅ ⋅

This example implies that the base conversion of fractional part can introduce errors by the
conversion process itself. If a fractional has a repeating pattern, it is a repeating fraction. If a
fractional part does not repeat but goes forever, it is called an irrational number.

1.4 Negative Numbers

1.4.1 Signed Magnitude Number System

Negative numbers can be represented in many ways. In our daily transactions, a signed
magnitude system is used, where a number consists of a magnitude and a symbol indicating
whether the magnitude is positive or negative. For example,

− + + −57 98 10001267 34534510 10 10 10, , . , . .

In the above example, the symbols “+” and “-“ were used to represent the sign of a number. An
alternative is to use an extra digit to represent positive and negative instead of introducing a new
symbol. This technique is frequently used in the binary number system, e.g., bit “1" is appended
at MSB to represent negative and bit ``0'' appended for positive. Example 1.4.1 illustrates this
relation by 8-bit numbers with 7-bit magnitude and one sign-bit, which is called signed
magnitude binary numbers.

 Example 1.4.1: Examples of signed magnitude binary numbers

00101101 2
10101100 2
01111111 7
11111111 7

16

16

16

16

= +
= −
= +
= −

D
D
F
F

 sign bit

1.4.2 Complement Number System

In the complement number system, a negative number is determined by taking its complement as
defined by the system. Radix complement and diminished-radix complement are the two basic
methods in this system.

ECE 1315, Number System Supplement 9

i) Radix complement: The complement of an n-digit number is obtained by subtracting it from
bn . See Example 1.4.2

 Example 1.4.2: Radix complements

 10's complement:1849 10000 1849 815110 10 10 10⇒ − =
8's complement:1547 10000 1547 62318 8 8 8⇒ − =
4's complement: 1320 10000 1320 20204 4 4 4⇒ − =
2's complement:1010 10000 1010 01102 2 2 2⇒ − =

As in the above example, direct subtraction from bn is inconvenient or at least cumbersome to
calculate because of borrows. A simpler and easier way is derived by modifying the subtraction
as:

b D b Dn n− = − − +()1 1

Notice that bn − 1 has the form that all digits are the highest digits in the number system. For
example, in decimal 10 1 999910

4
10− = , in octal 10000 1 77778 8− = , in binary

10000 1 11112 2− = , etc. This means that the computation never needs borrow, so it makes the
radix computation easier.

 ii) Diminished-Radix complement:

The complement of an n-digit number D is obtained by substituting it from bn − 1 . This can be
accomplished by complementing the individual digits of D without adding 1.

 Example 1.4.3: 9's complement
In decimal, the diminished-radix complement is called the 9's complement because the
complement is obtained by independently subtracting each digit from 9.

Complement of 1849 9999 1849 8150 184910 10 10 10 10⇒ − = = −
Complement of 7932 9999 7932 2067 793210 10 10 10 10⇒ − = = −
Complement of 0007 9999 0007 9992 000710 10 10 10 10⇒ − = = −

 Example 1.4.4: 1's complement
Similarly to the decimal case, the diminished-radix complement of a binary number is called 1's
complement because the complement is obtained by subtracting each digit from 1.

Complement of 1011 1111 1011 0100 10112 2 2 2 2⇒ − = = −

ECE 1315, Number System Supplement 10

Complement of 0101 1111 0101 1010 01012 2 2 2 2⇒ − = = −
Complement of 0000 1111 0000 1111 00002 2 2 2 2⇒ − = = −

Note from Example 1.4.4 that 1's complement is simply obtained by inverting each digit, i.e.
1 0→ and 0 1→ . Thus, the main advantage of 1's-complement system is its simplicity of
conversion and the symmetry of complements. However, this symmetry causes the existence of
two zeros, i.e., a positive zero 00 00⋅ ⋅ ⋅ and a negative zero 11 11⋅ ⋅ ⋅ . Hence implementing
addition of 1's complement numbers to a digital computer system leads to significant inefficiency
because the system must check for both representations of zeros or it must convert one to another
zero. This is the main reason why 2's complement number system is used for all of today's digital
computers, which has a unique zero (00 00⋅ ⋅ ⋅). Observe the differences between the different
sign systems from Table 2.

Table 2. 4-bit Numbers in Different Signed Systems

Decimal 2's
Complement

1's
complement

Signed
Magnitude

-8 1000 - -
-7 1001 1000 1111
-6 1010 1001 1110
-5 1011 1010 1101
-4 1100 1011 1100
-3 1101 1100 1011
-2 1110 1101 1010
-1 1111 1110 1001
0 0000 1111 or 0000 1000 or 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 0100 0100
5 0101 0101 0101
6 0110 0110 0110
7 0111 0111 0111

ECE 1315, Number System Supplement 11

1.5 Signed Addition/Subtraction

In signed computation, subtraction is achieved by adding the negated (i.e. complemented)
subtrahend to the minuend. In hardware implementation this means that computers need only
adders but not subtractors, which would be the main advantage of using signed number systems.
Of course the flexibility of using negative numbers provides convenience in other computational
applications such as multiplication and division. Another important aspect of addition/subtraction
in computer systems is the overflow errors, which are caused by the limited bit-width of the data
path in a computer. A detailed treatment of overflow conditions is discussed in this section.

1.5.1 Signed Overflow

If an addition or a subtraction produces a result that exceeds the range of the number system (the
data width allocated to the result), overflow is said to occur. Overflow is essentially an error
condition that requires a special treatment in order to make the current result valid. A simple rule
exists for detecting overflow. Addition of two numbers with different signs can never produce
overflow, but addition of two numbers of like sign can. This simple rule can be used for screening
the candidates of overflow condition. As the next step one of the following two rules can be
applied, if the two addends have the same sign.

1. An addition (same if subtraction is done by adding the complemented number) overflows
if the signs of the addends are the same and the sign of the sum is different from the
addends' sign.
2. An addition overflows if the carry bits into and out of the sign position are different.

The overflow detection rule is often built into a piece of hardware called an arithmetic logic unit
(ALU) inside the computer. The status register of ALU almost always includes a bit called the
overflow-bit which indicates detection of an overflow condition whenever it is set. The following
example illustrates overflowed computation for 4-bit arithmetic. Keep in mind that the range of
4-bit number can represent is from -8 to +7. Exceeding this range causes the overflow.

 Example 1.5.1: Overflow examples in 4-bit computation

 ()−310 11012 ()+ 510 01012

+ −()610 + 10102 + ()610 + 01102

________ ________ ________ ________
 − 910 101112 + 1110 10102

ECE 1315, Number System Supplement 12

 ()−810 11012 ()+ 710 01112

+ −()810 + 10102 + +()710 + 01112

________ ________ ________ ________
 − 1610 100002 + 1410 11102

All of the examples given in Example 1.5.1 have the overflow error condition. What that means is
that you cannot compute the given numbers with only four bits. You need more bit positions, if
you wish to correct the error.

1.5.2 Signed subtraction

Signed subtraction in most computers is done by taking 2's complement of the subtrahend and
then adding it to the minuend following the normal rules of addition. Overflow condition must
be checked after the addition in order to obtain the correct computational result. If no overflow
condition is detected, the correct answer of the subtraction is obtained from the result by simply
discarding the carry-out bit of the MSB if a carry-out bit exists. If an overflow condition is
detected, there are two ways of dealing with this error. The first approach is simply reporting an
error message that indicates the overflow condition. Most computers use this approach and leave
the responsibility of handling the error to the user. The second approach is modifying the result
to a correct one by allocating more bits to the addends. Whenever an overflow occurs, only one
more bit extension to operands is needed to express the overflowed number. However, due to the
fixed data width of computers, the data width is usually extended twice of the data width, i.e., if a
single precision computation is overflowed, a double precision (twice the data width) is used to
correct the error.

Example 1.5.2: Signed subtraction with no overflow
Compute 0100 - 0011=?

 Step 1) Compute the 2's complement of 0011, i.e., 1100 + 1 = 1101
 Step 2) Add the complemented number to the minuend:
 0100
 +1101
 10001
 Step 3) Check overflow. Since the signs of the addends are different, there is no

overflow. Simply discard the MSB carry-out bit and the correct answer of this
computation is 0001.

Example 1.5.3: Signed subtraction with overflow and the correction
 Compute 0110 - 1101 = ?

 Step 1) Compute the 2's complement of 1101, i.e., 0010 + 1 = 0011

ECE 1315, Number System Supplement 13

 Step 2) Add the complemented number 0011 to the minuend:

 0110
 + 0011
 1001
 Step 3) Check overflow. Since the sign of sum is different from the sign of addends,

overflow has occurred. Therefore, the computational result 1001 is incorrect.
Report an overflow error message.

If one wishes to obtain a correct answer instead of just giving an overflow error message, one can
redo the operation by allocating extended bits to operands. In this example, we shall extend the
computation to a double-precision (8-bit in this case) arithmetic. That is, compute
00000110 - 11111101 = ?. Notice that the positive number is extended by appending 0's, while
the negative number is extended by appending 1's to the MSB of the number. This is because we
must preserve the sign and magnitude of the original number when bits are extended. Below
shows the double precision computation.

 Step 1) Compute the 2's complement of 11111101 : 00000010 + 1 = 00000011
 Step 2) Add the complemented number to the minuend:

 00000110
 +00000011
 00001001

 Step 3) Overflow check. Since the sum and addends are the same, no overflow error was

observed. Therefore, the correct answer is 00001001.

In Example 1.5.3, the correct result was obtained by extending the operands to double precision
and by recalculating them after detecting an overflow condition. In reality, this recalculation is
not necessary. The result of operation can be corrected by recognizing the signs of two addends
(i.e., Step 2)). Since the two addends are both positive, the correct answer is obtained by
appending zeros to the MSB side until all the extended bits are filled. If both addends are
negative, the correct answer is obtained by appending ones to the MSB side until all the extended
bits are filled. An example for this case is illustrated in Example 1.5.4.

Example 1.5.4: Signed subtraction with overflow correction

Compute 1101 - 0111 = ?

 Step 1) Compute the 2's complement of 0111 : 1000 + 1 = 1001
 Step 2) Add the complemented number to the minuend:

ECE 1315, Number System Supplement 14

 1101
 +1001
 10110 → Overflow Error.

 Since the final two addends are negative, the correct result is obtained by appending four ones
to the MSB side. Therefore, the correct answer is 11110110.

1.6 Unsigned Addition/Subtraction

In an unsigned number system, all numbers are considered positive. For instance, four bits in
binary represent positive numbers from 010 to 1510 . This approach uses the single bit assigned
for sign representation as a part of the magnitude, and thus twice the magnitude of the signed
representation is achieved.

 1.6.1 Unsigned Addition

Since all numbers are positive in unsigned numbers, the two addends are always positive. Hence,
an unsigned overflow condition occurs only if the computation produces a carry-out at the MSB
of the allocated bit. The computation must be carried out using normal addition rules, but if an
unsigned-overflow condition is detected, the correct answer is obtained by simply appending
zeros to the MSB side of the extended bits.

 Example 1.6.1: Unsigned addition
 Compute 1100 + 1001
 1101
 +1001

 10110

 Carry-out exists. An unsigned-overflow has occurred. The correct answer in double precision is
00010110.

 Example 1.6.2: Unsigned addition
 Compute 0110 + 0101

 0110
 +0101

 1011
No carry-out exists, so the result is correct. The correct answer is 10112 or 1110 in decimal.
However, please notice that if it was signed computation, it generates an overflow error.

ECE 1315, Number System Supplement 15

1.6.2 Unsigned Subtraction

In unsigned subtraction, the minuend must be larger than the subtrahend. Otherwise, the result
would become negative, which violates the definition of unsigned computation. If the subtracted
result is actually negative, an occurrence of error should be indicated. In a computer
implementation, this error condition is shown through a borrow bit. If the borrow bit is set, it
means that the minuend is smaller than the subtrahend and indicates an error condition for
unsigned computation.

References

[1] J. F. Wakerly, Microcomputer Architecture and Programming, John Wiley \& Sons, Inc.,
1989.
[2] D. Knuth, Seminumerical Algorithms, Addison-Wesley, 1969

