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Introduction
The Intel® Core™ microarchitecture is a new foundation for Intel® 

architecture-based desktop, mobile, and mainstream server multi-core

processors. This state-of-the-art, power-efficient multi-core microarchi-

tecture delivers increased performance and performance per watt,

thus increasing overall energy efficiency. Intel Core microarchitecture

extends the energy-efficient philosophy first delivered in Intel's mobile

microarchitecture (Intel® Pentium® M processor), and greatly enhances

it with many leading edge microarchitectural advancements, as well as

some improvements on the best of Intel NetBurst® microarchitecture.

This new microarchitecture also enables a wide range of frequencies

and thermal envelopes to satisfy different needs.

With its higher performance and low power, the new Intel Core micro-

architecture and the new processors based on it will inspire many new

computers and form factors. These processors include, for desktops,

the new Intel® Core™2 Duo processor. This advanced desktop processor

is expected to power higher performing, ultra-quiet, sleek, and low-power

computer designs and new advances in sophisticated, user-friendly

entertainment systems. For mainstream enterprise servers, the new

Intel® Xeon® server processors are expected to reduce space and electri-

city burdens in server data centers, as well as increase responsiveness,

productivity, and energy efficiency across server platforms. For mobile

users, the new Intel® Centrino® Duo mobile technology featuring the

Intel Core 2 Duo processor will mean greater computer performance

and new achievements in enabling leading battery life in a variety 

of small form factors for world-class computing “on the go.” 

This paper provides a brief look at the five major “ingredients” of the

Intel Core microarchitecture. It then dives into a deeper explanation of

the paper’s main topic, the key innovations comprising Intel® Smart

Memory Access.
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Five main ingredients provide key contributions to the

major leaps in performance and performance-per-watt

delivered by the Intel Core microarchitecture. 

These ingredients are:
• Intel® Wide Dynamic Execution 

• Intel® Advanced Digital Media Boost

• Intel® Intelligent Power Capability 

• Intel® Advanced Smart Cache 

• Intel Smart Memory Access 

Together, these features add up to a huge advance in energy-

efficient performance. The Intel Core 2 Duo desktop processor, 

for example, delivers more than 40 percent improvement in 

performance and a greater than 40 percent reduction in power 

as compared to today's high-end Intel® Pentium® D processor 950.

(Performance based on estimated SPECint*_rate_base2000.

Actual performance may vary. Power reduction based on TDP.)1

Intel mobile and server processors based on this new micro-

architecture provide equally impressive gains.

Intel® Wide Dynamic Execution
Dynamic execution is a combination of techniques (data flow

analysis, speculative execution, out of order execution, and super

scalar) that Intel first implemented in the P6 microarchitecture

used in the Intel® Pentium® Pro processor, Pentium® II processor

and Pentium® III processors.

Intel Wide Dynamic Execution significantly enhances dynamic 

execution, enabling delivery of more instructions per clock cycle 

to improve execution time and energy efficiency. Every execution

core is 33 percent wider than previous generations, allowing each

core to fetch, decode, and retire up to four full instructions simul-

taneously. However, to maximize performance on common mixes

The Five Major Ingredients 
of Intel Core Microarchitecture

of instructions received from programs, the execution core can

dispatch and execute at a rate of five instructions per cycle for

either mixes of three integer instructions, one load and one store;

or mixes of two floating point/vector instructions, one integer

instruction, one load and one store.

Intel Wide Dynamic Execution also includes a new and innovative

capability called Macrofusion. Macrofusion combines certain common

x86 instructions into a single instruction that is executed as a 

single entity, increasing the peak throughput of the engine to five

instructions per clock. The wide execution engine, when Macro-

fusion comes into play, is then capable of up to six instructions

per cycle throughputs for even greater energy-efficient perform-

ance. Intel Core microarchitecture also uses extended microfusion,

a technique that “fuses” micro-ops derived from the same macro-op

to reduce the number of micro-ops that need to be executed. Studies

have shown that micro-op fusion can reduce the number of micro-

ops handled by the out-of-order logic by more than 10 percent.

Intel Core microarchitecture “extends” the number of micro-ops

that can be fused internally within the processor. 

Intel Core microarchitecture also incorporates an updated ESP

(Extended Stack Pointer) Tracker. Stack tracking allows safe early

resolution of stack references by keeping track of the value of the

ESP register. About 25 percent of all loads are stack loads and 95

percent of these loads may be resolved in the front end, again

contributing to greater energy efficiency [Bekerman]. 

Micro-op reduction resulting from micro-op fusion, Macrofusion,

ESP Tracker, and other techniques make various resources in 

the engine appear virtually  deeper than their actual size and

results in executing a given amount of work with less toggling 

of signals—two factors that provide more performance for the

same or less power.

Intel Core microarchitecture also provides deep out-of-order buffers

to allow for more instructions in flight, enabling more out-of-order

execution to better exploit instruction-level parallelism.

1. Please refer to www.intel.com/performance for all performance related claims.
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Intel® Advanced Digital Media Boost
Intel Advanced Digital Media Boost helps achieve similar dramatic

gains in throughputs for programs utilizing SSE instructions of

128-bit operands. (SSE instructions enhance Intel architecture by

enabling programmers to develop algorithms that can mix packed,

single-precision, and double-precision floating point and integers,

using SSE instructions.) These throughput gains come from 

combining a 128-bit-wide internal data path with Intel Wide

Dynamic Execution and matching widths and throughputs in the

relevant caches. Intel Advanced Digital Media Boost enables most

128-bit instructions to be dispatched at a throughput rate of one per

clock cycle, effectively doubling the speed of execution and result-

ing in peak floating point performance of 24 GFlops (on each core,

single precision, at 3 GHz frequency). Intel Advanced Digital Media

Boost is particularly useful when running many important multi-

media operations involving graphics, video, and audio, and processing

other rich data sets that use SSE, SSE2, and SSE3 instructions.

Intel® Intelligent Power Capability 
Intel Intelligent Power Capability is a set of capabilities for 

reducing power consumption and device design requirements. 

This feature manages the runtime power consumption of all the

processor’s execution cores. It includes an advanced power-gating

capability that allows for an ultra fine-grained logic control that

turns on individual processor logic subsystems only if and when

they are needed. Additionally, many buses and arrays are split

so that data required in some modes of operation can be put in

a low-power state when not needed. In the past, implementing

such power gating has been challenging because of the power

consumed in powering down and ramping back up, as well as

the need to maintain system responsiveness when returning to

full power [Wechsler]. Through Intel Intelligent Power Capability,

Intel has been able to satisfy these concerns, ensuring signi-

ficant power savings without sacrificing responsiveness. 

Intel® Advanced Smart Cache 
Intel Advanced Smart Cache is a multi-core optimized cache that

improves performance and efficiency by increasing the probability

that each execution core of a dual-core processor can access data

from a higher-performance, more-efficient cache subsystem. To

accomplish this, Intel Core microarchitecture shares the Level 2 (L2)

cache between the cores. This better optimizes cache resources

by storing data in one place that each core can access. By sharing

L2 cache between each core, Intel Advanced Smart Cache allows

each core to dynamically use up to 100 percent of available L2

cache. Threads can then dynamically use the required cache

capacity. As an extreme example, if one of the cores is inactive,

the other core will have access to the full cache. Intel Advanced

Smart Cache enables very efficient sharing of data between

threads running in different cores. It also enables obtaining data

from cache at higher throughput rates for better performance.

Intel Advanced Smart Cache provides a peak transfer rate of 

96 GB/sec (at 3 GHz frequency).

Intel® Smart Memory Access 
Intel Smart Memory Access improves system performance by 

optimizing the use of the available data bandwidth from the

memory subsystem and hiding the latency of memory accesses.

The goal is to ensure that data can be used as quickly as possible

and is located as close as possible to where it’s needed to minimize

latency and thus improve efficiency and speed. Intel Smart Memory

Access includes a new capability called memory disambiguation,

which increases the efficiency of out-of-order processing by 

providing the execution cores with the built-in intelligence to

speculatively load data for instructions that are about to execute

before all previous store instructions are executed. Intel Smart

Memory Access also includes an instruction pointer-based prefetcher

that “prefetches” memory contents before they are requested so

they can be placed in cache and readily accessed when needed.

Increasing the number of loads that occur from cache versus main

memory reduces memory latency and improves performance. 
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Figure 1: Intel Smart Memory Access uses memory disambiguation and a number of
prefetchers (including an instruction pointer-based prefetcher to the level 1 data cache)
to help Intel Core microarchitecture achieve its high levels of performance. 

How Intel Smart Memory Access
Improves Execution Throughput
The Intel Core microarchitecture Memory Cluster (also known as the Level 1 Data Memory

Subsystem) is highly out-of-order, non-blocking, and speculative. It has a variety of methods 

of caching and buffering to help achieve its performance. Included among these are Intel Smart

Memory Access and its two key features: memory disambiguation and instruction pointer-

based (IP-based) prefetcher to the level 1 data cache. 

To appreciate how memory disambiguation and instruction pointer-based prefetcher to the level 1

data cache improve execution throughput, it’s important to understand that typical x86 software

code contains about 38 percent memory stores and loads. Generally there are twice as many loads

as there are stores. To prevent data inconsistency, dependent memory-related instructions are

normally executed in the same order they appear on the program. This means if a program has an

instruction specifying a “store” at a particular address and then a “load” from that same address,

these instructions have to be executed in that order. But what about all the stores and loads that

don’t share the same address? How can their non-dependence on each other be used to improve

processing efficiency and speed? 
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Memory Disambiguation
Since the Intel Pentium Pro, all Intel processors have featured a

sophisticated out-of-order memory engine allowing the CPU to

execute non-dependent instructions in any order. But they had 

a significant shortcoming. These processors were built around a

conservative set of assumptions concerning which memory

accesses could proceed out of order. They would not move a load 

in the execution order above a store having an unknown address

(cases where a prior store has not been executed yet). This was

because if the store and load end up sharing the same address, 

it results in an incorrect instruction execution. Yet many loads are

to locations unrelated to recently executed stores. Prior hardware

implementations created false dependencies if they blocked such

loads based on unknown store addresses. All these false depend-

encies resulted in many lost opportunities for out-of-order execution. 

In designing Intel Core microarchitecture, Intel sought a way to

eliminate false dependencies using a technique known as memory

disambiguation. (“Disambiguation” is defined as the clarification

that follows the removal of an ambiguity.) Through memory dis-

ambiguation, Intel Core microarchitecture is able to resolve many

of the cases where the ambiguity of whether a particular load

and store share the same address thwart out-of-order execution.

Memory disambiguation uses a predictor and accompa-

nying algorithms to eliminate these false dependencies

that block a load from being moved up and completed

as soon as possible. The basic objective is to be able to

ignore unknown store-address blocking conditions when-

ever a load operation dispatched from the processor’s

reservation station (RS) is predicted to not collide with a

store. This prediction is eventually verified by checking

all RS-dispatched store addresses for an address match

against newer loads that were predicted non-conflicting

and already executed. If there is an offending load already

executed, the pipe is flushed and execution restarted

from that load. 

The memory disambiguation predictor is based on a

hash table that is indexed with a hashed version of the

load’s EIP address bits. (“EIP” is used here to represent

the instruction pointer in all x86 modes.) Each predictor

entry behaves as a saturating counter, with reset. 

Memory Address Space

A

DATA W

DATA Z

DATA Y

DATA X

Load 4 X

Store 3 W

Load 2 Y

Store 1 Y

4

1

2
3

Figure 2: In this example of memory disambiguation, the circled
numbers on the arrows indicate chronological execution order
and the arrow on the far left shows program order. As you can
see, Load 2 cannot be moved forward since it has to wait until
Store 1 is executed so variable Y has its correct value. However,
Intel’s memory disambiguation predictor can recognize that Load 4
isn’t dependent on the other instructions shown and can be
executed first without having to wait for either Store 3 or Store 1
to execute. By executing Load 4 several cycles earlier, the CPU now
has the data required for executing any instructions that need
the value of X, thus reducing memory latency and delivering a
higher degree of instruction-level parallelism. 
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The predictor has two write operations, both done

during the load’s retirement:

1. Increment the entry (with saturation at maximum

value) if the load “behaved well.” That is, if it met

unknown store addresses, but none of them collided.

2. Reset the entry to zero if the load “misbehaved.”

That is, if it collided with at least one older store

that was dispatched by the RS after the load. 

The reset is done regardless of whether the load

was actually disambiguated.

The predictor takes a conservative approach. In order to

allow memory disambiguation, it requires that a number

of consecutive iterations of a load having the same EIP

behave well. This isn’t necessarily a guarantee of success

though. If two loads with different EIPs clash in the

same predictor entry, their prediction will interact. 

Predictor Lookup
The predictor is looked up when a load instruction 

is dispatched from the RS to the memory pipe. If the

respective counter is saturated, the load is assumed 

to be safe. The result is written to a “disambiguation

allowed bit” in the load buffer. This means that if the load

finds a relevant unknown store address, this condition

is ignored and the load is allowed to go on. If the pre-

dictor is not saturated, the load will behave like in prior

implementations. In other words, if there is a relevant

unknown store address, the load will get blocked.

Load Dispatch
In case the load meets an older unknown store

address, it sets the “update bit” indicating the load

should update the predictor. If the prediction was

"go,” the load will be dispatched and set the

“done” bit indicating that disambiguation was

done. If the prediction was "no go," the load will

be conservatively blocked until resolving of all

older store addresses.

Prediction Verification
To recover in case of a misprediction by the 

disambiguation predictor, the address of all the

store operations dispatched from the RS to the

Memory Order Buffer must be compared with

the address of all the loads that are younger

than the store. If such a match is found the

respective “reset bit” is set. When a load retires

that was disambiguated and its reset bit set,

we restart the pipe from that load to re-execute

it and all its dependent instructions correctly.

Watchdog Mechanism
Obviously, since disambiguation is based on predic-

tion and mispredictions can cause execution pipe

flush, it’s important to build in safeguards to avoid

rare cases of performance loss. Consequently,

Intel Core microarchitecture includes a mechanism

to temporarily disable memory disambiguation

to prevent cases of performance loss. This

mechanism constantly monitors the success 

rate of the disambiguation predictor.
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In addition to memory disambiguation, Intel Smart Memory

Access includes advanced prefetchers. Just like their name

suggests, prefetchers “prefetch” memory data before it’s

requested, placing this data in cache for “just-in-time” execution.

By increasing the number of loads that occur from cache

versus main memory, prefetching reduces memory latency

and improves performance. 

The Intel Core microarchitecture includes in each processing

core two prefetchers to the Level 1 data cache and the 

traditional prefetcher to the Level 1 instruction cache.

In addition it includes two prefetchers associated with the

Level 2 cache and shared between the cores. In total, 

there are eight prefetchers per dual core processor. 

Of particular interest is the IP-based prefetcher that prefetches

data to the Level 1 data cache. While the basic idea of IP-based

prefetching isn’t new, Intel made some microarchitectural

innovations to it for Intel Core microarchitecture.

The purpose of the IP prefetcher, as with any prefetcher, 

is to predict what memory addresses are going to be used

by the program and deliver that data just in time. In order to

improve the accuracy of the prediction, the IP prefetcher

tags the history of each load using the Instruction Pointer

(IP) of the load. For each load with an IP, the IP prefetcher

builds a history and keeps it in the IP history array. Based on

load history, the IP prefetcher tries to predict the address of

the next load accordingly to a constant stride calculation 

(a fixed distance or “stride” between subsequent accesses

to the same memory area). The IP prefetcher then generates 

a prefetch request with the predicted address and brings 

the resulting data to the Level 1 data cache. 

Instruction Pointer-Based (IP)
Prefetcher to Level 1 Data Cache

Obviously, the structure of the IP history array is very impor-

tant here for its ability to retain history information for each

load. The history array in the Intel Core microarchitecture 

consists of following fields:

• 12 untranslated bits of last demand address

• 13 bits of last stride data (12 bits of positive 

or negative stride with the 13th bit the sign) 

• 2 bits of history state machine 

• 6 bits of last prefetched address—used to 

avoid redundant prefetch requests

Using this IP history array, it’s possible to detect iterating

loads that exhibit a perfect stride access pattern (An – An-1
= Constant) and thus predict the address required for the

next iteration. A prefetch request is then issued to the L1

cache. If the prefetch request hits the cache, the prefetch

request is dropped. If it misses, the prefetch request propa-

gates to the L2 cache or memory.

Prefetch History
Table

256 Entries

Prefetch Generator

Load
Buffer

L1 Data
Cache Unit

32 KB
FIFO

Last Address Last Stride SM Last
Prefetch

IP Prefetcher Request

to/from
L2 Cache

DCU Streamer Request

Everything happens during load’s execution

IP

(7:0)

Address

(11:0)

12  13  2 6

Single Entry

Figure 3: High level block diagram of the relevant parts in
the Intel Core microarchitecture IP prefetcher system.
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What happens if the prefetch FIFO is full? 

New requests override the oldest entries.

One interesting advantage of the Intel Core microarchi-

tecture is that the parameters for prefetch traffic control

and allocation can be fine-tuned for the platform. Products 

can have their prefetching sensitivity set based on 

chipset memory, FSB speed, L2 cache size, and more. 

In addition, since server products run radically different 

applications than clients, their prefetchers are tuned using

server benchmarks. 

Eventually, the data for a prefetch request sent to the L2

cache/bus arrives. The line can be placed into the L1 data

cache or not depending on a configuration parameter. 

If the configuration is set to drop the line, but the line is

hit by a demand request before being dropped, the line

is placed into the cache.

Prefetch Monitor

One possible challenge in employing eight prefetchers in

one dual-core processor is the chance they might use up

valuable bandwidth needed for demand load operations 

of running programs. To avoid this, the Intel Core microarchi-

tecture uses a prefetch monitor with multiple watermark

mechanisms aimed at detecting traffic overload. In cases

where certain thresholds are exceeded, the prefetchers are

either stalled or throttled down, essentially reducing the

amount of aggressiveness in which prefetching is pursued.

The result is a good balance between being responsive to

the program’s needs while also capitalizing on unused

bandwidth to reduce memory latency. Overall, Intel Core

microarchitecture’s smarter memory access and more

advanced prefetch techniques keep the instruction pipeline

and caches full with the right data and instructions for

maximum efficiency.

Traffic Control and Resource Allocation

Among the important considerations a prefetcher

design needs to answer is how to minimize

possible side effects (such as overloading of

resources) of prefetching. The Intel Core micro-

architecture IP prefetcher includes a number 

of measures to mitigate these side effects. 

The prefetch request generated by the pre-

fetcher goes to a First In/First Out (FIFO) buffer

where it waits for “favorable conditions” to

issue a prefetch request to the L1 cache unit. 

A prefetch request then moves to the store 

port of the cache unit and is removed from 

the FIFO when:

1. The store port is idle.

2. There are at least a set number 

of Fill Buffer entries empty.

3. There are at least a set number of 

entries empty in the external bus queue. 

4. The cache unit was able to accept 

the request.

Upon successful reception of a prefetch request

by the data cache unit, a lookup for that line is

performed in the cache and Fill Buffers. If the

prefetch request hits, it is dropped. Otherwise a

corresponding line read request is generated to

the Level 2 cache or bus just as a normal demand

load miss would have done. In particular, the L2

prefetcher treats prefetch requests just as a

demand request.
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Learn More
Find out more by visiting these Intel Web sites:

Intel Core Microarchitecture
www.intel.com/technology/architecture/coremicro

Intel Xeon 51xx Benchmark Details
www.intel.com/performance/server/xeon

Intel Multi-Core
www.intel.com/multi-core

Intel Architectural Innovation
www.intel.com/technology/architecture

Energy-Efficient Performance
www.intel.com/technology/eep
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Summary
Intel Smart Memory Access plays an important contributing role in the

overall energy-efficient performance of Intel Core microarchitecture.

Through memory disambiguation, Intel Core microarchitecture

increases the efficiency of out-of-order processing by providing

the execution cores with the built-in intelligence to speculatively

load data for instructions that are about to execute before all pre-

vious store instructions are executed. Through advanced IP-based

prefetchers, Intel Core microarchitecture successfully prefetches

memory data before it’s requested, placing this data in cache for

“just-in-time” execution. By increasing the number of loads that

occur from cache versus main memory, IP-based prefetching

reduces memory latency and improves performance. Included with

the other four major “ingredients”—Intel Wide Dynamic Execution,

Intel Advanced Digital Media Boost, Intel Advanced Smart Cache,

and Intel Intelligent Power Capability—of the Intel Core microarchi-

tecture, Intel Smart Memory Access plays an important role in the

microarchitecture’s ability to deliver increased performance and

performance-per-watt.
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engineering and an M.S. in computer engineering from the
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