
Cristal Algorithm 
 
Final Project Submission 
Course Name: NLP 
Course Number: CS8761 
Date: Dec 17, 2002 
 
Key Idea 
  Adjectives and adverbs in the definitions of a word match with those in 
the context that the word tends to occur in. 

 
Generateing good and bad word lists 
  In our algorithm we read the list of good words from the seed file. Then 
using the information in LDOCE and BigMac, we extract all the words that share 
both, a semantic code (LDOCE) and a thesaurus entry (BigMac), with at least one of 
the words in the list. We call this good list. Similarly we extract bad list too. These 
lists are also submitted in files “goodList”  and “badList”  respectively. 
 
Getting good and bad definitions 
  From LDOCE, we next extract the definitions of all the good words that 
are associated with the parts of speech “adj”  and “adv”  and put them is a pool. We 
call these good definitions. Similarly, we retrieve bad definitions too. 
 
Generating good and bad context 
  To generate good context, we extract all the words from good definitions, 
whose at least 1 part of speech is “adj”  or “adv” . LDOCE is used here. Similarly, 
from bad definitions we generate bad context. 
 
Support for Key Idea 

We derived the above mentioned key idea from a set of experiments, 
which we performed on a few arbitrary words that have some semantic orientation. 
For each of the words, we found all its definitions (from LDOCE) that are associated 
with the parts of speech “adj”  and “adv” . We, then, extracted all the adjectives and 
adverbs from these definitions. We call the total number of adjectives and adverbs 
thus extracted, the size of the definitions of the word and we denote it by S. We then 
count the number of adjectives and adverbs in this set that match with those in our 
good context (explained above). We call this number “good matches”  Mg. Similarly, 
we compute “bad matches”  Mb.  

As per our key idea, we should get, for a good word, Mg > Mb and for a 
bad word, Mg > Mb. We scale these values with ‘S’ , so as to avoid the impact of 
definition length. Therefore for good words we have (Mg/ S) > (Mb / S) and vice-
versa for a bad word. This is what we observe in our experiments, whose results are 
tabulated below. 

 
 
 



 
Word Mg/ S Mb / S 

Awesome 8/10 7/10 

Excellent 6/6 4/6 

Good 57/107 40/107 

Great* 49/52 24/52 

Superb 2/3 1/3 

Terrific 9/10 7/10 

Awful 7/12 8/12 

Bad* 21/56 55/56 

Horrible 3/8 6/8 

Painful 6/13 8/13 

Poor* 20/36 34/36 

 
  
 
Getting good and bad sentences from web 
 After getting good and bad contexts, we retrieve, good and bad sentences from 
web. For this we make use of good and bad lists. E.g. to generate list of good sentences, 
we take a word from the good list, retrieve sentences from the web that contain this word 
and put them in the pool of good sentences. Then we repeat the process for next word and 
so on. Similarly, we generate a list of bad sentences from the web.  
 
Tagging Reviews 
 Once the above mentioned book keeping is done we are set to tag the reviews. We 
first extract the words from a given review that have some sentiment information content. 
To do this we count the number of occurrences of every word in the review in the list of 
good and bad sentences retrieved from web. We consider a word relevant if it occurs 
considerably more in one list than the other. E.g. 

Say, the list of good sentences contains 140,000 words, whereas, that of the bad 
sentences contains 180,000 words. 

Say, a word “camera”  occurs 726 times in the good sentences and 959 times in 
bad sentences. Similarly, let these values respectively be 583 and 137 for the word 
“perfect” .  
 
 
 
 
 



We calculate the following values for every word and if the final score is greater 
than 1, we accept it else we reject it. 
 
 

 
 
For “camera” , 
   

Rg(camera) = (726 / 140,000) = 0.0052 
Rb(camera) = (959 / 180,000) = 0.0053 

 
  
 
 
 
Similarly, for “perfect” , 
 

Rg(perfect) = (583 / 140,000) = 0.0041 
Rb(perfect) = (137 / 180,000) = 0.00076 

 
  
 
 
Thus, “camera”  with score = 0.02 < 1 is rejected, while “perfect”  with score 4.39 > 1 is 
accepted, which is what we want because the word “camera”  does not contain any 
sentiment information, whereas the word “perfect”  does. 
 
Assigning scores to the relevant words 
 We next compute a score for every relevant word in the review. For this we make 
use of our good and bad context, previously generated. 
 For each word, we extract its definitions that correspond to the parts of speech 
“adj”  and “adv” . From these definitions, we extract only the words that are adjectives and 
adverbs. We call this set of words AA-Set (Adjectives-Adverbs Set). Let its size be S. We 
count the number of elements from this set that match with the words in our good 
context. We call this count good match (Mg). Similarly, using bad context we compute 

Good Matches 

Number of words in good sentences 
Good Ratio (Rg) =   

Bad Matches  

Number of words in bad sentences 
Bad Ratio (Rb)  =   

Score      = 
abs (Rg – Rb) 

smaller (Rb, Rg) 
 

Score  (camera)  = 
abs (0.0053 – 0.0052) 

smaller (0.0053, 0.0052) 
= 0.02 

abs (0.0041 – 0.00076) 

smaller (0.00076, 0.0041) 
= 4.39 Score  (perfect)  = 



bad match (Mb). Once the values of Mg, Mb and S are known, we compute the score for 
that particular word as 
 

Score (word) = (Mg / S) – (Mb / S)  
 
We normalize with S, so as to nullify the effect of greater number of matches in 

longer definitions. We this algorithm, we generate negative scores for the words with 
negative sentiment and positive for the ones with positive sentiment.  
 
Scoring and tagging the review 

Finally, the score of the whole review is the sum of scores of its individual 
relevant words. We tag a review as “positive”  if its score > K, “negative”  if its score < -K 
and neutral otherwise. This K is an arbitrary constant. We experimented with K = 0.5, 0.3 
and 0.  

We got very good results for camera data, for smaller values of K, which can be 
seen in our experiments file. 

 
 
  


