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The EM algorithmbegins with guesses of the param-eter estimates. The missing sense values are assignedexpected values based on these estimates. The param-eters are re{estimated based on these expected values.The sense values are reassigned based on the new pa-rameter estimates. This process of re{estimating pa-rameters and reassigning sense values iterates until theparameter estimates converge at a maxima. However,there is a danger that the estimates may �nd a localrather than global maxima, if the distribution of datais irregular.Gibbs Sampling is an alternative to the EM algo-rithm that is based on Markov Chain Monte Carlomethods. It approximates the distribution of the esti-mates of each parameter though a sampling operation,whereas the EM algorithm �nds point estimates via amaximization operation. Gibbs Sampling begins withguesses of the parameter estimates. The parametersare re{estimated by sampling from a conditional dis-tribution where the previously sampled values of theother parameters are given as well as the values of thefeatures. Sampling continues until an approximationfor the distribution of the estimates for each parame-ter is obtained.We cast WSD as a problem in unsupervised learn-ing via the EM algorithm and Gibbs Sampling. Thispresents a signi�cant advantage over supervised ap-proaches in that it allows raw text to serve as theknowledge source rather than sense{tagged text.AcknowledgmentsThis research was supported by the O�ce of NavalResearch under grant number N00014-95-1-0776.ReferencesPedersen, T., and Bruce, R. 1997. A new supervisedlearning algorithm for word sense disambiguation. InProceedings of the Fourteenth National Conference onArti�cial Intelligence.Pedersen, T.; Bruce, R.; and Wiebe, J. 1997. Sequen-tial model selection for word sense disambiguation. InProceedings of the Fifth Conference on Applied Nat-ural Language Processing.


