
Annotating and Automatically Extracting Task Descriptions from Shared Task
Overview Papers in Natural Language Processing Domains

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Anna Martin

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

Ted Pedersen

May 2022

© Anna Martin 2022

Acknowledgements

There are many who have supported me in my efforts that I would like to thank.

In particular I would like to thank my thesis advisor Dr. Ted Pedersen. I have

learned an incredible amount from him in multiple capacities through attending his

courses as a student, as a teaching assistant, and through his guidance on my thesis

research. I am grateful for his continuous feedback, patience, and editing assistance

throughout the writing process. I am also grateful for his help through the PhD

application process.

I would also like to thank Director of Graduate Studies Dr. Arshia Khan for her

guidance during seminar I and II. She helped me learn how to organize literature

reviews and to articulate the rationale and impact statements for my work.

I am quite grateful to Dr. Jennifer D’Souza for her help in developing our corpus

guidelines and annotations.

Thank you to my thesis committee Dr. Alexis Elder and Dr. Andrew Sutton

for their valuable time and feedback on my work. Thank you also to Dr. Elder for

helping me find resources to support my Ethical Considerations section.

Many thanks to my family for their support through the last two years, particu-

larly Tony Boyle.

i

Dedication

I dedicate my master’s thesis to my grandfather Hal Martin, whose lifelong scholarship

and contributions to mathematics set an example that I hope to follow all my life.

ii

Abstract

The rapid growth rate of scientific literature makes it increasingly difficult for

researchers to keep up with developments in their field. This is a problem that can

be addressed by structuring academic papers according to information units that go

deeper than keywords. The need to efficiently structure scholarly documents so that

they are machine operable necessitates the creation of machine readers to extract

and classify bits of fine grained scientific information. This process requires the de-

velopment of gold standard corpora of annotated scholarly work. For this thesis we

developed a gold-standard corpus of task description phrase annotations from Shared

Task Overview papers and trained a text classifier on the resulting dataset. The an-

notation project consisted of: developing a set of annotation guidelines; reading and

annotating the task descriptions of 254 Shared Task Overview papers published in the

ACL Anthology; validating our guidelines by measuring the Inter-Annotator Agree-

ment; and digitizing the resulting corpus such that it could be used as a resource in

machine learning projects. The resulting dataset comprises 254 full text papers con-

taining 41,752 sentences and 259 task descriptions. In our second and final validation

we achieved a strict score of 0.44 and a relaxed score of 0.95, measured using Cohen’s

kappa coefficent. We then used this resource to facilitate the training and develop-

ment of a classifier to perform automatic identification of shared task descriptions.

For preprocessing, we improved the balance between negative and positive samples

by eliminating every paper section that does not contain a task description. Dur-

ing our machine learning experiments we trained and validated 18 different sentence

classification models using a variety of text encodings and hyperparameter settings.

The best performing model was SciBERT, which achieved an F1 score of 0.75 when

applied to the reduced test set.

iii

Contents

Contents iv

List of Tables vii

List of Figures x

1 Introduction 1

2 Background 4

2.1 Information Retrieval Origins . 5

2.2 Scholarly Information Extraction Today 6

2.3 Scholarly Document Processing Workshops 7

2.4 Scientific Information Extraction Corpora 8

2.5 The NLP Contribution Graph Shared Task 12

2.6 Transformer Architectures . 13

3 Annotation Project 17

3.1 Data Statement . 17

3.1.1 Curation Rationale . 17

3.1.2 Language Variety . 18

3.1.3 Speaker Demographic . 18

iv

3.1.4 Annotator Demographic . 18

3.1.5 Speech Situation . 19

3.1.6 Text Characteristics . 19

3.1.7 Corpus Access . 19

3.2 Corpus Selection . 20

3.3 Annotation Process . 20

3.4 Guidelines . 21

3.4.1 What is a Task Description? 22

3.4.2 Task Description Phrase Boundaries 24

3.4.3 Ambiguous Cases . 27

3.5 Annotation Results . 33

3.6 Corpus Statistics . 36

3.6.1 Characteristics of Shared Task Overview Papers 36

3.6.2 Task Description Characteristics 39

4 Classification Project 42

4.1 Data Preparation . 43

4.1.1 Leveraging Paper Context and Hierarchical Structure 45

4.2 Experimental Setup . 47

4.2.1 Preprocessing . 47

4.2.2 Classification Algorithms . 49

4.2.3 Training Loop . 49

5 Results 54

5.1 Baseline . 56

5.2 Training Results . 57

5.2.1 Non-BERT Training Results 57

v

5.2.2 BERT Training Results . 62

5.3 Test Results . 66

5.3.1 Error Analysis . 68

6 Conclusion 77

6.1 Thesis Contributions . 77

6.2 Discussion of Results . 78

6.3 Future Work . 78

6.4 Ethical Considerations . 79

References 82

A Dataset Preparation: Alternative Approaches 93

A.1 Generating Synthetic Data . 93

A.2 Automatic Downsampling . 95

A.2.1 Downsampling Using Cosine Similarity 95

A.2.2 Downsampling Using TextRank Algorithm 96

B Software Used 98

C Full Results 100

vi

List of Tables

3.1 Inter-annotator agreement measured with Cohen’s kappa coefficient . 35

3.2 Distribution of reruns . 38

3.3 Number of full, partial, subtask, and null task descriptions in 254

shared task overview papers . 41

3.4 Mean word count and sentences per task description 41

4.1 Example of a data sample . 45

4.2 This table contains a list of all classifiers used in our training experi-

ments, their hyperparameter settings, and the software used to imple-

ment them. 53

5.1 Example confusion matrix . 55

5.2 Mean training results and standard deviation for linear, ensemble, and

neural classifiers across ten runs. Only the results for the best encoding

are reported. 58

5.3 The average confusion matrix for XGBoost with one-hot encoding

trained on the dataset with contextual features. 59

5.4 The average confusion matrix for SVM with one-hot encoding trained

on the dataset with contextual features. 60

5.5 Mean F1 score by classifier type . 60

vii

5.6 The average confusion matrix for K-Nearest Neighbor with tf-idf (char-

acter ngrams) trained on the dataset with contextual features. 61

5.7 The average confusion matrix for gradient boosting with tfidf (word

ngrams) trained on the dataset with contextual features. 61

5.8 The confusion matrix for complement naive Bayes with one-hot encod-

ing trained on the dataset with contextual features. 62

5.9 Mean training results and standard deviation for four BERT classi-

fiers across ten runs. Only the results for the best hyperparameter

combination are reported here. 64

5.10 The confusion matrix for the test results on the manually reduced test

set. 66

5.11 The confusion matrix for the test results on the automatically reduced

test set. 67

5.12 The confusion matrix for the test results on the full test set. 67

5.13 Test results for each version of the test dataset 67

B.1 This table contains a list of all classifiers used in our training experi-

ments and their hyperparameter settings. 98

B.2 This table contains a list of all classifiers used in our training experi-

ments and the software used to implement them. 99

C.1 Training results using BERT trained on data with context. 101

C.2 Training results using BERT trained on text data only. 102

C.3 Training results using SciBERT trained on data with context. 103

C.4 Training results using SciBERT trained on text data only. 104

viii

C.5 Training results for dataset with context. For each model, row 1 of

results is the precision, row 2 of results is the recall, and row 3 of

results is the f1 score. 105

C.6 Training results for the plain dataset. For each model, row 1 of results

is the precision, row 2 of results is the recall, and row 3 of results is

the f1 score. 106

C.7 Training results for neural networks. For each model, row 1 of results

is the precision, row 2 of results is the recall, and row 3 of results is

the f1 score. 107

C.8 Confusion matrices for naive bayes 108

C.9 Confusion matrices for logistic regression 108

C.10 Confusion matrices for svm . 108

C.11 Confusion matrices for knn . 108

C.12 Confusion matrices for random forest 109

C.13 Confusion matrices for sgd . 109

C.14 Confusion matrices for gradient boost 109

C.15 Confusion matrices for XGBoost . 109

C.16 Confusion matrices for nn . 110

C.17 Confusion matrices for dnn . 110

C.18 Confusion matrices for rnn . 110

C.19 Confusion matrices for cnn . 110

C.20 Confusion matrices for lstm . 111

C.21 Confusion matrices for bilstm . 111

ix

List of Figures

3.1 A full task description containing a description of the input (”Given a

short context, target word in English, and several substitutes for the

target word”), and a description of what participating systems must do

(”rank these substitutes according to how ”simple” they are, allowing

ties”). From SemEval-2012 Task 1: English Lexical Simplification,

Specia, Jauhar, and Mihalcea 2012. 23

3.2 A partial task description containing a description of what participat-

ing systems must do (”dividing text into syntactically related non-

overlapping groups of words, so-called text chunking”). From Intro-

duction to the CoNLL-2000 Shared Task Chunking, Tjong Kim Sang

and Buchholz 2000. 23

3.3 A task description containing a description of each subtask. From

Fine-grained Event Classification in News-like Text Snippets - Shared

Task 2, CASE 2021, Haneczok et al. 2021. 24

x

3.4 This is an example of a phrase that could be misconstrued as a task

description, but only describes the topic addressed by the shared task

(”sensiting inflectionality”). This phrase should not be extracted as a

task description phrase. From Sensiting Inflectionality: Estonian Task

for SENSEVAL-2, Kahusk, Orav, and Õim 2001. 27

3.5 This is an example of a phrase that could be misconstrued as a task

description, but actually describes the aim of the task organizers.

This phrase should not be extracted as a task description phrase.

From SemEval-2020 Task 2: Predicting Multilingual and Cross-Lingual

(Graded) Lexical Entailment, Glavaš et al. 2020. 28

3.6 This is an example of a phrase that could be misconstrued as a task de-

scription, but actually describes the task for the annotators who helped

prepare the task’s dataset. This phrase should not be extracted as a

task description phrase. From An Evaluation Exercise for Romanian

Word Sense Disambiguation, Mihalcea et al. 2004. 28

3.7 This is an example of a phrase that could be misconstrued as a task

description, but actually describes background information related to

the research area. This phrase should not be extracted as a task de-

scription phrase. From Dutch Word Sense Disambiguation: Data and

Preliminary Results, Hendrickx and Bosch 2001. 28

3.8 The left example shows annotator 1’s choice and the right example

shows annotator 2’s choice. From SIGMORPHON 2020 Shared Task

0: Typologically Diverse Morphological Inflection, Vylomova et al. 2020 36

3.9 Distribution of Paper Topics . 37

3.10 Distribution of Publication Year . 38

3.11 Distribution of sections containing task descriptions 39

xi

3.12 Distribution of features that help choose between two or more candi-

date phrases . 40

4.2 Dataset extraction process . 47

4.1 An illustration of the conversion of scholarly PDFs to plain text files

using GROBID . 52

5.1 Training losses per epoch for scibert cased trained with contextual data

for two epochs with batch size of 32 and learning rate of 5e-05. Each

curve shows the losses for one of ten runs. 63

5.2 Training losses per epoch for bert-uncased trained without contextual

data for three epochs with batch size of 32 and learning rate of 5e-05. 65

5.3 Training losses per epoch for scibert cased trained without contextual

data for four epochs with batch size of 32 and learning rate of 5e-05. . 65

C.1 Losses for uncased BERT trained on dataset with context 112

C.2 Losses for uncased BERT trained on dataset without context 112

C.3 Losses for cased BERT trained on dataset with context 112

C.4 Losses for cased BERT trained on dataset without context 112

C.5 Losses for uncased SciBERT trained on dataset with context 112

C.6 Losses for uncased SciBERT trained on dataset without context . . . 112

C.7 Losses for cased SciBERT trained on dataset with context 113

C.8 Losses for cased SciBERT trained on dataset without context 113

xii

1 Introduction

Due to the rapid growth rate of scientific literature, it is necessary to find ways to

improve how scientific information is structured to make it easier for researchers to

stay up-to-date in their fields. To do this, natural language processing and informa-

tion extraction techniques can be applied towards structuring scientific data (such as

concepts, terms, and relations between concepts and terms) into machine-actionable

form. Information that is organized in a knowledge graph is much easier for machines

to process and use for downstream tasks than raw text taken from PDFs. Once the

scientific information is used to populate scientific knowledge graphs, it can be more

easily accessed to provide advanced functionality for digital libraries to improve the

literature discovery phase of research.

Digital libraries are essential for widening access to scholarly work by providing

online access to peer-reviewed academic journals. However, the discovery process

of the research cycle has become more difficult; keyword searches of digital libraries

can yield thousands of results, many of which may not be relevant to the researcher.

Furthermore, the interface between resource and researcher might not provide enough

information to the reader to help them decide if the resource is worth reading.

Digital Libraries such the Open Research Knowledge Graph1 seek to improve this

aspect of the research process by storing academic papers in knowledge graphs that

contain both bibliographic information and scientific entities that outline the con-

tributions of the paper. Populating this graph by hand is time consuming, so NLP

1https://www.orkg.org/orkg/

1

https://www.orkg.org/orkg/

information extraction techniques must be used to develop machine readers to anno-

tate the papers for inclusion in the knowledge graph. In order to train such machine

readers, it is necessary to have access to hand-annotated, domain-specific datasets.

This thesis contributes to scholarly document processing research by providing a new

resource for training machine readers. We build on our previous work (Martin and

Pedersen 2021), which comprised a contribution to the shared task SemEval-2021 Task

11: NLP Contribution Graph (D’Souza, Sören Auer, and Pedersen 2021). The NLP

Contribution Graph shared task addressed the need for datasets and benchmarks for

structuring scholarly contributions for inclusion in research knowledge graphs. For

more information on this shared task and some of the participating systems, see

Section 2.5.

This thesis’ primary contribution is the creation of a gold-standard corpus of task

description phrase annotations from Shared Task Overview papers. We assembled our

task description corpus by searching the Association for Computational Linguistics

(ACL) Anthology2 for shared task description papers, including all SemEval task

description papers from the year 2001 to 2021, all CoNLL3 shared tasks 2000-2020,

and shared tasks from workshops hosted by the AACL4, ACL, EACL5, EMNLP6, and

NAACL7 conferences. The dataset contains a total of 254 shared task description

papers, each with task description phrases annotated.

Our secondary contribution is the development of a machine learner trained on

our corpus to extract task descriptions. We preprocessed the dataset by filtering out

sections that did not contain task descriptions to improve the balance between positive

2https://aclanthology.org/
3https://www.conll.org/
4https://www.aclweb.org/portal/
5https://2021.eacl.org/
6https://2021.emnlp.org/
7https://naacl.org/

2

https://aclanthology.org/
https://www.conll.org/
https://www.aclweb.org/portal/
https://2021.eacl.org/
https://2021.emnlp.org/
https://naacl.org/

and negative samples. We ran experiments using 18 different classifiers including

five single-learner linear models, three ensemble learners, six types of neural network

architectures, and four BERT variants. We trained each of the non-neural learners on

four different kinds of text encodings and trained the BERT models exhaustively on 12

different combinations of hyperaparameter settings. Each of the models was trained

ten times with a different validation set made up of 10% of the training data. The

scores were averaged across all ten runs and the mean score and standard deviation

reported in the Results section (Section 5). Each of these experiments was repeated

with a variation on the dataset that included features that describe positional and

contextual metadata for each sentence. The best performing model was retrained on

the training data and tested on an unseen test set resulting in an F1 score of 0.75.

The most important takeaway from these experiments is that choices made around

how the data is prepared are crucial, particularly for a small corpus with very few

positive samples.

3

2 Background

The research area of Scientific Document Processing (SDP) is concerned with find-

ing approaches to improve the retrieval and structuring of information from scholarly

papers in science domains. This concern has largely been motivated by the rapid

growth rate of scientific literature, which has been estimated in Larsen and Ins 2010

to be between 2.7 and 13.5% from 1997 to 2006. In Ware and Mabe 2015, it is esti-

mated that roughly 3 million scientific articles are published yearly. Some domains

are growing even faster: Dhawan, Gupta, and N. K. Singh 2020 analyzed machine

learning research’s global output between 2009 and 2018 and estimated a growth rate

of nearly 28% per year. According to yearly publication data presented in Li et al.

2020, the mean annual growth rate in the deep learning domain between 2013 and

2019 is 152.9%. This rapid growth has created a ”bottleneck” effect for researchers

(D. Buscaldi 2018), and necessitates the application of natural language processing

(NLP) and information extraction (IE) techniques towards structuring scientific and

bibliometric data into machine-actionable forms. One such approach is to populate or

enhance knowledge graphs with scientific entities and relations extracted from schol-

arly documents. Such scientific knowledge graphs can then be used to power appli-

cations that improve access to scientific literature, such as Digital Libraries (Ammar

et al. 2018, S. Auer et al. 2020).

4

2.1 Information Retrieval Origins

Researchers are focused today on automating the process of extracting fine-grained

information from documents, due to the impracticality of human-annotating the vast

and growing amount of scholarship that exists. But this is not a new impulse; the

growth in size of collections of unstructured text in the twentieth century caused a

similar pressure that led to the development of information retrieval (IR) systems.

According to Sanderson and Croft 2012, initial developments in IR occurred in the

1950s after the invention of the UNIVAC computer. These developments included

the use of keywords to index documents in a catalog, and retrieving documents based

on ranked relevance of documents to the search query based on statistical measures

and keywords.

Many of the methods for improving IR in the 1960s and 1970s described by Sander-

son and Croft 2012 are still relevant today (and in fact were applied during the ex-

periments performed for this thesis: see Section 4.2.1). One need was to improve

the way that documents were ranked so that ranking algorithms would return more

relevant results for a given query. These techniques included: vectorizing the docu-

ment and query and using the cosine coefficient between the two vectors to determine

their similarity; ”relevance feedback”, which assigned relevance to documents based

on past searches; document clustering based on similarity; and term frequency - in-

verse document frequency (tf-idf), (a statistic that measures how relevant a word is

to a document based on the word’s frequency across the collection and within the

document).

The tradition of holding shared tasks to facilitate the creation of datasets and

benchmark improvements in NLP also dates back to the 20th century. The TextRE-

5

trieval Conference (TREC)1 has been held annually since 1992 and was originally

designed to support researchers in testing IR systems on large scale datasets.

2.2 Scholarly Information Extraction Today

Effective and accurate extraction of scientific information from scholarly docu-

ments comes with a set of unique challenges. While modern language models work

quite well on generic IE tasks such as those included in the General Language Un-

derstanding Evaluation (GLUE) (A. Wang, A. Singh, et al. 2018) and SuperGLUE

(A. Wang, Pruksachatkun, et al. 2019) benchmarks, these tools can fall short in the

domain of scientific literature, due to three main challenges.

Firstly, the length of documents processed in SDP tend to be longer than the

documents provided in traditional NLP tasks. Language models such as Bidirectional

Encoder Representations from Transformers (BERT) (Devlin et al. 2019a) are trained

on sentence-level data. The corpora used in the GLUE and SuperGLUE benchmarks

present training data at the phrase, sentence, and paragraph level, so BERT and

BERT variants perform quite well. However, the analysis of scientific documents

requires systems to develop an understanding of the work at the document level, and

so requires additional techniques to allow systems to understand long passages of

text.

Secondly, most modern language models are trained on generic sources of informa-

tion, such as novels, Wikipedia, news sites, and Reddit (Devlin et al. 2019a, Radford

et al. 2019). The datasets for traditional benchmarks are made up of similar sources,

so are simple to process due to the large amount of shared vocabulary with models

such as BERT. In contrast, the vocabulary of scientific discourse is highly specialized

1https://trec.nist.gov/

6

https://trec.nist.gov/

to various domains, can have different meanings across domains, and changes rapidly

with scientific progress. Scientific vocabularies make heavy use of numbers, symbols,

mathematical and scientific notation, abbreviations, and acronyms. Symbols and

words may have no meaning outside of the context of the paper (Head et al. 2021),

or may defined in a separate document.

Lastly, full understanding of scientific documents must be multi-modal. Significant

details may only be present in figures and tables (Milosevic et al. 2016). Furthermore,

scholarly discourse is intertextual, requiring an understanding of external scientific

context and an ability to process citations and references.

2.3 Scholarly Document Processing Workshops

Multiple workshops have emerged to meet these challenges. The first was the

1st International Workshop on Mining Scientific Publications (WOSP) held in 2012

(Knoth, Zdráhal, and Juffinger 2012), which recognized the growing importance of

Digital Libraries and the insufficiency of libraries that only provide access to scien-

tific content. The organizers of this workshop sought to connect researchers who

were interested in developing systems for analyzing and extracting information from

databases of scientific publications and using that information to develop tools for

improving research. In 2016 the first workshop on Bibliometric-enhanced Information

Retrieval and Natural Language Processing for Digital Libraries (BIRNDL) was run,

with similar motivations to the WOSP workshops (Cabanac et al. 2016).

Shared tasks such as a few hosted by the International Workshop on Semantic

Evaluation (SemEval)2 and the CL-SciSumm task (Chandrasekaran, Yasunaga, et

al. 2019) have also served as venues for encouraging and documenting progress on

2https://semeval.github.io/

7

SDP topics. SemEval-2017 Task 10 (Augenstein et al. 2017), SemEval-2018 Task 7

(Gábor, Davide Buscaldi, et al. 2018), and SemEval-2021 Task 11 (D’Souza, Sören

Auer, and Pedersen 2021) have provided datasets and benchmarks for scientific entity

and relation extraction, while the 2019 CL-SciSumm task provided an opportunity for

participants to approach the problem of scientific document summarization (Chan-

drasekaran, Yasunaga, et al. 2019).

In 2020, the first Workshop on Scholarly Document Processing was held with

an emphasis on bringing together researchers across multiple domains in NLP, Ma-

chine Learning, and Artificial Intelligence (Chandrasekaran, Feigenblat, et al. 2020).

The first SciNLP: Natural Language Processing and Data Mining for Scientific Text

workshop was held in the same year, focused primarily on the extraction and repre-

sentation of information from scientific text3. Both of these workshops were held a

second time in 2021. SciNLP 2021 was focused on understanding scientific text, and

included our poster presentation describing our Shared Task Description annotation

project (Martin, D’Souza, and Pedersen 2021).

2.4 Scientific Information Extraction Corpora

Along with these workshops, numerous corpora have been created for the pur-

pose of providing training data and benchmarks for the development of scientific

information extraction systems. The characteristics of these datasets vary. Some

are generated automatically with light manual annotation, while others are purely

hand-annotated by domain experts. The number of documents per dataset and the

research domains that are included vary as well. Most of the corpora include some

kind of schema for annotating entities and relations, although there is some small

3https://scinlp.org/

8

https://scinlp.org/

variety in the entity and relation types across datasets.

Early work in corpus development for information extraction was oriented towards

biomedical domains. The original GENIA corpus (Kim, Ohta, et al. 2003) was moti-

vated by interest in using NLP techniques for text mining from biology texts, and the

subsequent need for domain-specific annotated training datasets. The GENIA corpus

provided 2,000 MEDLINE4 abstracts, annotated by two biology domain experts with

100,000 term annotations. The CRAFT dataset (Bada et al. 2011) was created to

provide a gold standard resource to help address the increasing growth rate of biolog-

ical research. Similarly to the GENIA annotation project, the dataset was annotated

by biology domain experts. However, the guidelines followed by the annotators were

developed by an expert in knowledge engineering and biomedical ontologies and an

expert in computational linguistics. This resources provides 97 full-length articles con-

taining 99,907 annotations of 4,319 unique concepts taken from 9 different biomedical

ontologies and terminologies.

In response to previous effort towards biology text mining, Zadeh and Handschuh

2014 developed the ACL RD-TEC corpus to make it easier for computational lin-

guists to do terminology extraction research by removing the need to consult with

experts from other domains. The ACL RD-TEC is a dataset for benchmarking the

extraction and classification of computational linguistics terminology and comprises

10,922 articles from the ACL anthology reference corpus (Bird et al. 2008a) with

83,845 annotated terms. This resource was updated to provide classifications of iden-

tified scientific terms into seven categories (method, tool, language resource, language

resource product, model, measures and measurements, and other) (Zadeh and Schu-

mann 2016), allowing for entity recognition and classification to be a new potential

downstream task.

4https://www.nlm.nih.gov/medline/index.html

9

https://www.nlm.nih.gov/medline/index.html

Since then, numerous corpora have been hand-annotated by experts in computa-

tional linguistics and NLP domains. The ScienceIE corpus (Augenstein et al. 2017)

was developed for the SemEval-2017 Task 10 and contains paragraph-level annotations

of keyphrases of types material, process, and task, and hyponym-of and synonym-of

relations. The data was manually annotated by undergraduate student volunteers in

relevant disciplines. The dataset contains paragraphs from 500 papers in computer

science, physics, and material science domains taken from ScienceDirect.5.

The dataset created for SemEval-2018 task 7 (Gábor, Davide Buscaldi, et al.

2018) comprised data from both the ACL-RelAcS (Gábor, Zargayouna, et al. 2016)

and ACL RD-TEC 2.0 (Zadeh and Schumann 2016) corpora. The authors used all

300 abstract annotations from the ACL RD-TEC 2.0 dataset, expanded it to 500 by

following the authors’ annotation guidelines, then used the annotations of the same

500 abstracts from the ACL-RelAcS dataset. Entities and relations are annotated,

with relation types including usage, result, model, part whole, topic, and comparison.

The SciERC corpus (Luan et al. 2018) contains 500 paper abstracts from 12 artifi-

cial intelligence conference proceedings from the Semantic Scholar Corpus (Ammar et

al. 2018). A domain expert annotated scientific entities of types task, method, metric,

material, other-sciterm, and generic, relations of typescompare, part-of, conjunction,

evaluate-for, feature-of, used-for, and hyponym-of, and coreferences. 12% of the data

was annotated by four other domain experts to determine intra-annotator agreement.

The kappa coefficient calculated to indicate intra-annotator agreement was 76.9% for

entities, 67.8% for relations, and 63.8% for coreferences. In addition to describing the

SciERC corpus in (Luan et al. 2018), Luan et al. also built a multi-task system to

extract the scientific entities, relations, and coreferences from abstracts, achieving an

F1 score of 64.2 for entity recognition, 39.3 for relation extraction, and 48.2 for coref-

5https://www.sciencedirect.com/

10

https://www.sciencedirect.com/

erence resolution. Lastly, they created a scientific knowledge graph by applying their

model trained on the SciERC dataset to 110,000 abstracts in artificial intelligence

domains.

The TDMSci corpus (Hou et al. 2021) contains expert annotations of 2,000 sen-

tences taken from 30,000 NLP papers published in the ACL Anthology. The sentences

were taken from the full text of the papers, not including abstracts, and contain men-

tions of the three types of entities annotated: task, dataset, and metric.

While our work is focused on the creation of gold standard (human annotated)

datasets, it is interesting to note that the development of some corpora is aided

using automatic annotation techniques such as term classification. The benefit of

this approach is the ability to create larger corpora more quickly with less labor from

expert annotators. However, automatically annotated datasets can be noisier than

hand-crafted ones (such noise can be a benchmarking feature for evaluating system

robustness, as seen in SemEval-2018 Task 7 (Gábor, Davide Buscaldi, et al. 2018)).

The ACL-RelAcS corpus (Gábor, Zargayouna, et al. 2016) contains 11,000 anno-

tated abstracts and introductions from the Association for Computational Linguistics

(ACL) Anthology Corpus (Bird et al. 2008b). Annotations of scientific concepts and

relations were created automatically using terminology extraction techniques and

pre-existing ontologies. There are 21 types of relations in the dataset: antonyms, co-

hyponyms, is-a, affects, based-on, char, compare, composed-of, datasource, method-

applied, model, phenomenon, problem, propose, study, tag, taskapplied, usedfor, uses-

information, yields, and wrt.

Schumann and Alonso 2018 created a labeled word list by automatically generating

semantic class labels using logistic regression. They captured over 22,980 scientific

terms in NLP domains from 11,000 papers taken from the ACL Anthology Reference

Corpus (Bird et al. 2008b). The type labels include technologies, tools, language

11

resources, language resource products, models, measures, and other.

The S2ORC corpus (Lo et al. 2020) contains 91.9 million academic papers with

bibliometric metadata and mentions of tables, figures, and citations annotated. Pa-

pers from the Semantic Scholar literature corpus Ammar et al. 2018 were preprocessed

to extract paper metadata, citations, references, bib entries, figures, tables. Links be-

tween bib entries, figures, tables in full text are resolved.

The SciREX corpus (Jain et al. 2020) uses the Papers with Code dataset6 to

learn an annotation scheme using distant supervision. Noisy automatic labeling is

applied to 438 machine learning papers, which are then manually annotated to correct

mistakes made by the automatic system. Four types of entity mentions are annotated,

method, task, metric, and dataset, as well as salient entities, binary relations, and 4-

ary relations.

2.5 The NLP Contribution Graph Shared Task

The SemEval-2021 Task 11 (NLP Contribution Graph) (D’Souza, Sören Auer, and

Pedersen 2021) provided the corpus that serves as the main source of inspiration for

our annotation project described in Chapter 3. It is similar to our work in that full

paper texts and sentence-level annotations were provided, but is more complicated

containing three levels of granularity. The NLPContributionsGraph corpus contains

the full texts of 442 papers in NLP domains. The papers were annotated by do-

main experts at the sentence-level, phrase-level, and subject-predicate-object level.

Sentences were annotated with whether they described a contribution of the paper.

Then, contribution sentences were annotated with the scientific terms and relations

that describe the contribution. Lastly, those terms and relations were structured into

6https://github.com/paperswithcode/paperswithcode-data

12

https://github.com/paperswithcode/paperswithcode-data

triples and classified into twelve information units: ablation analysis, approach, base-

line, code, dataset, experimental setup, experiments, hyperparameters, model, research

problem, results, and tasks.

Seven teams participated in this shared task. All seven solutions for phase 1 of

the task (classifying sentences as contributing or non-contributing sentences) used a

BERT-based solution of some kind (for an explanation of BERT see Section 2.6). The

best performing team, UIUC BIONLP (Liu, Sarol, and Kilicoglu 2021) enhanced the

sentence samples with contextual data, adding section header names and sentence po-

sitions as features. We took a similar approach in the classification project described

in Chapter 4.

Our team developed a pipeline incorporating a variety of techniques. We used De-

BERTA (He et al. 2021) for multi-class sentence classification, then used dependency

parsing to extract phrases from the sentences identified as contribution sentences and

format into subject-predicate-object triples. Seven teams submitted solutions to the

first phase, then eight teams made submissions to phase 2 parts 1 and 2. We ranked

fifth for the first competition phase, sixth for phase 2 part 1, and fifth for phase 2

part 2. For more information, please read our system description paper (Martin and

Pedersen 2021).

2.6 Transformer Architectures

Transformer architectures have pushed the state-of-the-art for many natural lan-

guage processing tasks, such as the GLUE and SuperGLUE benchmarks (A. Wang,

A. Singh, et al. 2018; A. Wang, Pruksachatkun, et al. 2019). Transformers rely on

something called attention. The attention mechanism, first used for computer vision

starting in 2014 (Robert-Inacio and Yushchenko 2014), allowed the model to focus on

13

different parts of an image to learn which parts of the image are the most rewarding

to focus on.

Similarly, the attention mechanism can be used in language models by allowing

the model to focus on different parts of the input sequence. This is powerful, because

it allows the model to ”remember” salient parts of the sequence selectively. Attention

was first used to build transformer networks for language modeling in 2017, when it

was applied towards machine translation tasks in Attention is All You Need (Vaswani

et al. 2017). Prior to the invention of the Transformer model, the state-of-the-art for

language processing was recurrent neural network (RNN) models with bidirectional

long short term memory (Bi-LSTM) cells. RNNs are not very efficient, struggle with

long term memory, and cannot be parallelized because they take each word from the

input data sequentially (one at a time). Transformer networks address these issues

by computing the entire sequence simultaneously using attention blocks.

The transformer network proposed in 2017 is made up of two parts, corresponding

to the encoder and decoder structure of RNNs. The input to the encoder is an entire

sequence of words. Each input word is embedded and given a positional encoding

which keeps track of the position of each word within the sequence to prevent the input

from becoming a bag of words. Then the input is fed into an attention block. This

block contains multi-head attention, which takes the input embeddings and computes

the attention between every position, replacing the original word embedding with an

embedding that combines information from pairs of words. This allows the length of

the maximal path between any two words in a sequence to never be greater than 1,

which is why Transformer models can handle distant semantic dependencies better

than RNNs.

The attention block also contains an add-and-norm layer. A residual connection

is added taking the original input to the output of the multi-head attention layer, and

14

then normalized so that the values have a mean of 0 and a variance of 1. This step

is important because it helps to minimize the number of steps required to optimize

the network using gradient descent, by ensuring that the range of values in each layer

does not change too much. The output is fed into a feed-forward network, and then

another add-and-norm layer. The final output is a sequence of embeddings with one

embedding per position in the sequence, which captures the original word plus all

of the information from the other words in the sequence. The decoder uses masked

multi-head attention to combine output words with the input words received from

the encoder. In masked multi-head attention, some of the values in the sequence have

their probabilities nullified. This is used in decoding, because the output values must

only consider information from previous outputs, so future outputs must be masked

to prevent them from being selected. For a full description of the original Transformer

for neural machine translation, see Vaswani et al. 2017.

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.

2019a) was created by Google based on the encoder half of the original Transformer

model. Its motivation is similar to the motivation behind bi-directional recurrent

neural networks, which is that it is useful to be able to use not just the previous

words in a sequence but also the future words in a sequence to predict a given word.

The main idea is that the encoder has to learn so much about the input sentence

that it makes sense to use it as a stand-alone model separate from the decoder. The

authors of BERT took just the encoder model, expanded it to 12 transformer layers

instead of 6, and then trained it on a huge dataset of novels and wikipedia pages.

It was trained on two tasks: the masked language model, where the model is given

a sentence with one word masked and has to predict what word goes in the blank,

and the next sentence prediction task, where the model must determine whether one

sentence immediately follows another sentence. BERT developed a rich statistical

15

understanding of human language as a byproduct of learning the training tasks, an

understanding which can be fine tuned for other tasks by downloading its pretrained

weights and adding a feed forward neural network on top to train it on the domain-

specific training data.

Since BERT’s invention in 2019, many other pretrained BERT variants have been

created. For our experiments we used the original BERT and SciBERT (Beltagy,

Lo, and Cohan 2019). SciBERT was trained at the Allen Institute for AI on a large

corpus made up of scientific papers rather than the more generic books and wikipedia

corpora of the original BERT, so SciBERT is a good choice for information extraction

tasks in science domains.

16

3 Annotation Project

This chapter describes the annotation project we performed to develop our gold

standard corpus NLPSharedTasks. The aim of this annotation project was to develop

a gold standard corpus of shared task overview papers with annotations of shared task

descriptions. A shared task description is a span of text containing information on

an NLP or computational linguistics task to be performed by participating systems.

This information must describe in brief what is to be done to accomplish the task, and

may also contain details on the dataset the task is performed over. First we provide

a Data Statement following the guidelines by Bender and Friedman 2018. Then, the

overview of our methodology is broken up into three sections describing the corpus

selection, annotation process, and final set of guidelines. The chapter concludes with

a discussion of our findings, including our inter-annotator agreement (IAA) scores

and some dataset statistics.

3.1 Data Statement

Following is the Data Statement for our corpus NLPSharedTasks, version 1.

3.1.1 Curation Rationale

Our corpus contains the full texts of 254 Shared Task Overview papers published

in the ACL Anthology between the year 2000 and 2021. The criteria for inclusion

are:

17

• The paper was written by the organizers of a Shared Task

• The paper provides a description of the Shared Task, including details on the

dataset the task is performed over, the task to be implemented by participating

systems, and an overview of participating systems

• The Shared Task described in the paper was hosted by some research workshop

in the domain of computational linguistics or natural language processing (NLP)

These criteria ensure that the papers included in the corpus are likely to contain

a Shared Task Description phrase. The ACL Anthology was chosen as the source

because it provides a catalog that is easy to browse for qualifying candidates for

inclusion. Furthermore, choosing a single anthology to draw from provided some

consistency of paper style and organization. The starting year (2000) was chosen

because the formatting of papers describing earlier initiatives was too dissimilar.

3.1.2 Language Variety

The papers included in NLPSharedTasks are in English as used in scientific com-

munication in linguistics, computer science, and natural language processing domains.

3.1.3 Speaker Demographic

The demographics of the paper authors are unknown. The speakers are likely

researchers and students of computational linguistics and natural language processing.

3.1.4 Annotator Demographic

The annotation was performed by two English-speaking annotators well versed

in a broad range of NLP topics. Annotator 1 is a graduate student in computer

18

science with a B.S. in computer science, and annotator 2 is a post doctoral researcher

in data science with a PhD in computer science. Both annotators had shared task

experience, annotator 1 as a participant and annotator 2 as an organizer of SemEval

2021: NLPContributionsGraph (D’Souza, Sören Auer, and Pedersen 2021). Neither

annotator was compensated.

3.1.5 Speech Situation

The papers included in NLPSharedTasks were written between 2000 and 2021 in

research settings. The speech included in these papers is written and is assumed to

be scripted and edited, as well as peer-reviewed. In the case of multiple authors, it is

unknown whether interaction was either synchronous or asynchronous. The intended

audience of the papers included in NLPSharedTasks is researchers and practitioners

of computational linguistics and natural language processing.

3.1.6 Text Characteristics

The genre of the texts included in NLPSharedTasks can be described as written

scientific communication in computational linguistics domains and other fields. As

such, scientific vocabulary is used throughout that is specific to these domains and

the documents are structured in a formal way. Texts are structured with sections

under headers including Title, Abstract, Introduction, Related Work, Task Description,

Results, and Conclusion, among others.

3.1.7 Corpus Access

NLPSharedTasks corpus is available on GitHub and is licensed under a Creative

Commons Attribution 4.0 International License.

19

https://github.com/anmartin94/martin-masters-thesis-2022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

3.2 Corpus Selection

The resource we drew from was the annual research workshop SemEval and similar

initiatives. These venues host shared tasks that approach a wide variety of semantic

problems and provide a rich resource for understanding the state of the art in semantic

analysis. We assembled our task description corpus by searching the ACL Anthology

for shared task description papers, including all SemEval task description papers

from the year 2001 to 2021, all CoNLL1 shared tasks 2000-2020, and shared tasks from

workshops hosted by the AACL2, ACL, EACL3, EMNLP4, and NAACL5 conferences.

The dataset was developed in two stages. The first stage selected only Shared Task

Overview papers associated with the SemEval workshop from 2001 to 2020, yielding

165 papers. The second stage required searching the ACL Anthology for Shared

Task Overview papers published during other workshops, as well as adding the newly

published set of papers from SemEval 2021. The second stage added 89 papers to

the dataset. The final dataset contains a total of 254 shared task description papers

between the years 2000 and 2021 and encompasses twenty natural language processing

research topics (see Figure 3.9).

3.3 Annotation Process

The first annotator extracted one or two task description phrases from every paper

in the corpus and generated a set of guidelines for the second annotator to follow.

The first annotator created two representative sets of twenty papers each. The first

subset was extracted after the first stage of dataset selection and contained only

1https://www.conll.org/
2https://www.aclweb.org/portal/
3https://2021.eacl.org/
4https://2021.emnlp.org/
5https://naacl.org/

20

https://www.conll.org/
https://www.aclweb.org/portal/
https://2021.eacl.org/
https://2021.emnlp.org/
https://naacl.org/

SemEval papers from 2001 to 2020. The second subset was extracted after the second

stage of dataset selection and contained papers from the CoNLL workshop, SemEval

2021, and other workshops hosted by the AACL, ACL, EACL, EMNLP, and NAACL

conferences. These sets were selected to be representative of the range of annotation

difficulty, publication date, and subject matter contained in the corpus. The second

annotator annotated these subsets extracting only one phrase from each paper, and

intra-annotator agreement was determined using Cohen’s kappa coefficient. A strict

score and a relaxed score were calculated for each dataset, where the strict score

compared the exact phrase spans and the relaxed score compared the sentences in

which phrase spans were found. After the first subset was annotated by the second

annotator, the guidelines were refined by the first annotator to address ambiguities

before releasing the second set to the second annotator.

Through the course of writing and revising the guidelines all 254 papers had to be

re-annotated four times, yielding a data set that is consistent but time-intensive to

produce. Annotator 1 spent roughly 12 minutes per paper during the first round of

annotations. Subsequent annotations were less time intensive as they only required

evaluating whether the chosen task description still met the requirements rather than

reading each paper all the way through.

3.4 Guidelines

This section provides a detailed overview of the final iteration of the guidelines

we developed. It covers the definitions of task description and task description sub-

types full task description, partial task description, and multiple subtasks description.

The annotation specifics are described by sets of rules. The first set governs how

the task description phrase boundaries should be selected. The second dictates how

21

ambiguities should be resolved, describing four different sources of ambiguities and

tips for determining the correct annotation for each scenario.

3.4.1 What is a Task Description?

We define a task description phrase as a span of text containing information on

the task that must be performed by participating systems. A full task description

phrase will contain information on the input data and a brief description of what the

participating system must accomplish with the input data (see Figure 3.1). There

are a variety of ways that paper authors describe the task at hand, which necessitates

annotating a broad range of task description types. For example, many papers do not

contain a single span that meets the definition of a full task description phrase. For

this reason, the annotator may also extract a partial task description phrase that only

describes the task to be performed by participating systems (see Figure 3.2). However,

the extracted task description phrase should make sense out of context; a phrase

whose wording is too vague or dependent on previous content to be understood out

of context would not be extracted in our annotation process. Task description phrases

do not need to provide an exhaustive description of the task, but they should not be

overly vague, generic, or confusing. A third type of task description, called multiple

subtasks description can be extracted when the phrase covers multiple subtasks in

a single continuous sequence, as in Figure 3.7. Such a task description is permitted

even if the content spans multiple sentences.

22

Figure 3.1: A full task description containing a description of the input (”Given a
short context, target word in English, and several substitutes for the target word”),
and a description of what participating systems must do (”rank these substitutes
according to how ”simple” they are, allowing ties”). From SemEval-2012 Task 1:
English Lexical Simplification, Specia, Jauhar, and Mihalcea 2012.

Figure 3.2: A partial task description containing a description of what participating
systems must do (”dividing text into syntactically related non-overlapping groups of
words, so-called text chunking”). From Introduction to the CoNLL-2000 Shared Task
Chunking, Tjong Kim Sang and Buchholz 2000.

23

Figure 3.3: A task description containing a description of each subtask. From Fine-
grained Event Classification in News-like Text Snippets - Shared Task 2, CASE 2021,
Haneczok et al. 2021.

3.4.2 Task Description Phrase Boundaries

This is a phrase-level annotation task that allows for the extraction of multiple

consecutive phrases. This introduces ambiguity in choosing how much of a sentence to

include in the extracted phrase. The overall aim is to extract enough of the sentence

or consecutive sentences to describe the task so that it makes sense out of context.

Edges of the sequence may be trimmed if they are not necessary to understand the

task at hand, but internal phrases should not be cut because the extracted sequence

must be continuous. The following rules are provided to help the annotator determine

how much of a sentence to trim:

1. For compound sentences, only clauses which contain information that specifi-

cally describes the task or the given task data should be examined.

2. If the extracted clause is a dependent clause, it might begin with a phrase

that describes the relationship between the extracted clause and the trimmed

24

independent clause, such as phrase beginning with a relative pronoun (e.g. that,

which). This phrase should be trimmed if it makes the extracted sequence

awkward out of context.

3. When the sentence mentions task participants or participating systems (e.g.

”This task asks participants”, ”Participating systems must”), that mention

should usually be removed if it is not relevant to the task description and if

it is positioned at either end of the sequence.

4. If the trimmed sequence starts with an infinitive verb, the ”to” should be

trimmed.

5. If the last word in the span is followed by a period, then the period should be

omitted unless the phrase span covers more than one consecutive sentences.

6. When the phrase is extracted from a title, the part of the title with the year,

task number, and workshop or shared task name should be removed, as well as

any extraneous information that does not provide information about the task.

Following is an example applying rules 1-5 to determining phrase boundaries for a

single sentence, “This paper presents the Graded Word Similarity in Context (GWSC)

task which asked participants to predict the effects of context on human perception

of similarity in English, Croatian, Slovene and Finnish.”

• Guideline 1: The independent clause “This paper presents the Graded Word

Similarity in Context (GWSC) task” does not provide any information about

the task itself, so it can be removed.

Result: “which asked participants to predict the effects of context on human

perception of similarity in English, Croatian, Slovene and Finnish.”

25

• Guidelines 2 and 3: The phrase “which asked participants” describes the

relationship between clauses, so it does not make sense without the context of

the full sentence. The fact that the task asked participants to do something is

a given, so it need not be included.

Result: “to predict the effects of context on human perception of similarity in

English, Croatian, Slovene and Finnish.”

• Guideline 4: The resulting phrase begins with an infinitive verb, so “to” should

be trimmed.

Result: “predict the effects of context on human perception of similarity in

English, Croatian, Slovene and Finnish.”

• Guideline 5: The phrase ends with a period, which should be omitted.

Final Result: “predict the effects of context on human perception of similarity

in English, Croatian, Slovene and Finnish”

Rule 6 can be applied to titles such as ”SemEval-2015 Task 4: TimeLine: Cross-

Document Event Ordering”. “SemEval-2015 Task 4” should be removed. The name of

the task “TimeLine:” should also be removed, because it does not provide information

on the task. The result is “Cross-Document Event Ordering”.

For downstream phrase-level extraction tasks, the guidelines describing task de-

scription phrase boundaries may be encoded into hand-written rules to aid in bound-

ary identification.

26

Figure 3.4: This is an example of a phrase that could be misconstrued as a task
description, but only describes the topic addressed by the shared task (”sensiting
inflectionality”). This phrase should not be extracted as a task description phrase.
From Sensiting Inflectionality: Estonian Task for SENSEVAL-2, Kahusk, Orav, and
Õim 2001.

3.4.3 Ambiguous Cases

What is Not a Task Description?

Although there is a broad range of specificity and detail that is permitted in task

descriptions, we discovered that there are some phrases that may appear similar to

task description phrases that should not be extracted. Task description phrases will

often mention the research area, but a phrase that only describes the research area

is insufficient if it does not contain information on the task to be performed (see

Figure 3.4). One other pitfall we observed is the fact that sometimes paper authors

use language when describing the aim, goal, or “task” of the task organizers (see

Figure 3.5) or dataset annotators (see Figure 3.6) that makes it seem like they are

describing the task to be performed by participating systems. A phrase describing

the organizers’ aim or the dataset creation task would not be extracted as a task

description phrase according to our guidelines. Other misleading phrases include

phrases in Introduction/Background sections which describe a general NLP task in

order to provide the background information the reader needs to understand the task

at hand (see Figure 3.7). Such a phrase would also not be extracted, because it is

not describing the actual task to be performed.

27

Figure 3.5: This is an example of a phrase that could be misconstrued as a task
description, but actually describes the aim of the task organizers. This phrase should
not be extracted as a task description phrase. From SemEval-2020 Task 2: Predicting
Multilingual and Cross-Lingual (Graded) Lexical Entailment, Glavaš et al. 2020.

Figure 3.6: This is an example of a phrase that could be misconstrued as a task
description, but actually describes the task for the annotators who helped prepare
the task’s dataset. This phrase should not be extracted as a task description phrase.
From An Evaluation Exercise for Romanian Word Sense Disambiguation, Mihalcea
et al. 2004.

Figure 3.7: This is an example of a phrase that could be misconstrued as a task
description, but actually describes background information related to the research
area. This phrase should not be extracted as a task description phrase. From Dutch
Word Sense Disambiguation: Data and Preliminary Results, Hendrickx and Bosch
2001.

Papers with Subtasks or Joint Tasks

One characteristic of Shared Task Overview papers that complicates the annota-

tion process is that some papers describe subtasks, joint tasks, and multi-track tasks.

Developing a machine reader to determine how many subtasks are described in the

paper and to extract a task description for each one from potentially disparate parts

28

of the paper would not be trivial. For this reason, we do not annotate subtask de-

scriptions unless they appear in consecutive sequences of text as in Figure 3.3. When

there are multiple tracks for a task, the tracks usually differ in terms of the input

language or what kinds of resources are allowed in training the participating system.

Because tracks usually approach the same task, we ignore them in this annotation

scheme. Joint tasks are different from subtasks in that, while subtasks are usually ,

joint tasks are stand alone tasks without a hierarchy. When a paper describes two

or more stand-alone tasks, then the annotator should attempt to extract a task de-

scription for each task, even if the sequences of text are not continuous or found in

different sections of the paper.

Subtasks, joint tasks, and task tracks can be easily identified based on vocabulary.

This would be a good application of handcrafted rules to help a machine reader

determine if a paper contains subtasks or not. Determining whether there are subtasks

would be helpful, as papers with subtasks require the annotator to read the paper in

a slightly different way.

Choosing Between Two Or More Candidates

Sometimes there may be more than one phrase that qualifies as a candidate task

description phrase. We identify four types of ambiguities arising from the case of

multiple candidates, and describe how to resolve them.

1. The most common relationship between two candidate task descriptions is that

one contains more detail than the other. The additional detail may describe

the task that systems must perform, or may provide more information on the

input data. Or, the content of the phrases is equivalent, but one candidate has

more specific word choices. We selected the candidates that contained greater

29

detail or specificity.

Example: Using detail to choose between two candidates

Phrases:

(a) “automatically assessing humor in edited news headlines”

(b) “build systems for rating a humorous effect that is caused by small changes

in text”

Explanation: both phrases describe the task, but the first is more general and

the second is more specific. We chose phrase (b).

2. Sometimes there are two candidates that are similar in content but vary in

clarity or technical expressiveness. We selected the candidates that were easiest

to read out of context.

Example: Using clarity of language to choose between two candidates

Phrases:

(a) “quantify the degree of prototypicality of a target pair by measuring the re-

lational similarity between it and pairs that are given as defining examples

of a particular relation”

(b) “rate word pairs by the degree to which they are prototypical members of

a given relation class”

Explanation: at first glance phrase (a) seems like it must be a better choice

because it seems more detailed. However, the fact that phrase (b) contains

“word pairs” rather than “target pair” makes it a slightly more clear task de-

scription phrase. In this case, the readability of phrase (b) makes it a better

option.

30

3. Sometimes the candidates contain different but complementary information

about the task. In this case, if the candidates are found in consecutive sentences,

then we extract both of them as a single sequence, including text between their

boundaries to preserve continuity.

Example: Using consecutive sentences

Phrases:

(a) “Annotate instances of nouns, verb, and adjectives using WordNet 3.1”

(b) “Label each instance with one or more senses, weighting each by their

applicability”

Explanation: Both of these phrases together are sufficient to describe the task

at hand, but neither is sufficient by itself. Fortunately, they appear in consec-

utive sentences; we extracted both of these phrases and the text in between.

Result (extracted sequence in italics:

This task required participating systems to annotate instances of nouns, verb,

and adjectives using WordNet 3.1 (Fellbaum, 1998), which was selected due to

its fine-grained senses. Participants could label each instance with one or more

senses, weighting each by their applicability.

4. At other times, the candidates contain complementary information but are not

found in consecutive sentences. In this case, if one of the phrases is coherent

and complete enough to stand alone as a task description, then we extract it.

5. Occasionally, a paper will contain multiple candidates that have no significant

difference in their content or quality. This happens most often when the paper

31

authors reuse text from the abstract in the body of the paper. We extracted

any of the candidates in this scenario.

Example: choosing between two equivalent candidates

Phrases:

(a) “Given a set of documents and a set of target entities, the task consisted

of building a timeline for each entity, by detecting, anchoring in time and

ordering the events involving that entity”

(b) “Given a set of documents and a set of target entities, the task consists

of building a timeline related to each entity, i.e. detecting, anchoring in

time, and ordering the events in which the target entity is involved”

Explanation: both phrases are equally good candidates, so either may be

extracted.

Resolving ambiguities requires nuance. It may not be possible to come up with

detailed enough rules to choose between two good task description candidates. This

is a problem that would be served better with a machine learning approach.

The Null Case

Rarely, a paper does not contain a phrase that sufficiently describes the task as a

whole. This occurs in the following scenarios:

1. The paper only provides description phrases of subtasks, without a description

of the task as a whole.

2. The task is an iteration of a task from a previous year, and the description

paper does not contain a suitable description phrase, being highly referential to

the previous year’s task description.

32

3. There is a phrase that describes the task, but its language is too indeterminate

to serve as a stand alone task description. An example of such a phrase is “unify

the somewhat divergent research efforts and to address certain recognized data

issues that have developed in the nascent phase of this subfield”; this phrase

should not be extracted as the task description phrase.

In any situation where a task description phrase cannot be found, we used a portion

of the title of the paper if the title contained a phrase describing the task. If no

task description phrase could be found in the body of the paper and the title did not

describe the task, then we would use NULL as the task description.

3.5 Annotation Results

We calculated the inter-annotator agreement between annotator 1 and annotator 2

using Cohen’s kappa statistic (Cohen 1960). Inter-annotator agreement is a measure

that describes how well two or more annotators are able to apply the same label

to each sample in a dataset. Cohen’s kappa coefficient is a statistic that measures

agreement in such a way that any agreement occurring by chance is eliminated. This

is performed by first calculating the proportion of samples on which the annotators

agreed (po) and the proportion of units where chance agreement is expected (pe). Then

κ is calculated by scaling the difference between po and pe by 1 − pe (see Equation

3.5) (Cohen 1960).

κ =
po − pe
1− pe

(3.1)

k can range between -1 and 1, where κ ≤ 0 indicates indicates no agreement and

κ = 1 indicates perfect agreement. The closer to 1, the more reliable the inter-

annotator agreement is: 0.01 ≤ κ ≤ 0.20 indicates slight agreement; 0.21 ≤ κ ≤ 0.40

33

fair agreement; 0.41 ≤ κ ≤ 0.60 moderate agreement; 0.61 ≤ κ ≤ 0.8 substantial;

and κ ≥ 0.81 indicates near perfect agreement (McHugh 2012).

Cohen’s kappa is a useful measure because it corrects for how frequently two

annotators might agree by chance. For example, if two annotators were to randomly

assign one of two labels to a set of samples, there is a 25% chance that the annotators

will agree for any given sample. This does not mean that the annotators are reliably

agreeing 25% of the time, so a score that is reduced by the amount of chance agreement

would be more meaningful (in this case their score would be zero).

Measuring inter-annotator agreement for our dataset is important because it helps

us understand how consistent our guidelines are and how consistently the annotator

follows them. It is also important for downstream machine learning tasks that might

be performed using our corpus (like the task we performed in Chapter 4). Under-

standing how well a human can predict an annotation for a given dataset helps to

evaluate how well a machine performs the same task.

Two subsets of 20 papers each were selected to determine inter-annotation agree-

ment in two stages. The first annotator could choose multiple candidate phrases that

matched the criteria and were equivalent in quality. The second annotator chose only

one phrase per paper. A strict score and a relaxed score were calculated for each set.

The strict score was calculated by finding Cohen’s kappa coefficient of the second

annotator’s set and the first annotator’s set, where the choice that best matched the

other annotator’s choice was selected. Two phrases only counted as a match if they

were the same. The relaxed score was calculated by counting phrases as a match if

they overlapped.

34

Set # Strict Score Relaxed Score

Set 1 .383 .6401

Set 2 .4374 .9488

Table 3.1: Inter-annotator agreement measured with Cohen’s kappa coefficient

The strict Cohen’s kappa coefficient for the first subset was 0.383, and the relaxed

Cohen’s kappa coefficient was 0.6401, indicating fair to substantial agreement (Viera,

Garrett, et al. 2005). After we made revisions and clarifications to the annotation

guidelines, we annotated the second subset, and achieved a strict score of 0.4373

and a relaxed score of 0.9488, indicating moderate to almost perfect agreement. The

difference between the strict and relaxed scores indicates that, though the annota-

tors often selected the same sentence to extract the task description phrase from,

mutually choosing equivalent phrase spans is somewhat difficult. For example, from

the paragraph in Figure 3.8, annotator 1 extracted ”design a model that learns to

generate inflected forms from a lemma and a set of morphosyntactic features that

derive the desired target form”, and annotator 2 extracted ”participants are required

to design a model that learns to generate inflected forms from a lemma and a set of

morphosyntactic features that derive the desired target form”.

35

Figure 3.8: The left example shows annotator 1’s choice and the right example shows
annotator 2’s choice. From SIGMORPHON 2020 Shared Task 0: Typologically Di-
verse Morphological Inflection, Vylomova et al. 2020

3.6 Corpus Statistics

In this section we provide quantitative information on our corpus. One benefit of

annotating shared task overview papers published over a long period of time is that

this resource could potentially be used to study NLP research progress and trends.

For this reason, we provide some basic statistics on the content of the papers included

(see Section 3.6.1). We also provide statistics on the extracted task descriptions in

Section 3.6.2, as such information may be useful to others for building task description

extraction systems.

3.6.1 Characteristics of Shared Task Overview Papers

The 254 shared task overview papers collected for this dataset encompass a wide

variety of research topics. We identified 20 distinct topics (see Figure 3.9), although

there is some overlap. For example, note that the topic classification appears to

contain 5 papers. There are more classification tasks found in the dataset, but they

fell into other categories such as sentiment analysis, social factors, and time and

36

space.

Figure 3.9: Distribution of Paper Topics

The distribution of papers over year of publication can be seen in Figure 3.10.

Note that year 2001, 2004, 2007, and 2010 appear to be outliers. This is because the

majority of our dataset was taken from the SemEval workshops, which were not held

in 2000, 2002, 2003, 2005, 2008, 2009, or 2011.

37

Figure 3.10: Distribution of Publication Year

An interesting characteristic of these shared tasks is that not all tasks are novel.

It is fairly common for tasks to be re-run for several years. This allows participants

to improve benchmarks by building on previous work. It also allows task organizers

to add to the complexity of the task.

Reruns rerun novel task

of papers 65 189

Table 3.2: Distribution of reruns

38

3.6.2 Task Description Characteristics

One of the most consistent patterns observed is that task descriptions tend to

appear under the same limited set of section headers (Figure 3.11). While they are

most commonly found in the abstract, they also frequently appear in introduction

sections. Unsurprisingly, sections with titles such as ”Task Description” or ”Task

Overview” often contain task description phrases suitable for our project. Rarely,

papers may not contain a good task description until the conclusion or discussion

section. And there were thirteen papers that did not contain a task description in

the body, but had a title that was sufficient.

Figure 3.11: Distribution of sections containing task descriptions

Section 3.4.3 described a number of factors that caused ambiguity during the

annotation process. One of these factors is the scenario where there are two or more

candidate task descriptions that are all good choices. These ambiguities could be

resolved in four ways: by a.) choosing the one with more task-related detail; b.)

39

choosing the phrase with better readability; c.) choosing the phrase that works

best on its own when they contain complementary but different information; and

d.) choosing any candidate when the phrases are truly equivalent. The frequencies

of each of these choices can be seen in Figure 3.12.

Figure 3.12: Distribution of features that help choose between two or more candidate
phrases

In Section 3.4.1 we describe multiple types of task descriptions: full, partial, and

multiple subtask descriptions. The counts for each of these types are found in Table

3.3.

40

phrase type full partial subtask null

of extracted phrases 127 104 13 12

Table 3.3: Number of full, partial, subtask, and null task descriptions in 254 shared
task overview papers

A complicating aspect of this corpus in terms of information extraction and text

classification is the varying lengths of task descriptions. This low-homogeneity can

make it more difficult to train traditional classifiers, but is important because it

provides a more ”real-world” environment. The extracted phrases span between 1

and 4 sentences, and contain between 3 and 126 tokens (Table 3.4).

feature mean+
− std max min

word count 29+
−21.8 126 3

sentences in span 1.17+
−.48 4 1

Table 3.4: Mean word count and sentences per task description

41

4 Classification Project

Sentence classification is an NLP task where, given a set of pre-labeled sentences

and a set of classes, a model must assign a class to each sentence without knowing

its true label. In binary classification tasks, there are two labels, often described as

positive and negative to indicate that the data can be classified as either X (positive)

or not-X (negative). Following testing, each output sample can be described with one

of four labels: true positive (TP) if the sample was correctly classified as positive;

true negative (TN) if the sample was correctly classified as negative; false positive

(FP) if the sample was wrongly classified as positive; and false negative (FN) if the

sample was wrongly classified was negative. To explore its utility as a resource for

training machine readers, we used our corpus as data for a sentence classification task.

This task requires two classes: task description (positive) and non task description

(negative).

Despite the fact that task descriptions are defined as sequences that can be longer

or shorter than a single sentence, we designed a sentence classification task because

we achieved much higher inter-annotator agreement scores when we compared the

chosen sentences rather than phrases (see Section 3.5). Classifying sentences is an

easier task because we do not have to be concerned with phrase boundaries. Once a

machine learner is trained on the training set, it can be incorporated into a machine

reader to help select the task description from an unseen shared task overview paper.

42

4.1 Data Preparation

Scholarly papers are often stored as PDFs, which are not very machine-actionable1.

For this reason the full text for each paper had to be extracted and stored in a different

format. We used GROBID (GROBID 2008–2022), a software library for extracting

and restructuring scientific papers from PDFs into XML encoded files. After convert-

ing NLPTasks into XML documents, we wrote a custom XML parser to extract the

text data into plain text files. Headers were captured and entered on a single line.

We used an empty newline to separate sections and subsections. Each paragraph is

printed on a single line. While we could have left the files in XML format, there is

benefit in creating a dataset that is easily human readable. For an example of what

it looked like to transform a PDF to a plain text file see Figure 4.1.

One issue we had with GROBID was that it does not handle tables well. The text

in table cells gets inserted into the body of the paper wherever the table was inserted,

resulting in gibberish often found in the middle of a sentence. We had to manually

fix this issue by cleaning the gibberish from task descriptions. We did not clean non

task description sentences due to time constraints. It was particularly important to

clean the task description sentences because there are so few of them that we did not

want to lose any samples.

To prepare our corpus for a sentence classification task, we randomly divided the

254 papers into a training set of 228 papers and a test set of 26 papers. This is a split

of roughly 90% training data and 10% test data. We allotted only 10% of the data

for testing because we wanted to be able to train and validate our models on as much

data as possible due to the relatively small number of task description sentences. The

reason that we split the data by paper instead of by sentences is that we wanted to be

1Some journals and archives such as arXiv (https://arxiv.org/) provide LaTeX source code
for papers in addition to PDFs

43

https://arxiv.org/

able to preserve the idea of extracting a single span of text per paper that represents

the task description for the shared task.

Each set is stored in a .csv file where each row contains a single sentence and label

(1 if task description, 0 if not), as well as a paper id that associates the sentence with

the paper it is taken from. The sentences are stored in the order they appear in each

paper. The resulting training set contains 259 positive samples and 41,493 negative

samples, and test set contains 34 positive and 4725 negative samples. This is an

extremely unbalanced dataset, where less than 1% (0.63%) of the total sentences are

positive samples. The reason for this is the annotation goal was to extract a single

candidate per paper. However, extra steps must be taken to change the balance

enough so that machine classifiers are able to learn how to identify task descriptions.

Datasets designed for classification are unbalanced when there is a large difference

in size between the classes. This poses problems for machine learners. When there

are many training samples for one class for the machine to learn from, it will be

able to detect new members of that class with much greater confidence than for the

smaller class. Furthermore, salient characteristics of the small class might be present

frequently enough in the large class that they lose meaning for the classifier. The

balance must be adjusted prior to classification by either increasing the number of

samples for the small class or decreasing the number of samples for the big class (or

both). Additionally, metadata from the papers can be added as features to provide

relevant context.

We applied a few techniques for increasing the size of our positive sample set and

decreasing the size of our negative sample set. The approach that yielded the best

results was to use the hierarchical structure of academic documents to annotate our

positive samples with contextual metadata and to make informed choices about which

negative samples should be removed. Section 4.1.1 describes this approach in detail.

44

Other less effective experiments can be found in Appendix A.

4.1.1 Leveraging Paper Context and Hierarchical Structure

Incorporating Positional Data

Scholarly papers tend to have a predictable structure. Task description overview

papers always start with an abstract and introduction, which tend to be followed by

task description and dataset preparation sections, before describing the system solu-

tions and reporting results. There are patterns within sections as well; for example,

introductions that contain a task description phrase often contain the phrase near

the end of the section. For this reason, we added positional data as features to the

dataset following the example of Liu, Sarol, and Kilicoglu 2021.

We added a section header feature to the dataset by iterating through the plain

text files and capturing the header for each section. Each sentence’s position was

quantified with four values: the sentence index relative to its section, the sentence

index relative to the full paper, the quadrant of the section that the sentence is found

in, and the quadrant of the paper that the sentence is found in. These five features

were added as columns to the training and test .csv files (see Table 4.1 for an example

of what a data instance looks like).

sentence
id

paper
id

header local
pos

global
pos

local
pct

global
pct

sentence label

5274 S10-12 abstract 2 3 3 1 The task in-
volves recog-
nizing textual
entailments
based on syntac-
tic information
alone.

1

Table 4.1: Example of a data sample

45

Eliminating Sections

In addition to annotating the training and test data with positional information,

we made the decision to eliminate any section that does not contain a task description

for each paper. For example, a paper with the task description in the introduction

would be represented in the dataset only by the sentences found in the introduction.

This approach has two benefits. First, it improved the ratio of positive to negative

training and test samples. Second, it addressed the following problem. Because the

goal was to extract a single sequence from each paper, some papers have negative

samples that would actually qualify as task descriptions if a better candidate had not

been found. It was detrimental for the classifiers to be learning negative samples that

meet the criteria for task descriptions. Eliminating sections allowed us to remove

some of those perplexing sentences. The resulting training set contains 259 positive

samples and 2,304 negative samples, and the resulting test set contains 34 positive

samples and 293 negative samples. After reducing the dataset, 11.28% of the total

data is positive which, while still unbalanced, is more manageable than the previous

0.64%.

One problem with manually removing samples from the dataset based on which

sections contain task descriptions and which do not is that the test set had to be

examined. This is a problem because the reduced test set is less ”real world”; in

a non-experimental setting, the machine reader should be able to extract a task

description from a whole paper, since it does not know ahead of time which section

contains the task description. To address this issue, we tested our model on three

versions of the test set. The first was manually reduced the same way as the training

set. The second had sections automatically removed by training a BERT model on

section headers seen in the training set. This model was then applied to the test set to

46

classify section headers as either likely or unlikely to contain a task description. This

is a more fair test set because one could apply this classifier to any unseen papers to

filter out paper sections. The third set is the full test set without any data removed.

Figure 4.2: Dataset extraction process

4.2 Experimental Setup

We ran an exhaustive set of experiments on the training data to compare different

classification algorithms, text encodings, and hyperparameter settings. Each combi-

nation of classifier, encoding, and hyperparameters was run ten times, with a different

subsection of the dataset set aside for validation data each time. The average of each

set of ten runs was calculated and reported.

4.2.1 Preprocessing

Natural language must be encoded into some kind of numeric representation be-

fore it is input into a machine learning model, as vectors of numbers can be more

easily operated on. There is an additional benefit to encoding text in that the en-

coding can actually store more information about each sentence, word, or character’s

context than the raw strings can. Information such as the distribution of a word

and its proximity to other words can be captured in vectors or learned weights called

word embeddings, and documents can be represented by matrices of vectors or em-

47

beddings2. Following is a brief description of the encodings used in this work.

Count Vectorization, which is similar to one-hot encoding, can be used to represent

words and documents. A span of text is represented by creating a matrix where each

row represents a unique word in a predetermined vocabulary. The element associated

with each word is set to be the literal count of that word in the sequence, and words

that do not appear in the sequence are set to zero. This approach encodes only the

raw frequencies of words.

Tf-idf (term frequency-inverse document frequency) is a statistical measure than

can be used to weight each token in the matrix according to how frequent the token

is in a given sequence, and how many sequences in the corpus contain the token

(Manning, Raghavan, and Schütze 2008). The tf-idf score of a token t in a document

d is calculated by multiplying the frequency of t in d by the inverse frequency of

documents that contain t. Both factors can be normalized by using the log of each

term, resulting in Equation 4.2.1 (where N is the total number of documents in the

corpus).

tfidf(t, d) = log10 freq(t, d)× log10

N

freq(d, t)
(4.1)

The effect of this encoding is that tokens that are very frequent in one document but

relatively infrequent in others will receive a higher score, indicating their importance

to the documents they appear in.

In our experiments we used three variations on the tf-idf encoding method. For

each version, token t represents a different unit: words, character-level ngrams, and

word-level ngrams. An ngram is a sequence of n consecutive bits of text3. So word-

level 2-grams in the phrase ”consecutive bits of text” would be ”consecutive bits”,

2See chapter 6 of Speech and Language Processing for more information on word embeddings:
https://web.stanford.edu/~jurafsky/slp3/6.pdf

3For more on ngrams see https://web.stanford.edu/~jurafsky/slp3/3.pdf

48

https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://web.stanford.edu/~jurafsky/slp3/3.pdf

”bits of”, and ”of text”. Character-level 2-grams of the word ”text” would be ”te”,

”ex”, and ”xt”. Our experiments used 2- and 3-grams.

Word embeddings are similar to the vector representations described above, but

are shorter and contain more nuanced information. Word embeddings are created

by training a model on some natural language processing task, and saving the the

weights for each learned word in a dense vector.

For our experiments we generated count vectorized, character-level tf-idf, and

word-level tf-idf encodings, and pretrained word embeddings for the dataset using

fasttext (Bojanowski et al. 2017) and BERT (Devlin et al. 2019b) embeddings.

4.2.2 Classification Algorithms

We trained a number of non-neural and neural classification algorithms and fine-

tuned two BERT variants on the dataset. Each classifier was tested on at least one

type of encoding. For a summary of the hyperparameter settings and encodings used

for each classifier, see Table 4.2.

4.2.3 Training Loop

For the non-BERT algorithms each classifier-encoding pairing learned the training

dataset ten times. In between runs, the data was shuffled and a new validation set

containing 10% of the training data was selected. The precision, recall, and F1 score

was recorded for each training run. Then the mean scores and standard deviation

were calculated for each classifier-encoding pair. These scores were saved in a text

file with automatically generated LaTeX score so that they might be easily reported

in this document. The procedure for the two BERT models was similar, but instead

of training different classifier-encoding pairings, we trained for every possible hyper-

49

parameter combination. The procedures described in this paragraph were performed

twice, once on the dataset annotated with contextual data and once on just the sen-

tences and their labels. The procedure for training the non-BERT algorithms can be

seen in Algorithm 1 and the BERT experimental procedure can be seen in Algorithm

2.

Algorithm 1 ML experiments

procedure train loop(training data, classifiers)
encodings← [count vectors, tf idf, embeddings]
total results← empty list

for each classifier in classifiers do

for each encoding in encodings do
sub results← empty list

for i in range[0, 10) do
training data← shuffle(training data)
training, validation← split data(training data)
train model

precision, recall, f1← validate model
sub results.append([precision, recall f1])

sub results← mean(sub results)
total results.append(sub results)

return total results

50

Algorithm 2 BERT experiments

procedure train loop(training data)
bert models← [bert, scibert]
batch sizes← [16, 32]
learning rates← [2e-5, 3e-5, 5e-5]
epochs← [2, 3, 4]
total results← empty list

for each bert in bert models do

for each batch size in batch sizes do

for each learning rate in learning rates do

for each num epochs in epochs do
sub results← empty list

for i in range[0, 10) do
training data← shuffle(training data)
training, validation← split data(training data)

for e in range[0, num epochs) do
train model

precision, recall, f1← validate model
sub results.append([precision, recall f1])

sub results← mean(sub results)
total results.append(sub results)

return total results

51

Figure 4.1: An illustration of the conversion of scholarly PDFs to plain text files using
GROBID

52

Classifier Hyperparameters Encodings

Basic Linear Models
Complement
Naive Bayes

Default

count vectors, tf-idf
Logistic Regres-
sion

maximum iterations = 1000

SVM Default
KNN number of neighbors = 20, weight

function = distance
Stochastic Gra-
dient Descent

loss function = modified huber,
max iterations = 1000, early stop-
ping

count vectors, tf-idf,
fasttext embeddings

Ensemble Models
Random Forest Default count vectors, tf-idf
Gradient Boost-
ing

number of boosting stages =
1000, early stopping

count vectors, tf-idf,
fasttext embeddings

XGBoost number of gradient boosted trees
= 1000

Neural Networks
Neural Network layers = 2, activation = sigmoid

fasttext embeddings

Deep Neural
Network

layers = 3, activation = relu, sig-
moid

RNN layers = 4, activation = sigmoid
RNN with
LSTM

layers = 3, activation = sigmoid,
dropout = 0.2

RNN with BiL-
STM

layers = 3, activation = sigmoid,
dropout = 0.2

CNN layers = 10, activation = relu, sig-
moid, dropout = 0.2, pool size =
4

Pretrained Models
BERT epochs = 2, 3, 4, batch size = 16,

32, learning rate = 2e-5, 3e-5, 5e-
5, optimizer = AdamW

BERT embeddings

SciBERT epochs = 2, 3, 4, batch size = 16,
32, learning rate = 2e-5, 3e-5, 5e-
5, optimizer = AdamW

SciBERT embeddings

Table 4.2: This table contains a list of all classifiers used in our training experiments,
their hyperparameter settings, and the software used to implement them.

53

5 Results

We evaluated our system using precision, recall, and F1 score. These three metrics

are calculated using three counts: the number of positive samples correctly classified

as positive (true positives, or tp); the number of negative samples incorrectly classi-

fied as positive (false positives, or fp); and the number of positive samples incorrectly

classified as negative (false negatives, or fn). The precision score shows what pro-

portion of predicted task descriptions were correct and is calculated by dividing the

number of true positives by the total number of predicted positives:

Precision =
tp

tp+ fp
(5.1)

The recall score shows what proportion of true task descriptions were correctly

identified and is calculated by dividing the number of true positives by the number

of actual positives:

Recall =
tp

tp+ fn
(5.2)

Precision measures how close a classifier gets to only identifying positive samples, and

Recall measures how close a classifier gets to identifying all of the positive samples.

An ideal measure for evaluating classification results would be able to take both of

these concepts into account. So, the F1 score is calculated by finding the harmonic

54

mean of the Precision and Recall:

F1 = 2×
(

(Precision)(Recall)

Precision + Recall

)
(5.3)

Confusion matrices are provided for selected experiments. These serve as lookup

tables for the number of true positives, true negatives (tn), false positives, and false

negatives. Each row of the confusion matrix represents the number of actual samples

for a class and each column represents the number of predicted samples for a class.

Because our task is a binary classification problem there are only two classes, positive

(task description) and negative (not a task description). The sum of both values in

row 1 is equal to the total actual positives, and the sum of both values in row 2 is

equal to the total actual negatives. Similarly, the sum of both values in column 1

is equal to the total number of predicted positives, while the sum of both values in

column 2 is equal to the total number of predicted negatives. The sum of all four

cells is equal to the total number of validation samples. See Table 5.1 for an example

of a binary confusion matrix.

Predicted

T
ru

e TP FN Positive

FP TN Negative

Positive Negative

Table 5.1: Example confusion matrix

Each classifier was evaluated by calculating the F1 score for each run and finding

the mean F1 score across ten runs. For all classifiers, two versions of the data were

used. First each classifier was trained on sentences and positional features. Then

55

each classifier was trained on just the sentences, to explore whether the inclusion of

contextual information was beneficial.

For the non-BERT classifiers, results were recorded for each combination of clas-

sifier and encoding (except for the neural networks, which only used embeddings).

For the BERT-based classifiers, results were recorded for each combination of three

hyperparameters: the number of epochs, the batch size, and the learning rate. Re-

sults were recorded for every hyperparameter combination for each classifier. Each

combination was run ten times, and the mean and standard deviation of ten runs

were recorded.

The full training results can be found in Appendix C. In Section 5.2, for the non-

BERT classifiers results are reported only for the encoding that yielded the highest

F1 score. For the BERT classifiers, results are reported for the best hyperparameter

combination for each model. In Section 5.2, results are reported for both versions of

the dataset.

Because the training results are averaged over ten runs, the confusion matrices

also had to be averaged over ten runs. Due to rounding, calculating the precision,

recall, and F1 score from the confusion matrices sometimes results in a value that is

off by 0.01 from the official reported training results.

5.1 Baseline

The baseline score was calculated by classifying the first sentence in each paper

as positive and all other sentences as negative samples. The reason for this is that

choosing one sentence for each paper results in a similar positive to negative sample

ratio as with the true data. Additionally, there are more positive first sentences than

there would be with a random distribution of positives, so this provides a baseline

56

that is slightly better than baseline. This method resulted in 69 true positives, 141

false positives, 2,163 true negatives, and 190 false negatives. The baseline precision,

recall, and F1 scores are .33, .27, and .29.

5.2 Training Results

The best training results came from the cased SciBERT model with a mean F1

score of 0.72. However, SVM and XGBoost performed fairly well with F1 scores of

0.61. The training results for Non-BERT classifiers are presented first, and the results

for the BERT models are presented in Section 5.2.2.

5.2.1 Non-BERT Training Results

The mean and standard deviation of the precision, recall, and F1 scores for the

non-BERT classifiers are shown in Table 5.2. The first half of the table shows results

using the dataset that contains contextual features, and the second half shows the

results of training on sentence data only. The best text encoding for each model is

reported in this table.

Many more of the classifiers were able to beat the baseline when using the data

annotated with contextual features than when using the plain dataset. Only logistic

57

model encoding precision recall F1

Training results using data annotated with contextual features
nn NA 0.0± 0.0 0.0± 0.0 0.0± 0.0
dnn NA 0.0± 0.0 0.0± 0.0 0.0± 0.0
rnn embeddings 0.34± 0.02 0.13± 0.1 0.17± 0.11
knn char ngrams 1.0± 0.0 0.1± 0.01 0.18± 0.01
Baseline NA 0.33 0.27 0.29
gradient boost word ngrams 1.0± 0.0 0.19± 0.01 0.32± 0.02
lstm embeddings 0.74± 0.28 0.26± 0.25 0.33± 0.25
bilstm embeddings 0.89± 0.12 0.24± 0.12 0.35± 0.12
random forest word ngrams 0.78± 0.08 0.23± 0.02 0.36± 0.03
cnn embeddings 0.67± 0.07 0.34± 0.12 0.43± 0.1
complement
naive bayes

one-hot 0.41± 0.02 0.68± 0.01 0.51± 0.01

logistic regres-
sion

one-hot 0.73± 0.01 0.43± 0.02 0.54± 0.02

sgd tf-idf 0.76± 0.07 0.5± 0.05 0.6± 0.04
svm one-hot 0.68± 0.0 0.55± 0.01 0.61± 0.01
xgb one-hot 0.93± 0.01 0.45± 0.01 0.61± 0.01

Training results using text data only
nn NA 0.0± 0.0 0.0± 0.0 0.0± 0.0
dnn NA 0.0± 0.0 0.0± 0.0 0.0± 0.0
knn NA 0.0± 0.0 0.0± 0.0 0.0± 0.0
random forest word ngrams 0.63± 0.21 0.06± 0.02 0.11± 0.03
cnn embeddings 0.61± 0.36 0.1± 0.09 0.16± 0.13
gradient boost char ngrams 1.0± 0.0 0.1± 0.02 0.18± 0.03
complement
naive bayes

one-hot 0.2± 0.01 0.37± 0.01 0.26± 0.01

rnn embeddings 0.45± 0.18 0.21± 0.13 0.26± 0.11
lstm embeddings 0.59± 0.24 0.22± 0.13 0.29± 0.14
Baseline NA 0.33 0.27 0.29
bilstm embeddings 0.54± 0.27 0.26± 0.16 0.34± 0.19
logistic regres-
sion

one-hot 0.64± 0.0 0.27± 0.01 0.38± 0.01

svm one-hot 0.49± 0.01 0.31± 0.01 0.38± 0.0
sgd one-hot 0.46± 0.15 0.41± 0.09 0.41± 0.05
xgb one-hot 0.74± 0.03 0.39± 0.01 0.51± 0.01

Table 5.2: Mean training results and standard deviation for linear, ensemble, and
neural classifiers across ten runs. Only the results for the best encoding are reported.

58

regression, SVM, stochastic gradient descent, XGBoost, and RNN with BiLSTM

improved on the baseline when trained on the plain dataset. The shallow and deep

neural networks, RNN, and K-Nearest Neighbor were the only models that4 could

not improve on the baseline when trained on the contextual dataset (these models

also could not improve on the baseline when trained on the plain dataset).

Across both versions of the dataset, for the non-neural classifiers one-hot appears

to be the most successful encoding. Keeping in mind that the char ngrams and

word ngrams are variants on tf-idf, four of the classifiers trained on the dataset with

contextual features preferred one-hot encodings and four preferred tf-idf. For the

classifiers trained on the dataset without contextual features, five of the classifiers

preferred one-hot encodings and two preferred tf-idf.

XGBoost performed the best for both versions of the dataset with F1 scores of

0.61 for the dataset with contextual features and 0.51 for the dataset without. SVM

performed relatively well for the dataset with contextual features with an F1 score of

0.61 (tied with XGBoost). The basic shallow and deep neural networks were not able

to learn either version of the dataset, and k-nearest neighbor was not able to learn

the version without contextual features.

Predicted

T
ru

e 17 21 Positive

1 220 Negative

Positive Negative

Table 5.3: The average confusion matrix for XGBoost with one-hot encoding trained
on the dataset with contextual features.

59

Predicted

T
ru

e 17 14 Positive

8 220 Negative

Positive Negative

Table 5.4: The average confusion matrix for SVM with one-hot encoding trained on
the dataset with contextual features.

Overall, the neural classifiers performed poorly in comparison with other machine

learning paradigms and the linear single learner classifiers performed the best on

average as a group (although the ensemble classifier XGBoost performed the best

over any other classifier). See Table 5.5 for the mean F1 scores by classifier category.

Including contextual features such as header title and positional data appeared to

classifier type mean F1 for dataset
with context

mean F1 for sentence
data only

single-learner linear 0.48 0.29
ensemble classifier 0.43 0.26
neural network 0.21 0.18

Table 5.5: Mean F1 score by classifier type

be beneficial. The maximum F1 score for classifiers trained with contextual features

is ten points higher than the maximum F1 score for classifiers trained on sentence

data only. The mean F1 score across all 14 classifiers trained on the dataset with

contextual data is .35 and the mean F1 score across all classifiers trained without

contextual features is .24, which is a significant difference.

The precision score is higher than the recall score for almost every classifier. This

makes sense for a dataset with many fewer positive instances than negative. The

precision score is the number of correct labelings of positive samples (true positives)

scaled by the sum of true positives and the number of incorrect positive labelings

60

(false positives): precision = TP
TP+FP

. So the fewer false positives a model returns,

the higher the precision score will be. The recall score is the number of true positives

scaled by the sum of true positives and the number of incorrect negative labelings

(false negatives): recall = TP
TP+FN

. So the more false negatives a model returns, the

lower the recall score will be. Classifiers that are biased towards the class that is

over-represented are less likely to falsely assign the under-represented label and more

likely to miss members of the under-represented class because they are less likely to

assign that label overall.

Notice that k-nearest neighbor and gradient boosting algorithms have precision

scores of 1 and very, very small recall scores. This indicates that these classifiers are

labeling almost every single sample as negative and have not actually learned how to

identify a task description.

Predicted

T
ru

e 1 9 Positive

0 249 Negative

Positive Negative

Table 5.6: The average confusion matrix for K-Nearest Neighbor with tf-idf (character
ngrams) trained on the dataset with contextual features.

Predicted

T
ru

e 4 17 Positive

0 238 Negative

Positive Negative

Table 5.7: The average confusion matrix for gradient boosting with tfidf (word
ngrams) trained on the dataset with contextual features.

Another interesting case is CNB which has higher recall scores than precision

61

scores. The creators of CNB designed it specifically to perform well on unbalanced

text data by addressing sources of bias for multinomial Naive Bayes (Rennie et al.

2003). It does appear to be the case that CNB was less biased than some of the other

classifiers, as the ratio of true positives to false negatives was lower resulting in a

higher recall score.

Predicted

T
ru

e 10 5 Positive

14 230 Negative

Positive Negative

Table 5.8: The confusion matrix for complement naive Bayes with one-hot encoding
trained on the dataset with contextual features.

5.2.2 BERT Training Results

The precision, recall, and F1 scores for four variants of BERT models are shown

in Table 5.9. As with the Non-BERT training results, scores are reported for both

the dataset with additional contextual features and the dataset containing sentences

alone. Only the best combinations of hyperparameters are reported here: for the full

results, see Appendix C. All of the BERT results were higher than the baseline.

Unlike for the majority of the algorithms with results reported in Section 5.2.1,

the highest performing BERT model scored better on the dataset comprising sentence

data only without additional features. The cased scibert model earned an average F1

score of 0.72 on the simple dataset and an average F1 score of 0.69 on the dataset

containing contextual features. However, the other three models all returned higher

mean scores when trained on the dataset containing contextual features. The mean

F1 score across all four models trained on the contextual dataset is 0.7, while the

62

mean score across all four models trained on the simple dataset is 0.68. Notice also

that the standard deviations are somewhat high, indicating a not insignificant spread

around the mean. From this data it is unclear whether one variant of the dataset is

better than the other.

Four of the BERT models trained for four epochs, three of them trained for three

epochs, and one of them trained for only two epochs. It is interesting that for four

of the models the best choice for number of epochs was less than four, as one would

expect the model to continue to improve. A visual inspection of the loss per epoch

shows that there is room for the losses for the model trained for two epochs and one

of the models trained for three epochs to continue to reduce (see Figure 5.1 for a

model trained for two epochs, Figure 5.2 for a model trained for three epochs, and

Figure 5.3 for a model trained for four epochs).

Figure 5.1: Training losses per epoch for scibert cased trained with contextual data
for two epochs with batch size of 32 and learning rate of 5e-05. Each curve shows the
losses for one of ten runs.

63

model epochs batch size learning
rate

metric score

Training results using data annotated with contextual features

bert-uncased 4 16 2e-05
Precision 0.65± 0.14

Recall 0.72± 0.14
F1 0.68± 0.12

bert-cased 4 16 2e-05
Precision 0.69± 0.1

Recall 0.73± 0.1
F1 0.71± 0.09

scibert uncased 3 16 3e-05
Precision 0.69± 0.03

Recall 0.73± 0.12
F1 0.71± 0.06

scibert cased 2 32 5e-05
Precision 0.7± 0.08

Recall 0.7± 0.11
F1 0.69± 0.08

Training results using text data only

bert-uncased 3 32 5e-05
Precision 0.63± 0.08

Recall 0.7± 0.1
F1 0.66± 0.08

bert-cased 4 16 2e-05
Precision 0.65± 0.08

Recall 0.67± 0.11
F1 0.66± 0.08

scibert uncased 3 16 3e-05
Precision 0.7± 0.12

Recall 0.67± 0.08
F1 0.67± 0.08

scibert cased 4 32 5e-05
Precision 0.73± 0.11

Recall 0.71± 0.07
F1 0.72± 0.08

Table 5.9: Mean training results and standard deviation for four BERT classifiers
across ten runs. Only the results for the best hyperparameter combination are re-
ported here.

64

Figure 5.2: Training losses per epoch for bert-uncased trained without contextual
data for three epochs with batch size of 32 and learning rate of 5e-05.

Figure 5.3: Training losses per epoch for scibert cased trained without contextual
data for four epochs with batch size of 32 and learning rate of 5e-05.

65

5.3 Test Results

Tests were run using the cased SciBERT model fine-tuned on the simple dataset

over four epochs with a batch size of 32 and a learning rate of 5e-05 (the model

with the highest training results). Three versions of the test dataset were used in

order to determine how well our system would perform given data of varying levels

of preprocessing. The three versions of the test data are:

1. The dataset manually reduced in the same way that the training data is re-

duced. Only sections that contain a task description are included (for resulting

confusion matrix see Figure 5.10);

2. The dataset automatically reduced by learning which section headers are likely

to appear over a section containing a task description. Only sections that have

a high probability of containing a task description are included (for resulting

confusion matrix see Figure 5.11);

3. The full dataset without any sections removed from any papers(for resulting

confusion matrix see Figure 5.12).

Predicted

T
ru

e 24 10 Positive

6 287 Negative

Positive Negative

Table 5.10: The confusion matrix for the test results on the manually reduced test
set.

66

Predicted

T
ru

e 21 8 Positive

63 1104 Negative

Positive Negative

Table 5.11: The confusion matrix for the test results on the automatically reduced
test set.

Predicted
T

ru
e 25 9 Positive

128 4597 Negative

Positive Negative

Table 5.12: The confusion matrix for the test results on the full test set.

For more information on how these variants of the test data were created, see

Section 4.1.1. The manually reduced dataset is the most balanced while the full test

set is the least balanced. The scores reflect the variation in proportion of positive to

negative samples; the most balanced dataset is associated with the highest F1 score

(0.75) and the least balanced is associated with the lowest (0.27).

test dataset precision recall F1

manually reduced 0.8 0.71 0.75

automatically reduced 0.25 0.72 0.37

full test set 0.16 0.74 0.27

Table 5.13: Test results for each version of the test dataset

Surprisingly, the F1 score for the manually reduced dataset (0.75) is higher than

the mean training result (0.72). This is surprising because the hyperparameter set-

67

tings were chosen based only on the training data; the test data was unseen during the

process of hyperparameter selection. However, 0.75 is within one standard deviation

of the mean training result (standard deviation = ±0.08). The dataset used to train

the model used to classify the test set was bigger than the dataset used during train-

ing experiments because 10% of it did not need to be set aside for validation. It is

possible that, due to the relatively small amount of positive samples, that increasing

the training data by a small amount could be enough to improve results on during

testing.

5.3.1 Error Analysis

In this section we provide examples of the false negatives and false positives re-

turned by our system when tested on the test set. It is not always clear why our

system would label true samples as non task descriptions, although it does seem that

shared task overview papers with subtasks may be particularly challenging. In con-

trast, many of the false positives are near misses, sentences that could have been

annotated as positive but were not because there was a better option.

False Negatives

Two of the samples from the test data show one weakness of reformulating the

task as a sentence classification task rather than a sequence labeling task. Both of

the sentences shown below are labeled as task descriptions not because the entire

sentence meets the criteria, but because a phrase from each was annotated as a task

description phrase in our gold corpus (task descriptions shown in italics).

Example FN-1

Unsupervised Word Sense Induction and Discrimination (WSID,

68

also known as corpus-based unsupervised systems) has followed

this line of thinking, and tries to induce word senses directly

from the corpus.

-Semeval-2007 Task 02: Evaluating Word Sense Induction and

Discrimination Systems, Agirre and Etxabe 2007.

Example FN-2

The Genia event task, a bio-molecular event extraction task,

is arranged as one of the main tasks of BioNLP Shared Task

2011.

-Overview of Genia Event Task in BioNLP Shared Task 2011,

Kim, Y. Wang, et al. 2011.

However, our system labeled both of these sentences as non task descriptions. This

illustrates the danger that the language surrounding the task description phrases in

each sample can outweigh the language inside the task description phrases.

Other errors reflect the same ambiguities that were difficult for human annotators

to resolve, as in the following example containing two consecutive sentences.

Example FN-3

[1]We present a counterfactual recognition (CR) task, the task

of determining whether a given statement conveys counterfac-

tual thinking or not, and further analyzing the causal relations

indicated by counterfactual statements. [2]In our counterfac-

tual recognition task, we aim to model counterfactual semantics

and reasoning in natural language.

-SemEval-2020 Task 5: Counterfactual Recognition, Yang et al.

2020.

In the gold standard corpus, we labeled sentence FN-3.2 as the task description rather

69

than sentence FN-3.1 following rule 2 of our guidelines for choosing between two or

more valid candidates (see Section 3.4.3), which states that, when there are two

candidates that are similar in content but vary in clarity or technical expressiveness,

the annotator should select the candidate that is easiest to read out of context. During

testing, our system selected sentence FN-3.1 as a task description and labeled sentence

FN-3.2 as a non task description. This is an example of a difficult case for the system

to distinguish between two potential candidates.

The paper Overview of the Fourth Social Media Mining for Health (#SMM4H)

Shared Task at ACL 2019 (Weissenbacher et al. 2019) was a particularly interesting

sample in the test set. The shared task in question contained four distinct tasks and

a. valid task description for each task is found in consecutive sentences. For this

reason, the annotators labeled each of those sentences as part of the task description,

as seen below:

Example FN-4

[1]Task 1 asked participants to distinguish tweets reporting an

adverse drug reaction (ADR) from those that do not. [2]Task

2, a follow-up to Task 1, asked participants to identify the span

of text in tweets reporting ADRs. [3]Task 3 is an end-to-end

task where the goal was to first detect tweets mentioning an

ADR and then map the extracted colloquial mentions of ADRs

in the tweets to their corresponding standard concept IDs in

the MedDRA vocabulary. [4]Finally, Task 4 asked participants

to classify whether a tweet contains a personal mention of one’s

health, a more general discussion of the health issue, or is an

unrelated mention.

-Overview of the Fourth Social Media Mining for Health (#SMM4H)

70

Shared Task at ACL 2019, Weissenbacher et al. 2019.

During testing, our system labeled sentences FN-4.1, FN-4.2, and FN-4.3 as task

descriptions, but labeled sentence FN-4.4 as a non task description. It is unclear why

the system did not label the fourth sentence as a task description but it is encouraging

that the system was able to detect a task description spanning multiple sentences.

Our system was not always able to detect descriptions spanning multiple sentences,

as seen in Examples FN-5 and FN-6:

Example FN-5

[1]This task required participating systems to annotate instances

of nouns, verb, and adjectives using Word-Net 3.1 (Fellbaum,

1998), which was selected due to its fine-grained senses. [2]Par-

ticipants could label each instance with one or more senses,

weighting each by their applicability.

-SemEval-2013 Task 13: Word Sense Induction for Graded and

Non-Graded Senses, Jurgens and Klapaftis 2013.

Example FN-6

[1]Given two sentences, s1 and s2, an STS system would need

to return a similarity score. [2]Participants can also provide a

confidence score indicating their confidence level for the result

returned for each pair, but this confidence is not used for the

main results.

-SemEval-2012 Task 6: A Pilot on Semantic Textual Similar-

ity, Agirre, Cer, et al. 2012.

Our system correctly selected sentences FN-5.1 and FN-6.1, but failed to identify

sentences FN-5.2 and FN-6.2 as task descriptions. The difference between these

examples and Example FN-4 is that each sentence in Example FN-4 contains

71

phrases that indicates a task is being discussed (e.g. the word Task, the phrase

asked participants, and the snippet end-to-end task where the goal was). However, in

Example FN-5 and Example FN-6, the second sentence is auxiliary to the first;

it provides detail to the first sentence, but does not stand alone as a task description.

Our system detects task descriptions at the sentence level, so was not trained to look

for such a relationship between consecutive sentences.

Papers with subtasks presented were difficult cases during the annotation project,

and the system sometimes failed to extract task descriptions from these papers in

the test data. Examples FN-7 and FN-8 show the task descriptions extracted by a

human annotator for two papers with subtasks. Our system labeled every sentence

from both of these papers as a non task description.

Example FN-7

Nine sub-tasks were included, covering problems in time expres-

sion identification, event expression identification and temporal

relation identification.

-SemEval-2015 Task 6: Clinical TempEval, Bethard et al. 2015.

Example FN-8

In this paper, we present two subtasks designed to evaluate such

phrasal models: a. Semantic similarity of words and composi-

tional phrases b. Evaluating the compositionality of phrases in

context.

-SemEval-2013 Task 5: Evaluating Phrasal Semantics, Korkontze-

los et al. 2013.

72

False Positives

The false positives returned from our system tend to be near misses (sentences

that could have been chosen during annotation but were rejected due to the presence

of a better candidate). Another interesting trend is that the false positives are often

adjacent to true positives extracted by the system. While these false positives may

be lacking in detail on their own, some of them work quite well as auxiliary sentences

to the true positives. Both of these characteristics can be seen in Examples FP-1,

FP-2, and FP-3.

Example FP-1

[1]Parser Evaluation using Textual Entailments (PETE) is a

shared task that involves recognizing textual entailments based

on syntactic information alone. [2]Given two text fragments

called ”text” and ”hypothesis”, textual entailment recognition

is the task of determining whether the meaning of the hypoth-

esis is entailed (can be inferred) from the text.

-SemEval-2010 Task 12: Parser Evaluation using Textual En-

tailments, Yuret, Han, and Turgut 2010.

Example FP-1 shows all of the sentences our system labeled as task descriptions

from the paper SemEval-2010 Task 12: Parser Evaluation using Textual Entailments

(Yuret, Han, and Turgut 2010). Sentence FP-1.1 is also labeled as a task description

in the dataset but sentence FP-1.2 was a false positive. The reason sentence FP-1.2

was not selected during the annotation process was because the sentence provides a

general explanation of textual entailment tasks rather than the specific shared task

that the participating systems must solve. However, sentence FP-1.2 does provide

valuable background information for sentence FP-1.1.

73

Example FP-2

[1]The goal of the shared task on shallow discourse parsing is to

detect and categorize individual discourse relations. [2]Specif-

ically, given a newswire article as input, a participating sys-

tem is asked to return a set of discourse relations contained

in the text. [3]A discourse relation, as defined in the PDTB,

from which the training data for the shared task is drawn, is

a relation taking two abstract objects (events, states, facts, or

propositions) as arguments.

-The CoNLL-2015 Shared Task on Shallow Discourse Parsing,

Xue et al. 2015.

Example FP-2 shows all three sentences extracted by our system from The CoNLL-

2015 Shared Task on Shallow Discourse Parsing (Xue et al. 2015). Sentence FP-2.1 is

a false positive, but sentences FP-2.2 and FP-2.3 are true positives. Sentence FP-2.1

was not included as a task description in our gold dataset because it is lacking in

detail. However, all three consecutive sentences are quite readable out of context and

would work well in practice as a long task description.

Example FP-3

[1]This task seeks to evaluate the capability of systems for pre-

dicting dimensional sentiments of Chinese words and phrases.

[2]For a given word or phrase, participants were asked to pro-

vide a real-valued score from 1 to 9 for both the valence and

arousal dimensions, respectively indicating the degree from most

negative to most positive for valence, and from most calm to

most excited for arousal.

-IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for

74

Chinese Phrases, Yu et al. 2017

In Example FP-3, both of these consecutive sentences were labeled by our system

as task descriptions. However, only sentence FP-3.2 was a true positive. FP-3.2

was selected as the task description during the annotation process because of the

detail provided for what the participating system should do for each word or phrase.

However, sentence FP-3.2 is lacking in that it does not mention the language of the

words and phrases (Chinese). Both of these sentences together form a more complete

task description.

In Example FP-4 we see another instance of a task fragmented into sub-parts

that confuses our system. The task contains two tracks, a ”shallow” track and a

”deep” track. However, the task description should try to describe the overall task

rather than one of the tracks. The gold label meets this criteria, as seen in sentence

FP-4.1. Our system correctly extracted sentence FP-4.1, but incorrectly extracted a

sentence that describes the shallow track (sentence FP-4.2).

Example FP-4

[1]The Sr’18 task is to generate sentences from structures at

the level of abstraction of outputs in state-of-the-art parsing,

encouraging participants to explore the extent to which neural

network parsing algorithms can be reversed for generation.

[2]The task amounts to determining the word order and inflect-

ing words.

-The First Multilingual Surface Realization Shared Task (SR’18):

Overview and Evaluation Results, Mille et al. 2018.

Another issue with this sample is that our system chose two sentences that are not

consecutive. This behavior could be fixed with a simple rule that chooses the sentence

75

with the higher probability of being a task description.

76

6 Conclusion

This section provides an outline of our contributions. Then it summarizes some

key takeaways from our annotation project and experiments and outlines some op-

portunities for future work. Lastly, this section provides a brief discussion of ethical

considerations related to the enhancement of digital libraries with artificial intelli-

gence.

6.1 Thesis Contributions

The contributions of this thesis are as follows:

• A new corpus of 256 Shared Task Overview papers with annotated task descrip-

tions;

• Code for preprocessing, training, and testing machine learners for binary text

classification tasks;

• An evaluation of 18 models for binary sentence classification on a corpus of

shared task overview papers with unbalanced data;

• The publication of our system description for SemEval-2021 Task 11: NLPCon-

tributionGraph (Martin and Pedersen 2021);

• The poster presentation of our annotation project for SciNLP-2021 (Martin,

D’Souza, and Pedersen 2021).

77

6.2 Discussion of Results

Overall the machine learning results were encouraging. In particular, the false

positives returned by our system were all sensible and met many of the task descrip-

tion requirements. The false negatives show that our system does not pick up on

task description phrases that are embedded in longer, more general sentences. It also

shows that our system struggled with papers containing subtasks or multiple tracks.

This makes sense, as those scenarios were some of the hardest to deal with during

the annotation project. One of the biggest takeaways from the machine learning re-

sults is that preprocessing is incredibly important. Decisions on how to construct

and filter the datasets were much more impactful on final results than the specific

hyperparameters chosen.

6.3 Future Work

As noted in Section 5.3.1, most of the false positives extracted by our system

were adjacent to true positives and provided additional task information that was

useful and relevant. A future annotation project could be designed that is roughly

based on our guidelines but more permissive in terms of the sentences to be extracted.

Instead of prioritizing conciseness, this project would prioritize extracting as much

information as is needed to formulate a more complete summary of the shared task.

This resource could then be used as material for an extractive task summarization

project.

There are a few potential improvements that could be applied to our machine

learning process. More could be done to take advantage of the innate hierarchical

structure of scientific papers. Future work should be done to explore how the for-

78

matting and organization of papers can be leveraged to provide useful information

to machine readers. Another future project could apply intermediate pre-training to

SciBERT by fine-tuning it on a different dataset that contains task annotations before

fine-tuning it on our corpus. Lastly, there is more work to be done to determine the

best way to filter the test data so that it is as ”real world” as possible while still being

balanced enough for machine readers to be able to extract task descriptions.

6.4 Ethical Considerations

What unintended consequences might arise from the enhancement of digital li-

braries with AI-driven tools? If artificial intelligence is to continue to be deployed

more and more in the interfaces between humans and scientific information, it is im-

portant to consider how that could impact human behavior and the research process.

This illusion can lead people to stop searching for more information on a topic sooner

than they should. In the case of digital libraries, there are two groups of people whose

behavior may be affected AI-enhanced tools: the readers using the digital library in

their research; and the writers of work that will eventually be hosted by the digital

library.

Nguyen 2021 describes how the exaggerated illusion of clarity in systems can

cause humans to experience a false sense of complete understanding, and can provide

a framework for understanding how AI might impact readers. Nguyen’s work is

focused on two broad case studies: the way epistemic manipulators can use a false

sense of clarity to accept conspiracy theories; and the way that institutionalized

quantification of complex information can create a false sense of clarity for people

working in bureaucratic systems. It is interesting to apply Nguyen’s framework to

the setting of AI-enhanced digital libraries. In what ways might AI integration create

79

a false sense of clarity for researchers? How might researchers anticipate and respond

to such a phenomenon? What responsibility do the developers of digital library

technologies have in terms of managing the phenomenon of the seduction of clarity?

Following are three tools that are simultaneously incredibly helpful for researchers

and also may carry a risk of creating the illusion of clarity.

• Algorithmic feeds and recommender systems that can be customized to the

needs of individual researchers are powerful tools that have great potential to

help with the literary discovery process of the research cycle;

• Pages that act as interfaces between users and academic papers, providing bib-

liometric data such as publication data and references, and content-driven data

such as tables, figures, and paper summaries, are useful for deciding whether a

given paper should be skimmed or read in depth;

• And quantifications such as the number of citations are useful in understanding

the impact or relevance of a given work.

Researchers should use these tools to help them work through large amounts of rele-

vant research, but should also be considerate of whether they are investigating topics

thoroughly enough. While users of digital libraries should be responsible with how

they use AI-driven tools, digital library developers should also consider the impacts of

their work. For example, developers of algorithmic feeds should consider what kinds

of bias could be perpetuated by their systems.

A potential downstream effect of automating aspects of digital libraries is how

that could effect the way researchers write their papers. Digital libraries may be one

of the first places that people’s work is discovered, and so the way work is presented

matters. The knowledge that automated processes affect how readers interface with

80

papers could influence how writers communicate their work, encouraging them to

write in such a way that their paper is easier for an AI to process. Is this necessarily

always a bad thing if it encourages writers to communicate in a way that is more

clear and standardized? We observed during the annotation phase of our project

that, while Shared Task Overview papers typically follow a few formats, there is still

a lot of variety in writing style that can make it more difficult to annotate consistently;

if scientific communication became more formulaic it would certainly make it easier

for machines to structure scientific contributions. Whether researchers should have

to make these changes so that their work can be more easily processed and presented

in digital libraries is another question, and we should be alert to the potential for

digital libraries to become biased against different kinds of researchers whether it is

due to their communication style, institution, or research area.

81

References

Agirre, Eneko, Daniel Cer, et al. (July 2012). “SemEval-2012 Task 6: A Pilot on Se-

mantic Textual Similarity”. In: *SEM 2012: The First Joint Conference on Lexical

and Computational Semantics – Volume 1: Proceedings of the main conference and

the shared task, and Volume 2: Proceedings of the Sixth International Workshop on

Semantic Evaluation (SemEval 2012). Montréal, Canada: Association for Compu-

tational Linguistics, pp. 385–393. url: https://aclanthology.org/S12-1051

(cit. on p. 71).

Agirre, Eneko and Aitor Soroa Etxabe (2007). “SemEval-2007 Task 02: Evaluat-

ing Word Sense Induction and Discrimination Systems”. In: Fourth International

Workshop on Semantic Evaluations (SemEval-2007) (cit. on p. 69).

Akkaradamrongrat, Suphamongkol, Pornpimon Kachamas, and Sukree Sinthupinyo

(2019). “Text Generation for Imbalanced Text Classification”. In: 2019 16th Inter-

national Joint Conference on Computer Science and Software Engineering (JC-

SSE), pp. 181–186 (cit. on p. 93).

Ammar, Waleed et al. (2018). “Construction of the Literature Graph in Semantic

Scholar”. In: NAACL (cit. on pp. 4, 10, 12).

Auer, S. et al. (2020). “Improving Access to Scientific Literature with Knowledge

Graphs”. In: Bibliothek Forschung und Praxis 44, pp. 516–529 (cit. on p. 4).

82

https://aclanthology.org/S12-1051

Augenstein, Isabelle et al. (Aug. 2017). “SemEval 2017 Task 10: ScienceIE - Extract-

ing Keyphrases and Relations from Scientific Publications”. In: Proceedings of

the 11th International Workshop on Semantic Evaluation (SemEval-2017). Van-

couver, Canada: Association for Computational Linguistics, pp. 546–555. doi:

10.18653/v1/S17-2091. url: https://www.aclweb.org/anthology/S17-2091

(cit. on pp. 8, 10).

Bada, Michael et al. (2011). “Concept annotation in the CRAFT corpus”. In: BMC

Bioinformatics 13, pp. 161–161 (cit. on p. 9).

Beltagy, Iz, Kyle Lo, and Arman Cohan (Nov. 2019). “SciBERT: A Pretrained Lan-

guage Model for Scientific Text”. In: Proceedings of the 2019 Conference on Empir-

ical Methods in Natural Language Processing and the 9th International Joint Con-

ference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:

Association for Computational Linguistics, pp. 3615–3620. doi: 10.18653/v1/

D19-1371. url: https://aclanthology.org/D19-1371 (cit. on p. 16).

Bender, Emily M. and Batya Friedman (2018). “Data Statements for Natural Lan-

guage Processing: Toward Mitigating System Bias and Enabling Better Science”.

In: Transactions of the Association for Computational Linguistics 6, pp. 587–604.

doi: 10.1162/tacl_a_00041. url: https://aclanthology.org/Q18-1041

(cit. on p. 17).

Bethard, Steven et al. (June 2015). “SemEval-2015 Task 6: Clinical TempEval”. In:

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval

2015). Denver, Colorado: Association for Computational Linguistics, pp. 806–814.

doi: 10.18653/v1/S15-2136. url: https://aclanthology.org/S15-2136 (cit.

on p. 72).

Bird, Steven et al. (May 2008a). “The ACL Anthology Reference Corpus: A Refer-

ence Dataset for Bibliographic Research in Computational Linguistics”. In: Pro-

83

https://doi.org/10.18653/v1/S17-2091
https://www.aclweb.org/anthology/S17-2091
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/D19-1371
https://doi.org/10.1162/tacl_a_00041
https://aclanthology.org/Q18-1041
https://doi.org/10.18653/v1/S15-2136
https://aclanthology.org/S15-2136

ceedings of the Sixth International Conference on Language Resources and Evalua-

tion (LREC’08). Marrakech, Morocco: European Language Resources Association

(ELRA). url: http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_

paper.pdf (cit. on p. 9).

Bird, Steven et al. (May 2008b). “The ACL Anthology Reference Corpus: A Refer-

ence Dataset for Bibliographic Research in Computational Linguistics”. In: Pro-

ceedings of the Sixth International Conference on Language Resources and Evalua-

tion (LREC’08). Marrakech, Morocco: European Language Resources Association

(ELRA) (cit. on p. 11).

Bojanowski, Piotr et al. (2017). “Enriching Word Vectors with Subword Information”.

In: Transactions of the Association for Computational Linguistics 5, pp. 135–146.

doi: 10.1162/tacl_a_00051. url: https://aclanthology.org/Q17-1010

(cit. on p. 49).

Buscaldi, D. (2018). “Improving access to scientific literature: a semantic IR per-

spective”. In: Proceedings of the 5th Spanish Conference on Information Retrieval

(cit. on p. 4).

Cabanac, Guillaume et al. (2016). “Report on the Joint Workshop on Bibliometric-

enhanced Information Retrieval and Natural Language Processing for Digital Li-

braries (BIRNDL 2016)”. In: ACM SIGIR Forum 50, pp. 36–43 (cit. on p. 7).

Chandrasekaran, Muthu Kumar, Guy Feigenblat, et al. (2020). “Overview of the First

Workshop on Scholarly Document Processing (SDP)”. In: SDP (cit. on p. 8).

Chandrasekaran, Muthu Kumar, Michihiro Yasunaga, et al. (2019). “Overview and

Results: CL-SciSumm Shared Task 2019”. In: Proceedings of the 4th Joint Work-

shop on Bibliometric-enhanced Information Retrieval and Natural Language Pro-

cessing for Digital Libraries (BIRNDL 2019) @ SIGIR 2019. Paris, France (cit. on

pp. 7, 8).

84

http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/445_paper.pdf
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/Q17-1010

Cohen, Jacob (1960). “A Coefficient of Agreement for Nominal Scales”. In: Educa-

tional and Psychological Measurement 20, pp. 37–46 (cit. on p. 33).

D’Souza, Jennifer, Sören Auer, and Ted Pedersen (Aug. 2021). “SemEval-2021 Task

11: NLPContributionGraph - Structuring Scholarly NLP Contributions for a Re-

search Knowledge Graph”. In: Proceedings of the 15th International Workshop

on Semantic Evaluation (SemEval-2021). Online: Association for Computational

Linguistics, pp. 364–376. doi: 10.18653/v1/2021.semeval-1.44. url: https:

//aclanthology.org/2021.semeval-1.44 (cit. on pp. 2, 8, 12, 19).

Devlin, Jacob et al. (2019a). “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding”. In: NAACL (cit. on pp. 6, 15).

— (June 2019b). “BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding”. In: pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:

https://aclanthology.org/N19-1423 (cit. on p. 49).

Dhawan, S. M., B. M. Gupta, and N. K. Singh (2020). “Global Machine-learning Re-

search: a scientometric assessment of global literature during 2009-18”. In: World

Digit. Libr. 13, pp. 105–120 (cit. on p. 4).

Gábor, Kata, Davide Buscaldi, et al. (June 2018). “SemEval-2018 Task 7: Semantic

Relation Extraction and Classification in Scientific Papers”. In: Proceedings of The

12th International Workshop on Semantic Evaluation. New Orleans, Louisiana:

Association for Computational Linguistics, pp. 679–688. doi: 10.18653/v1/S18-

1111. url: https://www.aclweb.org/anthology/S18-1111 (cit. on pp. 8, 10,

11).

Gábor, Kata, Häıfa Zargayouna, et al. (2016). “Semantic Annotation of the ACL

Anthology Corpus for the Automatic Analysis of Scientific Literature”. In: LREC

(cit. on pp. 10, 11).

85

https://doi.org/10.18653/v1/2021.semeval-1.44
https://aclanthology.org/2021.semeval-1.44
https://aclanthology.org/2021.semeval-1.44
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/S18-1111
https://doi.org/10.18653/v1/S18-1111
https://www.aclweb.org/anthology/S18-1111

Glavaš, Goran et al. (Dec. 2020). “SemEval-2020 Task 2: Predicting Multilingual and

Cross-Lingual (Graded) Lexical Entailment”. In: Proceedings of the Fourteenth

Workshop on Semantic Evaluation. Barcelona (online): International Committee

for Computational Linguistics, pp. 24–35. doi: 10.18653/v1/2020.semeval-1.2.

url: https://aclanthology.org/2020.semeval-1.2 (cit. on p. 28).

GROBID (2008–2022). https://github.com/kermitt2/grobid. swh: 1:dir:

dab86b296e3c3216e2241968f0d63b68e8209d3c (cit. on p. 43).

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring Network

Structure, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th

Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod

Millman. Pasadena, CA USA, pp. 11–15 (cit. on p. 96).

Haneczok, Jacek et al. (Aug. 2021). “Fine-grained Event Classification in News-like

Text Snippets - Shared Task 2, CASE 2021”. In: Proceedings of the 4th Work-

shop on Challenges and Applications of Automated Extraction of Socio-political

Events from Text (CASE 2021). Online: Association for Computational Linguis-

tics, pp. 179–192. doi: 10 . 18653 / v1 / 2021 . case - 1 . 23. url: https : / /

aclanthology.org/2021.case-1.23 (cit. on p. 24).

He, Pengcheng et al. (May 2021). “DeBERTa: Decoding-Enhanced BERT with Dis-

entangled Attention”. In: 2021 International Conference on Learning Representa-

tions (cit. on p. 13).

Head, Andrew et al. (2021). “Augmenting Scientific Papers with Just-in-Time, Position-

Sensitive Definitions of Terms and Symbols”. In: Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems (cit. on p. 7).

Hendrickx, Iris and Antal van den Bosch (July 2001). “Dutch Word Sense Disam-

biguation: Data and Preliminary Results”. In: Proceedings of SENSEVAL-2 Sec-

ond International Workshop on Evaluating Word Sense Disambiguation Systems.

86

https://doi.org/10.18653/v1/2020.semeval-1.2
https://aclanthology.org/2020.semeval-1.2
https://github.com/kermitt2/grobid
1:dir:dab86b296e3c3216e2241968f0d63b68e8209d3c
1:dir:dab86b296e3c3216e2241968f0d63b68e8209d3c
https://doi.org/10.18653/v1/2021.case-1.23
https://aclanthology.org/2021.case-1.23
https://aclanthology.org/2021.case-1.23

Toulouse, France: Association for Computational Linguistics, pp. 13–16. url:

https://aclanthology.org/S01-1003 (cit. on p. 28).

Hou, Yufang et al. (Apr. 2021). “TDMSci: A Specialized Corpus for Scientific Lit-

erature Entity Tagging of Tasks Datasets and Metrics”. In: pp. 707–714. doi:

10.18653/v1/2021.eacl-main.59. url: https://aclanthology.org/2021.

eacl-main.59 (cit. on p. 11).

Jain, Sarthak et al. (2020). “SciREX: A Challenge Dataset for Document-Level In-

formation Extraction”. In: ACL (cit. on p. 12).

Jurgens, David and Ioannis Klapaftis (June 2013). “SemEval-2013 Task 13: Word

Sense Induction for Graded and Non-Graded Senses”. In: Second Joint Confer-

ence on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings

of the Seventh International Workshop on Semantic Evaluation (SemEval 2013).

Atlanta, Georgia, USA: Association for Computational Linguistics, pp. 290–299.

url: https://aclanthology.org/S13-2049 (cit. on p. 71).

Kahusk, Neeme, Heili Orav, and Haldur Õim (July 2001). “Sensiting Inflectionality:

Estonian Task for SENSEVAL-2”. In: Proceedings of SENSEVAL-2 Second Inter-

national Workshop on Evaluating Word Sense Disambiguation Systems. Toulouse,

France: Association for Computational Linguistics, pp. 25–28. url: https://

aclanthology.org/S01-1006 (cit. on p. 27).

Kim, Jin-Dong, Tomoko Ohta, et al. (2003). “GENIA corpus - a semantically anno-

tated corpus for bio-textmining”. In: Bioinformatics 19 Suppl 1, pp. i180–2 (cit.

on p. 9).

Kim, Jin-Dong, Yue Wang, et al. (2011). “Overview of Genia Event Task in BioNLP

Shared Task 2011”. In: BioNLP@ACL (cit. on p. 69).

Knoth, Petr, Zdenek Zdráhal, and Andreas Juffinger (2012). “Special Issue on Mining

Scientific Publications”. In: D Lib Mag. 18 (cit. on p. 7).

87

https://aclanthology.org/S01-1003
https://doi.org/10.18653/v1/2021.eacl-main.59
https://aclanthology.org/2021.eacl-main.59
https://aclanthology.org/2021.eacl-main.59
https://aclanthology.org/S13-2049
https://aclanthology.org/S01-1006
https://aclanthology.org/S01-1006

Korkontzelos, Ioannis et al. (June 2013). “SemEval-2013 Task 5: Evaluating Phrasal

Semantics”. In: Second Joint Conference on Lexical and Computational Semantics

(*SEM), Volume 2: Proceedings of the Seventh International Workshop on Seman-

tic Evaluation (SemEval 2013). Atlanta, Georgia, USA: Association for Compu-

tational Linguistics, pp. 39–47. url: https://aclanthology.org/S13- 2007

(cit. on p. 72).

Larsen, Peder Olesen and Markus von Ins (2010). “The rate of growth in scientific

publication and the decline in coverage provided by Science Citation Index”. In:

Scientometrics 84, pp. 575–603 (cit. on p. 4).

Li, Yang et al. (2020). “A bibliometric analysis on deep learning during 2007–2019”.

In: International Journal of Machine Learning and Cybernetics, pp. 1–20 (cit. on

p. 4).

Liu, Haoyang, M. Janina Sarol, and Halil Kilicoglu (Aug. 2021). “UIUC BioNLP at

SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP

Contributions”. In: Proceedings of the 15th International Workshop on Semantic

Evaluation (SemEval-2021). Online: Association for Computational Linguistics,

pp. 377–386. doi: 10.18653/v1/2021.semeval-1.45. url: https://aclanthol

ogy.org/2021.semeval-1.45 (cit. on pp. 13, 45).

Lo, Kyle et al. (2020). “S2ORC: The Semantic Scholar Open Research Corpus”. In:

ACL (cit. on p. 12).

Luan, Yi et al. (2018). “Multi-Task Identification of Entities, Relations, and Corefer-

ence for Scientific Knowledge Graph Construction”. In: EMNLP (cit. on p. 10).

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). “Intro-

duction to Information Retrieval: Scoring, term weighting, and the vector space

model”. In: (cit. on p. 48).

88

https://aclanthology.org/S13-2007
https://doi.org/10.18653/v1/2021.semeval-1.45
https://aclanthology.org/2021.semeval-1.45
https://aclanthology.org/2021.semeval-1.45

Martin, Anna, Jennifer D’Souza, and Ted Pedersen (2021). “Annotating Natural Lan-

guage Processing Shared Task Descriptions”. In: Poster presented at SciNLP 2021:

2nd Workshop on Natural Language Processing for Scientific Text (cit. on pp. 8,

77).

Martin, Anna and Ted Pedersen (Aug. 2021). “Duluth at SemEval-2021 Task 11:

Applying DeBERTa to Contributing Sentence Selection and Dependency Pars-

ing for Entity Extraction”. In: Proceedings of the 15th International Workshop

on Semantic Evaluation (SemEval-2021). Online: Association for Computational

Linguistics, pp. 490–501. doi: 10.18653/v1/2021.semeval-1.60. url: https:

//aclanthology.org/2021.semeval-1.60 (cit. on pp. 2, 13, 77).

McHugh, M. L. (2012). “Interrater reliability: the kappa statistic”. In: Biochemia

Medica 22, pp. 276–282 (cit. on p. 34).

Mihalcea, Rada et al. (July 2004). “An evaluation exercise for Romanian Word Sense

Disambiguation”. In: Proceedings of SENSEVAL-3, the Third International Work-

shop on the Evaluation of Systems for the Semantic Analysis of Text. Barcelona,

Spain: Association for Computational Linguistics, pp. 29–32. url: https : / /

aclanthology.org/W04-0808 (cit. on p. 28).

Mille, Simon et al. (2018). “The First Multilingual Surface Realisation Shared Task

(SR’18): Overview and Evaluation Results”. In: (cit. on p. 75).

Milosevic, Nikola et al. (2016). “Disentangling the Structure of Tables in Scientific

Literature”. In: NLDB (cit. on p. 7).

Nguyen, C. Thi (2021). “The Seductions of Clarity”. In: Royal Institute of Philosophy

Supplement 89, pp. 227–255 (cit. on p. 79).

Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learners”.

In: (cit. on p. 6).

89

https://doi.org/10.18653/v1/2021.semeval-1.60
https://aclanthology.org/2021.semeval-1.60
https://aclanthology.org/2021.semeval-1.60
https://aclanthology.org/W04-0808
https://aclanthology.org/W04-0808

Rennie, Jason D. M. et al. (2003). “Tackling the Poor Assumptions of Naive Bayes

Text Classifiers”. In: ICML (cit. on p. 62).

Robert-Inacio, F. and L. Yushchenko (2014). “Visual attention model for computer

vision”. In: Biologically Inspired Cognitive Architectures 7, pp. 26–38. issn: 2212-

683X. doi: https://doi.org/10.1016/j.bica.2013.11.001. url: https:

//www.sciencedirect.com/science/article/pii/S2212683X13000935 (cit. on

p. 13).

Sanderson, Mark and W. Bruce Croft (2012). “The History of Information Retrieval

Research”. In: Proceedings of the IEEE 100, pp. 1444–1451 (cit. on p. 5).

Schumann, Anne-Kathrin and Héctor Mart́ınez Alonso (2018). “Automatic Annota-

tion of Semantic Term Types in the Complete ACL Anthology Reference Corpus”.

In: LREC (cit. on p. 11).

Specia, Lucia, Sujay Kumar Jauhar, and Rada Mihalcea (July 2012). “SemEval-

2012 Task 1: English Lexical Simplification”. In: *SEM 2012: The First Joint

Conference on Lexical and Computational Semantics – Volume 1: Proceedings

of the main conference and the shared task, and Volume 2: Proceedings of the

Sixth International Workshop on Semantic Evaluation (SemEval 2012). Montréal,

Canada: Association for Computational Linguistics, pp. 347–355. url: https:

//aclanthology.org/S12-1046 (cit. on p. 23).

Tjong Kim Sang, Erik F. and Sabine Buchholz (2000). “Introduction to the CoNLL-

2000 Shared Task Chunking”. In: Fourth Conference on Computational Natural

Language Learning and the Second Learning Language in Logic Workshop. url:

https://aclanthology.org/W00-0726 (cit. on p. 23).

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural

information processing systems 30 (cit. on pp. 14, 15).

90

https://doi.org/https://doi.org/10.1016/j.bica.2013.11.001
https://www.sciencedirect.com/science/article/pii/S2212683X13000935
https://www.sciencedirect.com/science/article/pii/S2212683X13000935
https://aclanthology.org/S12-1046
https://aclanthology.org/S12-1046
https://aclanthology.org/W00-0726

Viera, Anthony J, Joanne M Garrett, et al. (2005). “Understanding interobserver

agreement: the kappa statistic”. In: Fam med 37.5, pp. 360–363 (cit. on p. 35).

Vylomova, Ekaterina et al. (2020). “SIGMORPHON 2020 Shared Task 0: Typologi-

cally Diverse Morphological Inflection”. In: SIGMORPHON (cit. on p. 36).

Wang, Alex, Yada Pruksachatkun, et al. (2019). “SuperGLUE: A Stickier Bench-

mark for General-Purpose Language Understanding Systems”. In: NeurIPS (cit.

on pp. 6, 13).

Wang, Alex, Amanpreet Singh, et al. (Nov. 2018). “GLUE: A Multi-Task Benchmark

and Analysis Platform for Natural Language Understanding”. In: pp. 353–355.

doi: 10.18653/v1/W18-5446. url: https://aclanthology.org/W18-5446

(cit. on pp. 6, 13).

Ware, Mark and Michael Mabe (2015). “The STM report: An overview of scientific

and scholarly journal publishing fourth edition”. In: (cit. on p. 4).

Weissenbacher, Davy et al. (2019). “Overview of the Fourth Social Media Mining for

Health (SMM4H) Shared Tasks at ACL 2019”. In: Proceedings of the Fourth Social

Media Mining for Health Applications (#SMM4H) Workshop & Shared Task (cit.

on pp. 70, 71).

Xue, Nianwen et al. (2015). “The CoNLL-2015 Shared Task on Shallow Discourse

Parsing”. In: CoNLL (cit. on p. 74).

Yang, Xiaoyu et al. (2020). “SemEval-2020 Task 5: Counterfactual Recognition”. In:

SEMEVAL (cit. on p. 69).

Yu, L. et al. (2017). “IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chi-

nese Phrases”. In: IJCNLP (cit. on p. 75).

Yuret, Deniz, Aydin Han, and Zehra Turgut (July 2010). “SemEval-2010 Task 12:

Parser Evaluation Using Textual Entailments”. In: Proceedings of the 5th Inter-

national Workshop on Semantic Evaluation. Uppsala, Sweden: Association for

91

https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/W18-5446

Computational Linguistics, pp. 51–56. url: https://aclanthology.org/S10-

1009 (cit. on p. 73).

Zadeh, Behrang Q. and Siegfried Handschuh (2014). “The ACL RD-TEC: A Dataset

for Benchmarking Terminology Extraction and Classification in Computational

Linguistics”. In: (cit. on p. 9).

Zadeh, Behrang Q. and Anne-Kathrin Schumann (2016). “The ACL RD-TEC 2.0:

A Language Resource for Evaluating Term Extraction and Entity Recognition

Methods”. In: LREC (cit. on pp. 9, 10).

92

https://aclanthology.org/S10-1009
https://aclanthology.org/S10-1009

A Dataset Preparation: Alterna-

tive Approaches

A.1 Generating Synthetic Data

We generated 130 synthetic samples based on the true samples classified as task

descriptions using Markov chains (Akkaradamrongrat, Kachamas, and Sinthupinyo

2019). A Markov chain when applied towards language modeling shows the proba-

bilities of sequences of words given a corpus. As described by Jurafsky and Martin1

a Markov chain comprises a set of all states (word tokens), a probability matrix that

shows the probability of moving from one word to another (the probability that two

words will appear consecutively in a sequence), and the probability distribution for

start states (the probability that a word will be the starting word in a sentence).

Following is an example of an artificial task description generated following the al-

gorithms described in Algorithms 3 and 4: offensive message containing information

extraction task aimed to their confidence is : word-sense disambiguation task required

participating systems that message. It is not totally coherent, but contains keyphrases

that would be found in a real task description such as information extraction task,

word-sense disambiguation task, and required participating systems.

One issue with this approach is there are only so many artificial samples that can

be added. A dataset containing too many artificial samples is insufficiently represen-

1https://web.stanford.edu/~jurafsky/slp3/A.pdf

93

https://web.stanford.edu/~jurafsky/slp3/A.pdf

Algorithm 3 Markov Chain

procedure createMarkovChain(sentences : array of all task description sen-
tences)

sentences← array of all task description sentences
starts← empty array
transition matrix← dictionary where keys are unique set of tokens

for each sentence in sentences do
starts.append(sentence[0])
previous← empty string

for each word in sentence do
if previous is not empty then

transition matrix [previous].append(word)

previous← word

return starts, transition matrix

Algorithm 4 Generate Synthetic Samples Using Markov Chain

procedure generateSample(starts, transition matrix)
ends← [., ?, !]
previous← random choice(starts)
sequence← [previous]

while previous not in ends do
word← random choice(transition matrix [previous])
sequence.append(word)
previous← word

return sequence

tative of real world data. Oversampling with artificially generated task descriptions

was not enough to close the gap between positive and negative samples.

94

A.2 Automatic Downsampling

A.2.1 Downsampling Using Cosine Similarity

Downsampling is the removal of samples from a specific class and is a technique

that can be used to balance datasets. One could perform downsampling by randomly

removing a certain percentage of the samples. However, we wanted to minimize

the information lost through downsampling. To do this, we removed samples that

were highly similar to other samples. To measure similarity, we calculated the cosine

similarity between vectorized sentences. The cosine of the angle between two vectors

v1 and v2 with length n is the dot product over the product of their magnitudes:

cos(v1, v2) =

∑n
i=1 v1v2√∑n

i=1 v
2
1i

√∑n
i=1 v

2
2i

(A.1)

We created a cosine similarity matrix that allows for the similarity between two

vectors v1 and v2 to be looked up by finding v2’s column in row v1 (see Algorithm

5). Then we set a threshold of 0.9; any sentence with a similarity greater than 0.9

Algorithm 5 Creating a Cosine Similarity Matrix

procedure generateSimilarityMatrix(sentences : small subset of negative
samples)

sentences← get embeddings(sentences)
similarity matrix← dictionary where keys are sentence embeddings

for each v1 in sentences do

for each v2 in sentences do

if v1 is not v2 then
cosine similarity← cosine(v1, v2)
similarity matrix [v1][v2] = cosine similarity

return similarity matrix

95

with another sentence was removed (see Algorithm 6). One issue with this approach

Algorithm 6 Choosing Samples To Remove

procedure downsample(threshold : similarity score at which or above v2 should
be removed, sentences : sentence embeddings, similarity matrix)

for each v1 in sentences do

for each v2 in sentences do

if v1 == v2 then
continue

if similarity matrix [v1][v2] >= threshold then
sentences.remove(v2)

return sentences

is that it is computationally expensive to calculate the cosine between every single

sentence in a corpus of over 40,000 sentences. In our preliminary experiments, we only

measured the cosine similarity between a subset of sentences to improve the compute

time. Ultimately we abandoned this method because it was not possible to remove

enough samples to balance the dataset.

A.2.2 Downsampling Using TextRank Algorithm

A third method we experimented with for downsampling the dataset was elimi-

nating samples with a low ranking using the TextRank algorithm (see Algorithm 7).

TextRank ranks the importance of sentences in a corpus by measuring the similarity

between sentences, storing them in a similarity matrix, converting that matrix to a

graph where vertices represent sentences and edges represent similarities, then calcu-

lating the sentence ranks based on each vertex’s edges. We used the Python package

NetworkX (Hagberg, Schult, and Swart 2008) to generate the graph and apply the

TextRank algorithm to it. The hypothesis was that task description sentences are

96

Algorithm 7 Filtering With TextRank

procedure textrankFilter(threshold : rank below which sentence should be
removed, sentences : sentence embeddings, similarity matrix)

similarity graph← convert to graph(similarity matrix)
scores← page rank(similarity graph)

for each score in scores do

if score<threshold then
scores.remove(score)

return scores

highly important sentences for most documents, so removing all sentences with a

rank lower than a given threshold would remove a significantly higher proportion of

negative samples than positive samples. However, we wanted to avoid eliminating

any positive samples, because we already had so few. We ended up abandoning this

method as well, because there was not a threshold large enough to remove a sufficient

amount of negative samples while not removing positive samples.

97

B Software Used

This chapter provides the necessary details for each model we used so that our

experiments could be reproduced.

Classifier Hyperparameters

Basic Linear Models
Complement Naive
Bayes

Default

Logistic Regression maximum iterations = 1000
SVM Default
KNN number of neighbors = 20, weight function = distance
Stochastic Gradient
Descent

loss function = modified huber, max iterations = 1000,
early stopping

Ensemble Models
Random Forest Default
Gradient Boosting number of boosting stages = 1000, early stopping
XGBoost number of gradient boosted trees = 1000

Neural Networks
Neural Network layers = 2, activation = sigmoid
Deep Neural Network layers = 3, activation = relu, sigmoid
RNN layers = 4, activation = sigmoid
RNN with LSTM layers = 3, activation = sigmoid, dropout = 0.2
RNN with BiLSTM layers = 3, activation = sigmoid, dropout = 0.2
CNN layers = 10, activation = relu, sigmoid, dropout = 0.2,

pool size = 4

Pretrained Models
BERT epochs = 2, 3, 4, batch size = 16, 32, learning rate =

2e-5, 3e-5, 5e-5, optimizer = AdamW
SciBERT epochs = 2, 3, 4, batch size = 16, 32, learning rate =

2e-5, 3e-5, 5e-5, optimizer = AdamW

Table B.1: This table contains a list of all classifiers used in our training experiments
and their hyperparameter settings.

98

Classifier Hyperparameters

Basic Linear Models
Complement Naive
Bayes

sklearn.naive bayes.ComplementNB

Logistic Regression sklearn.linear model.LogisticRegression
SVM sklearn.svm.LinearSVC
KNN sklearn.neighbors.KNeighborsClassifier
Stochastic Gradient
Descent

sklearn.linear model.SGDClassifier

Ensemble Models
Random Forest sklearn.ensemble.RandomForestClassifier
Gradient Boosting sklearn.ensemble.GradientBoostingClassifier
XGBoost xgboost.XGBClassifier

Neural Networks
Neural Network keras.Sequential, keras.layers.GlobalAveragePooling1D,

keras.layers.Dense
Deep Neural Network keras.Sequential, keras.layers.GlobalAveragePooling1D,

keras.layers.Dense
RNN keras.Sequential, keras.layers.SimpleRNN,

keras.layers.Dense
RNN with LSTM keras.Sequential, keras.layers.LSTM,

keras.layers.Dropout, keras.layers.Dense
RNN with BiLSTM keras.Sequential, keras.layers.Bidirectional,

keras.layers.Dropout, keras.layers.Dense
CNN keras.Sequential, keras.layers.Conv1D,

keras.layers.Dropout, keras.layers.MaxPooling1D,
keras.layers.GlobalMaxPooling1D, keras.layers.Dense

Pretrained Models
BERT transformers.BertForSequenceClassification using bert-

base-uncased, bert-base-cased
SciBERT transformers.BertForSequenceClassification us-

ing allenai/scibert scivocab uncased, allenai/scib-
ert scivocab cased

Table B.2: This table contains a list of all classifiers used in our training experiments
and the software used to implement them.

99

C Full Results

Provided in this chapter is the full set of training results. Table C.1 contains the

results from the BERT experiments using the dataset with context and C.2 contains

the results for the BERT experiments using the plain dataset. Table C.3 contains

the results from the SciBERT experiments using the dataset with context and C.4

contains the results for the SciBERT experiments using the plain dataset. Tables C.5

and C.6 contain the results for the non-neural experiments trained on the dataset

with context and the dataset without context, respectively. Table C.7 contains the

neural results. All results are the mean of ten runs and the standard deviation is

reported.

Confusion matrices are provided for the best model and encoding combination

in Tables C.8 through C.21. Losses per epoch are reported in Figures C.1 through

C.8 for the best BERT model and hyperparameter combination. Each graph of losses

contains ten lines, one for each of the training runs. These lines are printed in different

colors to keep them distinguishable.

100

settings precision recall f1

BERT uncased
epochs=2, batch size=16, lr=2e-05 0.66±0.15 0.6±0.16 0.61±0.13
epochs=2, batch size=16, lr=3e-05 0.68±0.14 0.61±0.13 0.63±0.11
epochs=2, batch size=16, lr=5e-05 0.61±0.27 0.54±0.26 0.56±0.25
epochs=2, batch size=32, lr=2e-05 0.55±0.34 0.39±0.28 0.41±0.28
epochs=2, batch size=32, lr=3e-05 0.68±0.16 0.64±0.13 0.64±0.08
epochs=2, batch size=32, lr=5e-05 0.66±0.17 0.58±0.13 0.61±0.13
epochs=3, batch size=16, lr=2e-05 0.67±0.16 0.64±0.16 0.64±0.14
epochs=3, batch size=16, lr=3e-05 0.67±0.13 0.66±0.13 0.66±0.1
epochs=3, batch size=16, lr=5e-05 0.67±0.14 0.66±0.19 0.65±0.14
epochs=3, batch size=32, lr=2e-05 0.67±0.16 0.65±0.17 0.65±0.15
epochs=3, batch size=32, lr=3e-05 0.69±0.15 0.66±0.13 0.66±0.1
epochs=3, batch size=32, lr=5e-05 0.66±0.17 0.65±0.14 0.64±0.12
epochs=4, batch size=16, lr=2e-05 0.65±0.14 0.72±0.14 0.68±0.12
epochs=4, batch size=16, lr=3e-05 0.65±0.15 0.71±0.14 0.67±0.12
epochs=4, batch size=16, lr=5e-05 0.64±0.17 0.69±0.14 0.65±0.13
epochs=4, batch size=32, lr=2e-05 0.64±0.16 0.69±0.11 0.66±0.12
epochs=4, batch size=32, lr=3e-05 0.63±0.15 0.69±0.15 0.65±0.12
epochs=4, batch size=32, lr=5e-05 0.63±0.16 0.67±0.15 0.64±0.13

BERT cased
epochs=2, batch size=16, lr=2e-05 0.55±0.29 0.52±0.27 0.53±0.27
epochs=2, batch size=16, lr=3e-05 0.67±0.09 0.65±0.17 0.65±0.12
epochs=2, batch size=16, lr=5e-05 0.73±0.12 0.57±0.2 0.61±0.14
epochs=2, batch size=32, lr=2e-05 0.55±0.3 0.42±0.23 0.47±0.24
epochs=2, batch size=32, lr=3e-05 0.63±0.23 0.56±0.21 0.58±0.2
epochs=2, batch size=32, lr=5e-05 0.67±0.08 0.63±0.15 0.63±0.1
epochs=3, batch size=16, lr=2e-05 0.69±0.09 0.65±0.14 0.66±0.1
epochs=3, batch size=16, lr=3e-05 0.7±0.09 0.67±0.13 0.68±0.1
epochs=3, batch size=16, lr=5e-05 0.6±0.21 0.59±0.23 0.59±0.21
epochs=3, batch size=32, lr=2e-05 0.75±0.13 0.56±0.17 0.62±0.1
epochs=3, batch size=32, lr=3e-05 0.67±0.12 0.66±0.13 0.66±0.1
epochs=3, batch size=32, lr=5e-05 0.65±0.11 0.66±0.1 0.65±0.08
epochs=4, batch size=16, lr=2e-05 0.69±0.1 0.73±0.1 0.71±0.09
epochs=4, batch size=16, lr=3e-05 0.68±0.08 0.67±0.12 0.67±0.1
epochs=4, batch size=16, lr=5e-05 0.58±0.21 0.61±0.24 0.59±0.21
epochs=4, batch size=32, lr=2e-05 0.67±0.11 0.67±0.11 0.67±0.09
epochs=4, batch size=32, lr=3e-05 0.67±0.1 0.72±0.09 0.69±0.08
epochs=4, batch size=32, lr=5e-05 0.68±0.07 0.68±0.08 0.68±0.06

Table C.1: Training results using BERT trained on data with context.

101

settings precision recall f1

BERT uncased
epochs=2, batch size=16, lr=2e-05 0.65±0.12 0.65±0.12 0.64±0.08
epochs=2, batch size=16, lr=3e-05 0.64±0.09 0.66±0.13 0.64±0.07
epochs=2, batch size=16, lr=5e-05 0.63±0.07 0.7±0.13 0.65±0.06
epochs=2, batch size=32, lr=2e-05 0.59±0.23 0.58±0.22 0.57±0.21
epochs=2, batch size=32, lr=3e-05 0.66±0.14 0.69±0.12 0.66±0.09
epochs=2, batch size=32, lr=5e-05 0.66±0.13 0.67±0.11 0.65±0.07
epochs=3, batch size=16, lr=2e-05 0.63±0.11 0.7±0.1 0.65±0.08
epochs=3, batch size=16, lr=3e-05 0.63±0.09 0.7±0.1 0.66±0.07
epochs=3, batch size=16, lr=5e-05 0.62±0.1 0.69±0.13 0.65±0.09
epochs=3, batch size=32, lr=2e-05 0.61±0.1 0.69±0.09 0.64±0.08
epochs=3, batch size=32, lr=3e-05 0.63±0.09 0.7±0.09 0.65±0.06
epochs=3, batch size=32, lr=5e-05 0.63±0.08 0.7±0.1 0.66±0.08
epochs=4, batch size=16, lr=2e-05 0.6±0.06 0.71±0.11 0.65±0.07
epochs=4, batch size=16, lr=3e-05 0.64±0.08 0.68±0.13 0.66±0.09
epochs=4, batch size=16, lr=5e-05 0.65±0.08 0.66±0.12 0.65±0.08
epochs=4, batch size=32, lr=2e-05 0.64±0.1 0.68±0.11 0.66±0.09
epochs=4, batch size=32, lr=3e-05 0.65±0.09 0.68±0.12 0.66±0.09
epochs=4, batch size=32, lr=5e-05 0.61±0.1 0.66±0.15 0.63±0.09

BERT cased
epochs=2, batch size=16, lr=2e-05 0.69±0.07 0.62±0.07 0.64±0.05
epochs=2, batch size=16, lr=3e-05 0.66±0.08 0.62±0.09 0.64±0.07
epochs=2, batch size=16, lr=5e-05 0.63±0.06 0.58±0.1 0.6±0.06
epochs=2, batch size=32, lr=2e-05 0.54±0.29 0.44±0.24 0.48±0.25
epochs=2, batch size=32, lr=3e-05 0.69±0.1 0.61±0.11 0.64±0.09
epochs=2, batch size=32, lr=5e-05 0.66±0.06 0.64±0.1 0.65±0.06
epochs=3, batch size=16, lr=2e-05 0.67±0.1 0.62±0.11 0.64±0.08
epochs=3, batch size=16, lr=3e-05 0.66±0.06 0.66±0.12 0.65±0.07
epochs=3, batch size=16, lr=5e-05 0.65±0.07 0.61±0.14 0.61±0.07
epochs=3, batch size=32, lr=2e-05 0.59±0.21 0.58±0.23 0.58±0.21
epochs=3, batch size=32, lr=3e-05 0.65±0.05 0.64±0.14 0.64±0.09
epochs=3, batch size=32, lr=5e-05 0.62±0.08 0.63±0.12 0.62±0.07
epochs=4, batch size=16, lr=2e-05 0.65±0.08 0.67±0.11 0.66±0.08
epochs=4, batch size=16, lr=3e-05 0.64±0.1 0.66±0.12 0.65±0.09
epochs=4, batch size=16, lr=5e-05 0.65±0.14 0.6±0.12 0.61±0.11
epochs=4, batch size=32, lr=2e-05 0.64±0.12 0.63±0.08 0.63±0.06
epochs=4, batch size=32, lr=3e-05 0.67±0.09 0.65±0.12 0.65±0.08
epochs=4, batch size=32, lr=5e-05 0.67±0.06 0.64±0.09 0.65±0.06

Table C.2: Training results using BERT trained on text data only.

102

settings precision recall f1

SciBERT uncased
epochs=2, batch size=16, lr=2e-05 0.69±0.07 0.72±0.09 0.7±0.05
epochs=2, batch size=16, lr=3e-05 0.7±0.07 0.7±0.07 0.69±0.04
epochs=2, batch size=16, lr=5e-05 0.69±0.06 0.65±0.1 0.67±0.08
epochs=2, batch size=32, lr=2e-05 0.66±0.09 0.7±0.09 0.67±0.06
epochs=2, batch size=32, lr=3e-05 0.67±0.08 0.68±0.13 0.66±0.07
epochs=2, batch size=32, lr=5e-05 0.71±0.05 0.65±0.13 0.67±0.06
epochs=3, batch size=16, lr=2e-05 0.69±0.04 0.7±0.11 0.69±0.05
epochs=3, batch size=16, lr=3e-05 0.69±0.03 0.73±0.12 0.71±0.06
epochs=3, batch size=16, lr=5e-05 0.68±0.04 0.68±0.12 0.68±0.06
epochs=3, batch size=32, lr=2e-05 0.68±0.06 0.73±0.12 0.7±0.06
epochs=3, batch size=32, lr=3e-05 0.69±0.04 0.71±0.13 0.69±0.07
epochs=3, batch size=32, lr=5e-05 0.71±0.06 0.68±0.13 0.69±0.08
epochs=4, batch size=16, lr=2e-05 0.68±0.05 0.72±0.1 0.7±0.05
epochs=4, batch size=16, lr=3e-05 0.67±0.05 0.69±0.12 0.67±0.06
epochs=4, batch size=16, lr=5e-05 0.68±0.05 0.67±0.14 0.67±0.07
epochs=4, batch size=32, lr=2e-05 0.69±0.06 0.72±0.11 0.7±0.06
epochs=4, batch size=32, lr=3e-05 0.7±0.06 0.7±0.1 0.7±0.06
epochs=4, batch size=32, lr=5e-05 0.69±0.04 0.68±0.09 0.68±0.04

SciBERT cased
epochs=2, batch size=16, lr=2e-05 0.66±0.1 0.65±0.13 0.65±0.1
epochs=2, batch size=16, lr=3e-05 0.68±0.09 0.68±0.12 0.68±0.08
epochs=2, batch size=16, lr=5e-05 0.63±0.11 0.67±0.11 0.64±0.1
epochs=2, batch size=32, lr=2e-05 0.68±0.12 0.71±0.15 0.69±0.11
epochs=2, batch size=32, lr=3e-05 0.7±0.11 0.67±0.14 0.68±0.1
epochs=2, batch size=32, lr=5e-05 0.7±0.08 0.7±0.11 0.69±0.08
epochs=3, batch size=16, lr=2e-05 0.68±0.11 0.68±0.12 0.68±0.1
epochs=3, batch size=16, lr=3e-05 0.65±0.08 0.68±0.09 0.66±0.07
epochs=3, batch size=16, lr=5e-05 0.65±0.1 0.68±0.09 0.66±0.08
epochs=3, batch size=32, lr=2e-05 0.63±0.11 0.68±0.14 0.65±0.12
epochs=3, batch size=32, lr=3e-05 0.65±0.12 0.7±0.13 0.67±0.12
epochs=3, batch size=32, lr=5e-05 0.66±0.11 0.68±0.11 0.67±0.09
epochs=4, batch size=16, lr=2e-05 0.65±0.11 0.67±0.14 0.66±0.11
epochs=4, batch size=16, lr=3e-05 0.68±0.11 0.69±0.14 0.68±0.11
epochs=4, batch size=16, lr=5e-05 0.71±0.09 0.66±0.11 0.68±0.09
epochs=4, batch size=32, lr=2e-05 0.67±0.14 0.67±0.13 0.67±0.12
epochs=4, batch size=32, lr=3e-05 0.66±0.12 0.69±0.1 0.67±0.09
epochs=4, batch size=32, lr=5e-05 0.66±0.09 0.67±0.1 0.66±0.08

Table C.3: Training results using SciBERT trained on data with context.

103

settings precision recall f1

SciBERT uncased
epochs=2, batch size=16, lr=2e-05 0.65±0.09 0.65±0.09 0.65±0.07
epochs=2, batch size=16, lr=3e-05 0.69±0.09 0.66±0.08 0.67±0.06
epochs=2, batch size=16, lr=5e-05 0.68±0.1 0.63±0.09 0.64±0.06
epochs=2, batch size=32, lr=2e-05 0.68±0.11 0.67±0.09 0.67±0.08
epochs=2, batch size=32, lr=3e-05 0.67±0.11 0.66±0.09 0.66±0.06
epochs=2, batch size=32, lr=5e-05 0.68±0.1 0.67±0.11 0.67±0.08
epochs=3, batch size=16, lr=2e-05 0.68±0.1 0.66±0.1 0.67±0.09
epochs=3, batch size=16, lr=3e-05 0.7±0.12 0.67±0.08 0.67±0.08
epochs=3, batch size=16, lr=5e-05 0.66±0.11 0.64±0.07 0.64±0.07
epochs=3, batch size=32, lr=2e-05 0.67±0.11 0.68±0.1 0.67±0.08
epochs=3, batch size=32, lr=3e-05 0.67±0.09 0.68±0.08 0.67±0.06
epochs=3, batch size=32, lr=5e-05 0.68±0.11 0.66±0.11 0.67±0.09
epochs=4, batch size=16, lr=2e-05 0.65±0.11 0.66±0.08 0.65±0.08
epochs=4, batch size=16, lr=3e-05 0.68±0.1 0.64±0.07 0.66±0.06
epochs=4, batch size=16, lr=5e-05 0.66±0.11 0.6±0.06 0.63±0.06
epochs=4, batch size=32, lr=2e-05 0.65±0.1 0.67±0.07 0.66±0.06
epochs=4, batch size=32, lr=3e-05 0.65±0.11 0.66±0.1 0.65±0.08
epochs=4, batch size=32, lr=5e-05 0.67±0.09 0.63±0.1 0.64±0.07

SciBERT cased
epochs=2, batch size=16, lr=2e-05 0.74±0.14 0.68±0.1 0.71±0.11
epochs=2, batch size=16, lr=3e-05 0.74±0.13 0.67±0.08 0.7±0.08
epochs=2, batch size=16, lr=5e-05 0.73±0.14 0.67±0.07 0.69±0.09
epochs=2, batch size=32, lr=2e-05 0.78±0.14 0.61±0.19 0.64±0.17
epochs=2, batch size=32, lr=3e-05 0.74±0.14 0.68±0.08 0.7±0.08
epochs=2, batch size=32, lr=5e-05 0.73±0.13 0.66±0.1 0.69±0.09
epochs=3, batch size=16, lr=2e-05 0.72±0.12 0.71±0.1 0.71±0.09
epochs=3, batch size=16, lr=3e-05 0.71±0.1 0.7±0.08 0.7±0.07
epochs=3, batch size=16, lr=5e-05 0.66±0.14 0.64±0.11 0.64±0.09
epochs=3, batch size=32, lr=2e-05 0.7±0.12 0.69±0.07 0.69±0.08
epochs=3, batch size=32, lr=3e-05 0.67±0.09 0.66±0.05 0.66±0.06
epochs=3, batch size=32, lr=5e-05 0.71±0.11 0.68±0.08 0.69±0.08
epochs=4, batch size=16, lr=2e-05 0.73±0.12 0.68±0.07 0.7±0.07
epochs=4, batch size=16, lr=3e-05 0.72±0.13 0.67±0.09 0.68±0.08
epochs=4, batch size=16, lr=5e-05 0.68±0.13 0.65±0.07 0.66±0.08
epochs=4, batch size=32, lr=2e-05 0.72±0.1 0.72±0.08 0.72±0.08
epochs=4, batch size=32, lr=3e-05 0.69±0.12 0.72±0.07 0.7±0.07
epochs=4, batch size=32, lr=5e-05 0.73±0.11 0.71±0.07 0.72±0.07

Table C.4: Training results using SciBERT trained on text data only.

104

model one-hot tf-idf word ngrams char ngrams embeddings

naive
bayes

0.41± 0.02 0.0± 0.0 0.34± 0.01 0.0± 0.0 N/A
0.68± 0.01 0.0± 0.0 0.45± 0.0 0.0± 0.0 N/A
0.51± 0.01 0.0± 0.0 0.39± 0.0 0.0± 0.0 N/A

logistic
regression

0.73± 0.01 1.0± 0.0 0.0± 0.0 1.0± 0.0 N/A
0.43± 0.02 0.03± 0.0 0.0± 0.0 0.03± 0.0 N/A
0.54± 0.02 0.06± 0.0 0.0± 0.0 0.06± 0.0 N/A

svm
0.68± 0.0 0.87± 0.0 0.64± 0.02 0.69± 0.01 N/A
0.55± 0.01 0.46± 0.01 0.22± 0.01 0.42± 0.01 N/A
0.61± 0.01 0.6± 0.01 0.33± 0.01 0.52± 0.01 N/A

knn
0.0± 0.0 0.0± 0.0 0.0± 0.0 1.0± 0.0 N/A
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.01 N/A
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.18± 0.01 N/A

random
forest

1.0± 0.0 1.0± 0.0 0.78± 0.08 1.0± 0.0 N/A
0.09± 0.01 0.07± 0.01 0.23± 0.02 0.06± 0.02 N/A
0.17± 0.03 0.12± 0.03 0.36± 0.03 0.1± 0.04 N/A

sgd
0.67± 0.09 0.76± 0.07 0.67± 0.09 0.64± 0.05 0.13± 0.07
0.44± 0.08 0.5± 0.05 0.33± 0.04 0.48± 0.08 0.11± 0.11
0.52± 0.05 0.6± 0.04 0.44± 0.04 0.55± 0.06 0.1± 0.05

gradient
boost

1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.0± 0.0
0.13± 0.01 0.07± 0.0 0.19± 0.01 0.07± 0.03 0.0± 0.0
0.23± 0.01 0.12± 0.01 0.32± 0.02 0.14± 0.04 0.0± 0.0

xgb
0.93± 0.01 0.73± 0.05 0.58± 0.01 0.71± 0.0 1.0± 0.0
0.45± 0.01 0.17± 0.03 0.26± 0.01 0.16± 0.01 0.07± 0.0
0.61± 0.01 0.28± 0.04 0.36± 0.02 0.27± 0.01 0.12± 0.01

Table C.5: Training results for dataset with context. For each model, row 1 of results
is the precision, row 2 of results is the recall, and row 3 of results is the f1 score.

105

model one-hot tf-idf word ngrams char ngrams embeddings

naive
bayes

0.2± 0.01 0.05± 0.0 0.15± 0.0 0.0± 0.0 N/A
0.37± 0.01 0.04± 0.0 0.66± 0.01 0.0± 0.0 N/A
0.26± 0.01 0.04± 0.0 0.24± 0.0 0.0± 0.0 N/A

logistic
regression

0.64± 0.0 1.0± 0.0 0.0± 0.0 1.0± 0.0 N/A
0.27± 0.01 0.04± 0.0 0.0± 0.0 0.08± 0.0 N/A
0.38± 0.01 0.08± 0.0 0.0± 0.0 0.14± 0.0 N/A

svm
0.49± 0.01 0.56± 0.0 0.5± 0.0 0.55± 0.0 N/A
0.31± 0.01 0.2± 0.0 0.16± 0.0 0.22± 0.02 N/A
0.38± 0.0 0.29± 0.0 0.24± 0.0 0.31± 0.01 N/A

knn
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 N/A
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 N/A
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 N/A

random
forest

0.7± 0.46 0.4± 0.49 0.63± 0.21 0.1± 0.3 N/A
0.03± 0.02 0.02± 0.02 0.06± 0.02 0.0± 0.01 N/A
0.05± 0.03 0.03± 0.04 0.11± 0.03 0.01± 0.02 N/A

sgd
0.46± 0.15 0.52± 0.04 0.54± 0.11 0.44± 0.06 0.03± 0.04
0.41± 0.09 0.32± 0.05 0.21± 0.04 0.28± 0.08 0.03± 0.04
0.41± 0.05 0.4± 0.05 0.3± 0.06 0.33± 0.07 0.03± 0.04

gradient
boost

1.0± 0.0 0.8± 0.16 1.0± 0.0 0.85± 0.12 0.0± 0.0
0.1± 0.02 0.09± 0.02 0.04± 0.0 0.1± 0.02 0.0± 0.0
0.18± 0.03 0.17± 0.04 0.08± 0.0 0.18± 0.03 0.0± 0.0

xgb
0.74± 0.03 1.0± 0.0 0.24± 0.04 0.72± 0.1 0.4± 0.12
0.39± 0.01 0.31± 0.01 0.12± 0.0 0.14± 0.02 0.04± 0.0
0.51± 0.01 0.48± 0.01 0.16± 0.01 0.23± 0.03 0.07± 0.0

Table C.6: Training results for the plain dataset. For each model, row 1 of results is
the precision, row 2 of results is the recall, and row 3 of results is the f1 score.

106

model embeddings (trained on
dataset with context)

embeddings (trained on
dataset without context)

nn
0.0± 0.0 0.0± 0.0
0.0± 0.0 0.0± 0.0
0.0± 0.0 0.0± 0.0

dnn
0.0± 0.0 0.0± 0.0
0.0± 0.0 0.0± 0.0
0.0± 0.0 0.0± 0.0

rnn
0.34± 0.2 0.45± 0.18
0.13± 0.1 0.21± 0.13
0.17± 0.11 0.26± 0.11

cnn
0.67± 0.07 0.61± 0.36
0.34± 0.12 0.1± 0.09
0.43± 0.1 0.16± 0.13

lstm
0.74± 0.28 0.59± 0.24
0.26± 0.25 0.22± 0.13
0.33± 0.25 0.29± 0.14

bilstm
0.89± 0.12 0.54± 0.27
0.24± 0.12 0.26± 0.16
0.35± 0.12 0.34± 0.19

Table C.7: Training results for neural networks. For each model, row 1 of results is
the precision, row 2 of results is the recall, and row 3 of results is the f1 score.

107

Predicted

T
ru

e 10 5 Positive
14 230 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and one hot encoding.

Predicted

T
ru

e 5 9 Positive
20 225 Negative

Positive Negative

(b) Trained on dataset without contextual
features and one hot encoding.

Table C.8: Confusion matrices for naive bayes

Predicted

T
ru

e 9 12 Positive
3 235 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and one hot encoding.

Predicted

T
ru

e 14 38 Positive
8 199 Negative

Positive Negative

(b) Trained on dataset without contextual
features and one hot encoding.

Table C.9: Confusion matrices for logistic regression

Predicted

T
ru

e 17 14 Positive
8 220 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and one hot encoding.

Predicted

T
ru

e 14 31 Positive
15 199 Negative

Positive Negative

(b) Trained on dataset without contextual
features and one hot encoding.

Table C.10: Confusion matrices for svm

Predicted

T
ru

e 1 9 Positive
0 249 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and tfidf char ngrams encoding.

Predicted

T
ru

e 0 0 Positive
0 259 Negative

Positive Negative

(b) Trained on dataset without contextual
features and tfidf char ngrams encoding.

Table C.11: Confusion matrices for knn

108

Predicted

T
ru

e 8 27 Positive
2 222 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and tfidf word ngrams encoding.

Predicted

T
ru

e 5 78 Positive
3 173 Negative

Positive Negative

(b) Trained on dataset without contextual
features and tfidf word ngrams encoding.

Table C.12: Confusion matrices for random forest

Predicted

T
ru

e 16 16 Positive
5 222 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and tfidf encoding.

Predicted

T
ru

e 15 22 Positive
18 205 Negative

Positive Negative

(b) Trained on dataset without contextual
features and one hot encoding.

Table C.13: Confusion matrices for sgd

Predicted

T
ru

e 4 17 Positive
0 238 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and tfidf word ngrams encoding.

Predicted

T
ru

e 4 36 Positive
0 219 Negative

Positive Negative

(b) Trained on dataset without contextual
features and tfidf char ngrams encoding.

Table C.14: Confusion matrices for gradient boost

Predicted

T
ru

e 17 21 Positive
1 220 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and one hot encoding.

Predicted

T
ru

e 15 23 Positive
5 215 Negative

Positive Negative

(b) Trained on dataset without contextual
features and one hot encoding.

Table C.15: Confusion matrices for XGBoost

109

Predicted

T
ru

e 0 0 Positive
0 259 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and embeddings encoding.

Predicted

T
ru

e 0 0 Positive
0 259 Negative

Positive Negative

(b) Trained on dataset without contextual
features and embeddings encoding.

Table C.16: Confusion matrices for nn

Predicted

T
ru

e 0 0 Positive
0 259 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and embeddings encoding.

Predicted

T
ru

e 0 0 Positive
0 259 Negative

Positive Negative

(b) Trained on dataset without contextual
features and embeddings encoding.

Table C.17: Confusion matrices for dnn

Predicted

T
ru

e 3 20 Positive
6 230 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and embeddings encoding.

Predicted

T
ru

e 1 4 Positive
1 253 Negative

Positive Negative

(b) Trained on dataset without contextual
features and embeddings encoding.

Table C.18: Confusion matrices for rnn

Predicted

T
ru

e 9 17 Positive
4 228 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and embeddings encoding.

Predicted

T
ru

e 1 8 Positive
1 249 Negative

Positive Negative

(b) Trained on dataset without contextual
features and embeddings encoding.

Table C.19: Confusion matrices for cnn

110

Predicted

T
ru

e 6 17 Positive
2 234 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and embeddings encoding.

Predicted

T
ru

e 10 35 Positive
7 207 Negative

Positive Negative

(b) Trained on dataset without contextual
features and embeddings encoding.

Table C.20: Confusion matrices for lstm

Predicted

T
ru

e 6 19 Positive
1 233 Negative

Positive Negative

(a) Trained on dataset with contextual fea-
tures and embeddings encoding.

Predicted

T
ru

e 11 31 Positive
9 207 Negative

Positive Negative

(b) Trained on dataset without contextual
features and embeddings encoding.

Table C.21: Confusion matrices for bilstm

111

Figure C.1: Losses for uncased BERT
trained on dataset with context

Figure C.2: Losses for uncased BERT
trained on dataset without context

Figure C.3: Losses for cased BERT
trained on dataset with context

Figure C.4: Losses for cased BERT
trained on dataset without context

Figure C.5: Losses for uncased SciBERT
trained on dataset with context

Figure C.6: Losses for uncased SciBERT
trained on dataset without context

112

Figure C.7: Losses for cased SciBERT
trained on dataset with context

Figure C.8: Losses for cased SciBERT
trained on dataset without context

113

	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Information Retrieval Origins
	Scholarly Information Extraction Today
	Scholarly Document Processing Workshops
	Scientific Information Extraction Corpora
	The NLP Contribution Graph Shared Task
	Transformer Architectures

	Annotation Project
	Data Statement
	Curation Rationale
	Language Variety
	Speaker Demographic
	Annotator Demographic
	Speech Situation
	Text Characteristics
	Corpus Access

	Corpus Selection
	Annotation Process
	Guidelines
	What is a Task Description?
	Task Description Phrase Boundaries
	Ambiguous Cases

	Annotation Results
	Corpus Statistics
	Characteristics of Shared Task Overview Papers
	Task Description Characteristics

	Classification Project
	Data Preparation
	Leveraging Paper Context and Hierarchical Structure

	Experimental Setup
	Preprocessing
	Classification Algorithms
	Training Loop

	Results
	Baseline
	Training Results
	Non-BERT Training Results
	BERT Training Results

	Test Results
	Error Analysis

	Conclusion
	Thesis Contributions
	Discussion of Results
	Future Work
	Ethical Considerations

	References
	Dataset Preparation: Alternative Approaches
	Generating Synthetic Data
	Automatic Downsampling
	Downsampling Using Cosine Similarity
	Downsampling Using TextRank Algorithm

	Software Used
	Full Results

