User-Level Control of Scheduling
In a Micro Kernel Operating System

by

Aditi Paluskar
November 2001

Submitted in partial fulfillment of the
requirements for the degree of
Master of Science
under the instruction of Dr. Ted Pedersen

Department of Computer Science
University of Minnesota
Duluth, Minnesota 55812
U.S.A.

Abstract

Allocating scarce resources among many users is one of the main tasks of an operating
system. Process scheduling refers to the policies which decide the order in which the
processes resident on a computer system are executed. The choice of a good scheduling
algorithm is a key factor in optimizing the performance of a computer system. However,
there is no single best scheduling algorithm as each improves different aspects of overall
performance such as throughput, waiting time, response time, etc.

This project focuses on an algorithm which places its emphasis on ensuring fairness
among processes. Lottery scheduling allows users to assign relative priorities to pro-
cesses and then simulates a lottery to select the next process to execute, such that the
priority of a process is equated to a number of chances in the lottery.

The objective of this project was to implement a user-controlled lottery scheduling
algorithm in the MINIX operating system. This project has enhanced MINIX with a
lottery mechanism in the kernel that supports system calls that allow users to control

the priority of their processes, and thereby control their scheduling.

Acknowledgments

I am grateful to my advisor Dr. Ted Pedersen for providing me an opportunity to work
with him and the valuable guidance that he provided. I also thank Dr. Masha Sosonkina
and Dr. Robert McFarland for their co-operation.

I am indebted to my parents, sister and friends, without their support nothing would

have been possible.

ii

Contents
1 Introduction

2 Process Management
2.1 Process Concepts e
2.2 Process Scheduling L e
2.3 Traditional Scheduling Algorithms

3 Lottery Scheduling
3.1 Why Lottery Scheduling? 0.

[=2 30, BENTNE N

3.2 Lottery Scheduling Algorithm

MINIX

4.1 Introduction.
4.2 Internal Structure of MINIX
4.3 Process Scheduling in MINIX

Approach

5.1 Implementation Approach
5.2 User Manual,

Related Work

Conclusions and Future Work

7.1 Observations and Conclusions
7.2 Future Work

Trace of settickets()

Changes in the code

iii

12
12
12
14

17
17
20

24

26
26
28

29

37

1 Introduction

The dictionary meaning of schedule is “A production plan allotting work to be done and
specifying deadlines” [Com82|. In the real world, we come across various situations where
there is a need for scheduling. These situations can be as simple as deciding on the time
table for the day or more complex as seen in the scheduling of flights, trains etc.
Scheduling scarce resources for many potential users is a complicated problem in a lot of
areas. For example, consider a hospital situation where there is a single doctor and a head
nurse. The head nurse acts as a scheduler for the doctor. She is responsible for making
sure that the patients get serviced by the doctor in some specific order. The policy which
decides this order is very important since there are many patients waiting for treatment
and a single doctor. The policy could be as simple as noting the times when the patients
arrive, and telling the doctor who has been waiting the longest. However this scheme has
a potential drawback in that a patient with a severe problem would have to wait for a long
time. The severity of the problem might mean a question of life and death for the patient
and hence we need another approach. A second scheme would be where the nurse makes a
decision regarding the amount of time it might take to treat a patient. She then allows the
patients who need a short time to be treated, to get serviced first. However, this scheme
suffers from a long wait for patients who are going to need a longer time for treatment. A
third approach would be where the doctor treats every patient for a short amount of time
and then moves on to the next one. However this wastes a lot of time for the doctor in
moving around. Since there is a single doctor wastage of time is not very desirable. A fourth
possibility is where the nurse notes down the severity of the problem for every patient, and
then allows the patient with the most severe problem to be serviced first. However in such

a scheme if the treatment takes up the entire day, then the doctor will be tied up all the

time and the rest of the patients will not be serviced at all. However, at the end of the day
doctor should have attended all the patients who have come in on that day. Now suppose we
have two patients with severe problems then, how do we decide which patient gets serviced
first? If either of the patients is allowed to go earlier it would be unfair for the other patient
and hence we need a scheme which will decide on a good order in such a situation. If the
patient is chosen randomly then this could solve the problem since both the patients now
have an equal chance of being treated first.

This situation suits many other real world problems where a number of users require
service from a resource which is in high demand. In the computer domain, there could be
a large number of of users using a computer at the same time. These users require services
from the different resources such as the processor, memory and files. The users compete for
the use of these resources and hence an order has to be established. The operating system
is responsible for managing such resources and in the process allowing the users to execute
their application programs smoothly. An application program can be a word processor, an
email program or a simple C program. The operating system enforces policies which decides
who gets to use a resource, when and in what amount. The resources in an operating system
are limited and hence their management is a complex task. This is particularly important
since there are a large number of processes which require the service of such resources. A
process is an active entity which is eligible to participate in the competition for resources
and which can be defined as an “instance of a program in a state of execution” [Mil97].
For example an email program or a text editor are always present on the computer but,
only when a user starts them, do they become processes. Among the resources mentioned
above, management of a processor is vital.

In a uniprocessor environment, there is a single processor and only one process can

execute at a time. However, there may be more than one process waiting for the CPU.

This creates a need for the operating system to enforce rules, known as scheduling policies
which govern the manner in which the processor is allocated to the various processes. The
problems which exist in a hospital are also seen in an operating system. The first solution
is one in which the processes are scheduled in the order in which they arrive. This is an
example of first-come first-served scheduling. The second solution schedules the processes
with shorter execution times first. This is known as shortest job first scheduling. The
third solution in which every process is allowed to execute for a small amount of time, is
referred to as round robin scheduling in operating system terminology. The fourth scheme
which gives higher priorities to more important processes is known as priority scheduling.
If however there are two processes with the same priority then we need a scheme which will
select the processes randomly. This scheme is known as lottery scheduling and has the same
advantages as in a hospital. The idea was introduced by Carl A. Waldspurger [Wal95].

The goal of this project is to implement lottery scheduling in the MINIX [TW97] oper-
ating system, specifically to control the scheduling of processes on the processor.

This is done via a series of system calls that allow a user to control the priorities of
processes as they are running.

In the next section we describe the concept of a process and some traditional schedul-
ing algorithms. Section 3 discusses the lottery scheduling algorithm in greater detail while
section 4 outlines the structure of the MINIX operating system. In section 5 we describe
the approach followed in implementing the lottery scheduling algorithm for the MINIX op-
erating system. Section 6 gives a user manual which describes the usage of the system calls.
This is followed by the related work in section 7. Finally, we summarize our conclusions in
section 8 also discussing the possible future work. Appendix A gives the trace for the sys-
tem call and appendix B gives the changes we had to make to implement lottery scheduling

algorithm.

2 Process Management

This section describes some basic concepts of a process such as process states, process
relationships and process scheduling. All the ideas in this section are well known and
commonly discussed in operating systems textbooks. Particularly useful presentations are

found in [TW97, Mil97, SJP9I1].

2.1 Process Concepts

A process is an active entity which competes for the system resources such as the processor,
memory, I/O devices and files. Being active, a process is in one of the states such as READY,
WAIT or RUN. When the process is started it is in the READY state. In this state, the
process owns all other resources except the processor. In the RUNNING state a process
has all the resources including the processor and in the WAIT state a process awaits the
completion of I/O. A process can undergo various state changes and the operating system
keeps track of these changes, and thus the progress of the process. The data structure which
contains this information for every process is known as the process control block.

When a process owns the processor it is in the RUN state, but it moves either to the
READY or the WAIT state when it loses control of the processor. The module of the
operating system which decides when a process moves from one state to another is called
the scheduler. The scheduler decides which process gets control of the processor and the
processes change their states accordingly. We are interested particularly in the processor
scheduler which is responsible for moving the process from the READY to the RUN state
and then out of the RUN state either to the WAIT or the READY state.

2.2 Process Scheduling

In a uniprocessor environment, we have a single processor. However, there may be a large
number of processes in various states of execution waiting to be scheduled. These processes
can voluntarily give up the processor to other processes so that the others can finish faster,
making it a cooperative situation or they can demand more of the processor, making it a
competitive situation. Hence a set of policies is required which will decide the order in which
the processes should be executed. These are known as scheduling policies. The objective
of the policy is to make sure that all the processes get a fair chance on the processor and
eventually finish in such a way that it does not affect other processes adversely. The degree

to which it succeeds in achieving this objective is measured by various criteria which are
defined below.
e Throughput
“Throughput is defined as amount of work done in a unit of time” [Mil97]. In our case,
we can consider throughput to be the number of processes that complete execution in
some measured amount of time.
e Turnaround time
Turnaround time is the difference between the time that a process was started and
the time that it finished execution.
e Waiting time
Waiting time is the time that a process spends waiting for the processor.
e Response time

Response time is the difference in time between the start of a process and the time

the result appears on the terminal.

e Fairness

Fairness ensures that every process gets to execute for at least some amount of time

and that no process has to wait for the processor indefinitely.

e Processor utilization

Processor utilization is defined as the amount of time that the processor remains busy.

2.3 Traditional Scheduling Algorithms

There are a number of traditional scheduling algorithms which try to improve on one or
more of the criteria mentioned above. However improving only one factor often results in
the degradation of other factors and hence a scheduling algorithm tries to strike a balance

between them. We now look at four such algorithms.

1. First-Come First-Served (FCFS)

First-Come First-Served is a simple non-preemptive algorithm. A non-preemptive
scheduling algorithm is one in which the processor cannot be taken away from a
process unless the process gives away control voluntarily. The idea here is to schedule
the processes in the order in which they arrive in the system. Arrival time is the time
when a process becomes ready for execution. The first process to request for the CPU
is the first to be serviced. The order of execution is completely decided by the system
with no user intervention and hence important jobs are given no special treatment
by scheduling first. In terms of performance criteria however, this algorithm reduces
the number of context switches, a condition in which the processor is taken away
from a process and handed over to the next. However it results in long waiting and
turnaround times for shorter processes, if a long process arrives first. This in turn

increases the average waiting and turnaround time.

2. Shortest Job First (SJF)

The disadvantage faced by the short processes in FCFS can be solved by letting the
shorter processes execute first. This is the idea of the shortest job first algorithm.
The execution times of the processes decides the order of scheduling and is again
controlled entirely by the system. Prior knowledge of the execution time of processes
is required and this can involve additional computation which is an overhead on the

system. However, this algorithm reduces the average waiting time of the processes.

3. Round Robin (RR)

Round Robin is a strictly preemptive algorithm. A preemptive algorithm is one in
which the scheduler can take away the processor from one process and assign it to
another process. The algorithm improves the fairness criteria. This is achieved by
allowing every process to execute only for a fixed time interval known as the time
slice. At the end of the time slice a new ready process is selected for execution. This
improves the response time of short processes since they usually finish their execution
in one time slice but decreases the response time of longer processes, since they usually
need more than one time slice to finish execution. Observe that the processor is busy
all the time. This improves utilization but at the cost of an increase in the number
of context switches. The scheduling decisions are made by the system, with hardware
support in terms of an interval timer. This timer sends an interrupt at the end of

every time slice. MINIX uses RR. for scheduling user processes.

4. Priority Scheduling

None of the algorithms discussed above take into consideration the importance of the
different processes. When a highly important process is ready for execution, it should

be serviced first. Priority scheduling algorithm solves this problem.

The algorithm gives the user control in making the scheduling decision based on the
importance of the different processes. This is necessary because the completion of
some process earlier may speed up the execution of other processes and thus allow for
the faster completion of all the processes. This is achieved by assigning priorities to
processes. The process with the highest priority is always chosen to run. The priority
of a process can be decided by the user or by the system depending on the various
criteria such as the time needed for execution etc. This algorithm can be both pre-
emptive as well as non-preemptive. However, this algorithm suffers from a condition
known as starvation, which occurs when low priority processes wait indefinitely for
the processor. However, a scheme known as aging, which increases the priority of low
priority processes over time. This change in priority is however brought about by the
system. Lets consider a system in which aging is not implemented and there are 4
processes with priorities 10, 2, 1 and 5. With a priority scheduling scheme the pro-
cess with priority 10 is always scheduled first and the remaining processes will have
to wait until it finishes execution. If the process has a long execution time then the
remaining processes will have to wait indefinitely and this will cause starvation. Now
suppose, the priorities of the processes were 10, 10, 10 and 11. In this situation again
the process with priority 11 will always get scheduled first even though the remaining
three processes have a priority almost equal to the process being scheduled. We are

left with two questions: Is this fair? Is there a way to get around this problem?

In the next section, we will look at a scheduling approach which answers these questions.

3 Lottery Scheduling

In this section we look at a different scheduling approach known as lottery scheduling.

3.1 Why Lottery Scheduling?

Consider 4 processes with priorities 10, 10, 10 and 11. Priority scheduling will always
schedule the process with priority 11 first. The problem with priority scheduling is that it
always selects the highest priority process and the low priority processes might have to wait
for an indefinite amount of time. This problem of starvation can be solved by using the
lottery scheduling scheme in which the low priority processes also get a chance to execute.
This is the idea behind lottery scheduling. A discussion on the details of this policy follows.

A more extensive discussion can be found in [Wal95].

3.2 Lottery Scheduling Algorithm

Lottery scheduling is a variant of priority scheduling. Like priority scheduling, lottery
scheduling also assigns priorities to the processes. The priorities are modeled as tickets.
Every process owns a certain number of tickets. The higher the number of tickets that
a process owns, the higher its priority. The selection of a process for scheduling is done
by choosing a random ticket number. The process with this ticket number is scheduled to
execute. Thus the term lottery. Only the processes which are ready to execute are allowed
to participate in the lottery. A random ticket number is chosen from the set of tickets
assigned to the ready processes. We will henceforth refer to this term as the active set of
tickets. Randomness of the process selection is the key idea of lottery scheduling and this
idea differentiates priority scheduling from lottery scheduling. This idea ensures that the

low priority processes with less number of tickets have some chance of being scheduled and

the high priority processes always have a greater chance of being scheduled. Consider the
example of 4 ready processes with 10, 10, 10 and 11 tickets in this scenario. There are 41
tickets in the active set of tickets. A ticket number between 1 and 41 is therefore chosen and
the process with that ticket number is scheduled. Since all the processes have an almost
equal number of tickets, they have almost equal chances of being scheduled. We can replace
the concept of a “chance” with that of a probability. In terms of probability, the 4 processes
will have probabilities of 10/41, 10/41, 10/41 and 11/41 of being scheduled. This means
that all processes have an almost equal probability. This overcomes the disadvantage of
priority scheduling where the process with priority 11 was always the one to be scheduled
and ensures fairness among almost equal priority processes.

Now consider the example where there are 4 ready processes with 1, 2, 3, and 10 tickets.
Here the probabilities of being scheduled for the processes are 1/16, 2/16, 3/16 and 10/16
respectively. We can see that process with a single ticket has the lowest probability but
at least it has a 1 in 16 chance of being scheduled. If aging was not implemented in
priority scheduling then the processes with priorities 1, 2 and 3 would have to wait until
the completion of process with priority 10. Thus, lottery scheduling solves the problem
of starvation in an environment where aging in not implemented. However, when aging is
implemented the system can increase the priorities of the low priority processes. Lottery
scheduling gives control to the user in changing the priority of a process. This is done
by changing the number of tickets allocated to that process. This feature is provided to
ensure that processes, which are more important for the user, are allowed to run earlier. A
process maybe more important for a user for various reasons such as its earlier completion
will ensure the faster completion of the other processes or the results obtained from that
process might be required for the execution of some other process. For example consider

two processes with an initial ticket allocation of 1 each. They have an equal probability of

10

1/2 of being scheduled. If now the tickets of the second process were changed to 10, the
probabilities of the two processes being scheduled would change to 1/11 and 10/11. This
would give the second process a higher chance of being scheduled. In addition to increasing
the probability of being selected in one lottery, an increase in the number of tickets also
increases the number of times that a process will get scheduled. This means that a process
with a higher number of tickets gets executed more often and hence gets more time to
execute on the processor. For example, if there were two processes with tickets 1 and 10
respectively, then after a fixed time period the process with 10 tickets will be scheduled
10 times more often than the process with a single ticket. The number of times that the
process gets to execute is also decided by the load on the system. If there are a large number
of processes, then every process will have a lesser chance to execute. To illustrate this fact,
consider 2 processes, 1 of which has a single ticket and one the other has 10 tickets. The
process with 10 tickets has a probability of 10/11 to get scheduled. Now suppose 4 more
processes enter the system each with a single ticket. The active set of tickets is now 15 and
hence the process with 10 tickets has a probability of 10/15 to get scheduled. This is lower
than the initial probability of 10/11. Thus, the worth of a ticket is inversely proportional to
the load on the system. If the system is heavily loaded then the worth of a ticket decreases
and vice versa.

These features of lottery scheduling make it a very responsive scheme. The Round
Robin scheduling for user processes in MINIX does not have a provision for prioritizing the
processes. We therefore implement lottery scheduling. The next section gives the details of

how the scheduling scheme for MINIX works.

11

4 MINIX

We have implemented the lottery scheduling algorithm for the MINIX operating system
and hence in this section we look at some background material on MINIX. We will give
a brief description of the internal structure of MINIX followed by the scheduling policy of
MINTIX.

4.1 Introduction

The MINIX operating system is written by Andrew S. Tannenbaum [TW97]. It is a small
operating system, yet has all the functionality of any other bigger operating system. MINIX
is an implementation of the UNIX. It is a micro kernel operating system and has a layered
organization. The different modules of the operating system such as the memory manager,
file manager, clock etc. are arranged in different layers according to their order of importance
and their functions. This layered organization hides the lower level implementation details
from the higher layers and makes it easier to make changes to or add new functionality to
the system. A detailed documentation on the MINIX operating system can be found in the
operating system book written by Tannenbaum [TW97]. It also contains a complete listing
of the kernel code with explanations of the various important sections of the code. In the
following section we discuss briefly the internal structure and the scheduling approach of

MINIX.

4.2 Internal Structure of MINIX

MINIX has a layered organization. It is divided into 4 layers and each layer has a spe-
cific task. Also there is a clear abstraction of any layer from the internal details of any of

the lower layers. This gives it a much simpler interface. The question which arises from

12

such a structure is: How does a module in one layer interact with another module?. The
answer is a communication technique called as message passing. Message passing is a tech-
nique which facilitates communication between processes ensuring synchronization between
the processes. In the MINIX operating system the modules from the different layers com-
municate by passing a message which contains the data to be exchanged along with the
destination and the source of the message.

The separation of the modules into the different layers is done according to the similar-
ities and the differences in the functionality of the different modules. So the modules which
perform similar tasks are grouped together. Also as we reach higher layers the importance
of the modules decreases with the highest layer having the processes with the least priority.

We will look at each of these layers now. For a more detailed description of each layer
please refer to [TW97].

The layer which is lowest in the hierarchy is responsible for handling the low level details
of the system such as servicing of interrupts and process management. It also handles the
message passing interface which is the medium of communication in MINIX. This layer
abstracts the low level details of the system from the higher level processes. The second
layer in the hierarchy handles I/O. The processes which perform this function are known
as the tasks. Examples of tasks are clock task, disk task etc. These processes are serviced
after the layer 1 processes. There is one such task known as the system task which does
not perform I/O but it acts as an interface to provide low level services to the processes at
a higher level. The third layer in the hierarchy contains the processes which are known as
the servers. Examples of servers are memory server, file server etc. As the name suggests
they serve the user processes to provide basic functions for their smoother execution. The
highest layer consists of the user processes such as executable programs, email program,

word processor etc. The priority of the processes decreases as we move higher in the

13

hierarchy with the tasks having the highest priority and the user level processes having the
lowest priority.

The processes in every layer communicate with other processes from the same or different
layer through message passing. The process from higher layers depend on the services
provided by the lower layers for their execution. Apart from these four layers the kernel
holds a special position in the organization. This is because the kernel is a program that
does not belong to any layer in particular but it is a result of linking the tasks and the layer
1 code. The kernel contains the routines which perform process scheduling. We change a
part of this scheduling code to accommodate lottery scheduling. The servers interact with

the kernel via the system task by message passing.

4.3 Process Scheduling in MINIX

The layered organization of the MINIX operating system is the key in determining the
scheduling scheme for the system. A traditional scheduling algorithm which combines one
or more traditional scheduling algorithms is multilevel queuing. This algorithm can be
used when the processes can be naturally grouped into different categories depending on
their functionality. The processes are divided into different queues. Each queue is given a
priority level and priority scheduling is used to schedule the queues. Also within each queue
a different scheduling scheme can be used. A process which is in a higher priority queue is
allowed to run before any of the processes in the lower priority queues.

Since the different processes in MINIX are organized into layers according to their
functionality the multilevel queuing scheme applies very easily. There are 3 different ready
queues, one each for the task, server and the user processes. The TASK queue is given
the highest priority followed by the SERVER queue and then the USER queue. This is in

accordance with their importance level.

14

The scheduling scheme adopted in the TASK queue and the SERVER queue is FCFS
[TW97] whereas the user processes are scheduled using round robin [TW97]. Since the
highest priority queue is the TASK queue, a server or user process will be allowed to run
only if this queue is empty. Similarly a user process will be allowed to run only if both the
SERVER, queue and the TASK queue are empty.

The system also maintains two additional data structures for managing the queues.
There are two arrays rdy head and rdy_tail which keep track of the processes at the head
and the tail of each queue. Each of these arrays has 3 entries one for each of the 3 queues.
The entries in the first array contain pointers to the processes at the head of each queue
whereas the entries in the second array contain pointers to the processes at the tail of each
queue.

At the end of each time slice a new process has to be chosen to execute and has hence
the scheduler is invoked by the CLOCK task. The scheduler first checks to see if there are
any processes on the SERVER queue and if so selects the process at the head of the queue.
The entries in the rdy head and rdy_tail are updated accordingly. If there is no process
on this queue then the scheduler checks the TASK queue. It repeats the same procedure
for this queue. If both the queues are empty then the scheduler checks the USER queue.
If the process at the head of the queue has completed its execution then the entry for the
process is removed from the queue and the next process is chosen for execution. The entries
in the arrays are modified accordingly. If the process has not finished its execution then the
process is put at the end of the queue and the next ready process in the queue is chosen
for execution. A new ready process which becomes ready for execution is always put at the
end of the queue. If all the 3 queues are empty then a special process called as the IDLE
process is allowed to run.

Thus the tasks and servers are allowed to run to completion while the user processes

15

are allowed to run until the time slice expires. At the end of the slice a new ready process
is chosen for execution.

However, RR algorithm is not an optimal algorithm for user processes as it does not
assign priorities to these processes. The user has no control in making the scheduling
decisions an hence lottery scheduler makes a better choice for scheduling of processes in

this layer.

16

5 Approach

This section describes the approach that we have adopted in implementing the lottery
scheduling algorithm. The section describes the implementation details and the changes
made to the various parts of the kernel code. We provide a user manual which gives the

details and usage of two system calls.

5.1 Implementation Approach

Our focus is on the user level processes and therefore we replace the round robin scheduling
approach to that of lottery scheduling. To implement lottery scheduling we make changes
in various sections of the code. We will consider these changes in terms of three broad

categories such as tickets, lottery scheduling algorithm and the assignment of tickets.

e Tickets

Ownership of tickets is the most important feature of lottery scheduling. Each process
owns a certain number of tickets which decides its priority level. The processes need to
keep track of their current ticket allocation at all times. We incorporated this feature
into the existing system by including an additional field in the process control block of
every process. Thus in addition to the rest of the scheduling information every process
now maintains information about the number of tickets its owns. By including this
field in the process control block it is possible to keep track of the changes in the

number of tickets as well.

e Lottery Scheduling Algorithm

The MINIX operating system makes a scheduling decision at the end of every time slice

and selects a new ready process to execute. We do not modify this feature of MINIX.

17

In our implementation, as well, the scheduler is invoked at the end of every time
slice by the CLOCK task. The multilevel queuing implementation of MINIX is also
retained. Lottery scheduling is implemented only for the user level processes and hence
the tasks and servers are allowed to run at their own priority levels to completion.
The scheduling function will make use of the lottery scheduling algorithm only when
there are no tasks and servers which have not been serviced yet. The scheduler will
find out the number of tickets for all the processes on the USER queue and from that
determine the active set of tickets. A random ticket number is then selected by using
a random number generator function like rand (). The USER queue is then traversed
to locate the process which has the winning ticket number. This is simply done by
adding up the tickets for every process successively until the sum is greater than the
winning ticket number. The process with the winning ticket number is the next to
be scheduled and hence it is brought at the head of the queue. The corresponding
entry in rdy head is updated so that it now points to the newly selected process. The
entry in rdy_tail is also updated so that it now points to the process which is at the
end of the queue. MINIX uses a process pointer which always points to the currently

running process. This pointer is also updated to point to the newly selected process.

Assignment of tickets

The number of tickets assigned to a process decides the priority of that process. In-
creasing/decreasing the number of tickets results in increasing/decreasing the priority
of the process. Tickets can be assigned by the kernel or by the user. We implemented
both the possibilities. A process is assigned tickets by the kernel when it is created.
For simplicity we assigned just a single ticket to every process. This was done by

modifying the FORK system call. To implement the assignment of tickets under user

18

control we implemented a system call, settickets(). We also included an additional
system call, gettickets() which will determine the current ticket allocation for a
process. The settickets() system call takes as a parameter the process identifier
and the number of tickets. It then modifies the ticket allocation for that process with
the new ticket allocation value. The call originates in the user level process and then
flows into the different layers of the system. More specifically the layers which are
modified are the memory manager and the system task. The user level process passes
the information about the tickets and the process identifier to the memory manager in
a message which the memory manager just forwards to the system task. The system
task is responsible for the interaction between the memory manager and the kernel.
The system task looks through the process table to find the process with the process
identifier value specified in the message. It then modifies the ticket allocation value
for the that process. The result of this change is then propagated back to the user
process through reply messages. The call can also be traced through the other layers
because of the various interrupt handling and signal handling which takes place. A
complete trace of the system call can be found in appendix A. The changes made
to the various section of the code to accommodate the lottery scheduling scheme are

outlined in appendix B.

19

5.2 User Manual

This section gives the description and the usage of the system calls with examples.

e tic t gettickets(pid t pid)
Description

This system call is used to get the ticket count for a particular process. The system
call takes as an argument the process identifier (pid) and returns the ticket count.
The ticket count type (tic-t) is defined to be of type int in the /include/sys/types.h.
The /src/mm/getset.c file contains the definition of the function. The function looks
for an entry in the process table whose pid is the same as that passed by the user as

an argument and then returns the ticket count for that process.
Returns

The function returns tic_t which is the ticket count. tic_t is defined to be of type

int.
Usage

To get the ticket count for a child process with process id childpid we can use the

gettickets() in the following manner:

childtickets = gettickets(childpid);

The number of tickets for the child process will be returned in childtickets.
Example

We need to find the number of tickets assigned to a process with pid = 10, then we

can do so by the following system call:

20

tickets = gettickets(10);

tickets will contain the number of tickets for the process with pid = 10.

int settickets(pid t pid, tic_t tickets)
Description

This system call is used to set the ticket count for a particular process. The system
call takes as arguments the process identifier (pid) and the number of tickets (tickets)
which need to be assigned to a particular process and returns the status of the assign-
ment (1 if OK). The src/kernel/system.c contains the definition of the function. This
function looks through the process table entries for the process whose pid is specified
in the message. It will then set the ticket count for that process with the new value

specified by the user.
Returns

The function returns int which is the status of the call. If the call is successful then

it returns 1.

Usage

To set the ticket count for a child process with process id childpid to 100 we can use
the settickets() in the following manner:

status = settickets(childpid,100);

The status will be 1 if the call is successful.
Example

To set the ticket count for the process with pid = 10 to 200 we can use the following

system call :

21

status = settickets(10,200);

The call will return status 1 if the call is successful.

The following code illustrates another example where a process forks off a child process.

The parent process is then assigned 100 tickets and the child process is assigned 10 tickets.

This is done by the settickets() system call. The gettickets() system call is used to

show that this assignment is correctly done.

#include

#include

#include

#include

#include

#include

<minix/config.h>/* MUST be first */
<ansi.h>/* MUST be second */

<sys/types.h>

<minix/type.h> //For message
<minix/syslib.h> //For send
<stdio.h>

int main()

{

int fork_pid;

int child_tickets, parent_tickets;

int child_pid, parent_pid;

int value;

fork_pid = fork();

if (fork_pid == 0)

{

printf(" I am the child");

22

child_pid = getpid();

value = 10;
settickets(child_pid,value);
child_tickets = gettickets(child_pid);

printf (" Process Id is : /d, Value of tickets is %d",child_pid, child_tickets);

else

printf(" I am the parent");

parent_pid = getpid();

value = 100;
settickets(parent_pid,value);
parent_tickets = gettickets(parent_pid);

printf (" Process Id is :)d, Value of tickets is %d",parent_pid, parent_tickets);

23

6 Related Work

In this chapter we look at similar work which has been done in the area of lottery scheduling.

Carl A. Waldspurger [Wal95] introduced the idea of lottery scheduling. One of the
aims was to design an algorithm which would take into account the characteristics of the
application and assign priorities to them accordingly. A second aim was to allow the user to
assign and modify the priorities of the processes dynamically. The scheme also allowed the
processes to execute for a time which was proportional to their priority. Lottery scheduling
idea is a variant of priority scheduling. The original algorithm allowed for modification of
ticket allocation. This was done in two ways, either by an explicit ticket transfer between
two processes or by ticket inflation/deflation [Wal95]. The idea behind ticket transfer was
to speed up the execution of a process if there was another process awaiting results from the
first one. In this situation the waiting process could transfer its tickets to the second process
so that it finished execution faster and send back the results. The waiting process would
then reclaim the tickets and continue its execution with the tickets and the results obtained
from the second process. Waldspurger gives the example of a remote procedure call(RPC)
to explain this idea. Ticket inflation/deflation is a scheme by which the ticket allocation of a
process could be increased/decreased to ensure that all the processes execute to completion
faster and in turn ensure the faster completion of the job. The ticket modifications gave
the user the capability to modify the priorities of the different applications.

The algorithm introduced by Waldspurger provided the basic idea which was tested in
the Mach 3.0 micro kernel operating system [WW94]. However it was not tested across
other operating systems which operate under different workload conditions. This algorithm
was then extended so that it performed well on the FreeBSD operating system [PMG] and

Linux [SS99]. Additional features such as exchange of resource specific tickets [SHS99]

24

were provided to further improve the performance and provide additional user control.

25

7 Conclusions and Future Work

This section makes some observations about lottery scheduling and MINIX and draws some
conclusions based on our implementation of the former. It also outlines possible future work

in this area.

7.1 Observations and Conclusions

We implemented the lottery scheduling algorithm as it prioritizes processes and gives the
user control in assigning the priorities. At the same time it ensures fairness.

The lottery scheduling scheme has been tested on various operating systems such as
the Mach 3.0 [Wal95], FreeBSD [PMG] and Linux [SS99]. We implemented this scheme
for the MINIX operating system. MINIX is a micro kernel operating system with a simple
kernel since the other functionality such as managing of memory, files etc. is separated from
the kernel. The source code is well organized and well documented. During our study of
MINIX, we got a chance to become a part of the larger “MINIX community” which maintain
their own mailing list. We got a chance to learn and participate in discussions about the
various aspects of MINIX. When studying MINIX we learned about SMX [Ash96], a Solaris
version of the MINIX operating system. SMX runs as a user process on Solaris and thus
allows multiple copies of the operating system to run on the same machine. Since SMX
runs as a user process, it is scheduled for execution just like any other Solaris process.
Other resources such as memory and files are also managed in a manner which is similar to
other processes. We decided to choose SMX as the platform for implementation since the
re-compilation of code in SMX meant simply invoking the MINIX process on the Solaris
machine.

Waldspurger [Wal95] mentions in his work that the idea of lottery scheduling can

26

be extended over other resources such as memory, locks, I/O devices etc. In memory
management the simple paging algorithms could be replaced by such a scheme. We aimed at
exploring this possibility in the MINIX operating system. However a further study of MINIX
showed that the system makes uses of segmentation and not paging to manage memory.
Hence it was not feasible to use this scheme for memory management. We then tried to
locate other possible queues in the system where processes wait for different resources. If
any such queues exist then, they would be using some scheme to schedule the processes and
we could try changing this existing order to that of lottery scheduling. However, we were
unable to identify such queues and hence we decided to shift our focus to process scheduling
and in particular the scheduling of user processes.

A study of the MINIX code, showed that the process scheduling code is written in
the kernel section of the system. We changed this section of the code to accommodate
the lottery scheduling algorithm. To implement the key feature of assigning priorities, we
added two system calls. The addition of system calls relies completely on the message
passing interface which is the communication technique used in MINIX. The user processes
communicate with the memory manager and this module in turn can communicate with
the kernel through the system task. We made use of such an exchange in which the the user
passes the information about the tickets from the Memory manager which in turn conveys
it to the kernel via the system task. These system calls have added more functionality to
the existing system by giving the user the ability to control the priorities of the processes.
To test the system we needed to have real world test data. However SMX being a very small
operating system and not a very complete one, this was not possible because of its inability
to run large application programs simultaneously. We aimed at measuring the performance
of the algorithm by comparing the various criteria like wait time, throughput, turnaround

time etc. of lottery scheduling and the existing round robin scheduling algorithm. However

27

SMX lacks a performance monitor tool like “top” in Unix which would have been able to
provide us with sufficient information for calculating the performance criteria. We then
decided to make use of just the ”ps” command which gives a snapshot of the system state
instead of a dynamic view. However, there were some problems we encountered while

executing this command in SMX, which we have now fixed.

7.2 Future Work

We have provided the basic functionality for lottery scheduling in SMX. However, there
are a lot of features which could still be implemented to enhance the performance of the
system. We have provided for ticket assignments, but it is possible to implement ticket
exchange among processes. This would mean additional system calls which will allow the
user to increase/decrease the number of tickets for a process by a fixed value. Message
passing can be used to implement the idea of ticket transfers between processes. However
in implementing these schemes care should be taken that a process does not increase its
tickets to a very large amount and starve other processes. The management of tickets has to
be done in a very careful fashion and one possible way to achieve this is to think of tickets as
resources and have a module which will allocate, monitor the careful transfer and deallocate
tickets in the system. Such a ticket manager will function like a memory or file manager
and will be added in the layer 3 of the MINIX system. However this involves handling of
low level Solaris details, such as process management and signals. This is a very difficult

task and requires an in depth knowledge of the Solaris system.

28

A Trace of settickets()

Following is a trace of the settickets() system call. A part of the trace follows from the
trace of the getpid () system call provided to us by Paul Ashton.

In layer 4:

1) settickets() in /src/lib/sunsyscall/settickets.s

- Just branches to _settickets

2) _settickets in /src/lib/posix/_settickets.c

- Calls _syscall passing MM and SETTICKETS as destination and syscall number,
and an initialized message struct.

3) _syscall in /src/lib/other/syscall.c

- Puts syscall number in message, then passes MM and message to _sendrec.

4) _sendrec in /src/lib/sund/sndrec.s

- Loads pid into a register. - Puts call type (send/rcv), destination (MM) and the
address of the message on the stack. - Makes SunOS call to block IO and ALRM signals.

5) SunOS in /src/lib/sun4/SunOS.s

- sets up parameters, then traps to Solaris to carry out the syscall

4a) Back in _sendrec

- Makes SunOS call (as above) to send signal USRI to the process. This switches
execution into a signal handler in layer 1

In layer 1:

1) SunOSsig in /src/kernel/mpx.c

- Calls entering kernel

2) entering kernel in /src/kernel/sunprotect.c

- Calls unmap _process for the user process invoking settickets.

29

3) unmap_process (same file)

- Makes three SunOS calls (all as above) to remove memory mappings for process settick-
ets called in. - Returns to entering kernel which returns to ...

1b) SunOSsig

- context of user process saved in its smx proc structure by a call to memcpy

2) memcpy (/src/lib/ansi/memcpy.c)

- copies the proc structure one character at a time. - returns to ...

1c) SunOSsig

- Call made through the vectors array to s_call (the entry for the USRI signal).

2) s_call in /src/kernel/mpx.c

- calls umap to determine physical address of syscall parameters placed on stack by
_sendrec

3) umap in /src/kernel/system.c

- returns physical address of syscall parameters back to

2a) s_call

- Calls phys_copy to copy in the three parameters on the stack.

3) phys_copy in /src/kernel/sunprotect.c

- Calls set_protect to make the stack area readable.

4) set_protect (same file)

- Returns because not full protection. Returns to ...

3a) phys_copy

- Calls set_protect to ensure kernel array writable (same as above) - Calls real _phys_copy
to actually copy the bytes

4) real_phys_copy in /src/kernel/copySUN.s

- In conjunction with pcbytes, makes the copy. Returns to

30

3b) phys_copy

- Calls set_protect (as above) twice to restore protection. - Returns 2 ...

2b) s_call

- Calls sys_call with the parameters copied from the stack (BOTH, MM, message_ptr
into user address space).

3) sys_call in /src/kernel/proc.c

- Does some validation—everything checks out. - Call is a send/rec, so calls mini_send

4) mini_send (same file)

- Does several validation checks—everything checks out. - The destination (MM) is
waiting to received this message, so cp_mess is called to transfer the message.

5) cp-mess (same file), SHADOWING is 0, logging not enabled

- uses umap (see above) to compute source and destination physical addreses. - uses
phys_copy (see above) to copy the message from the user process into the kernel. - the
message source is sent to the sending process number - uses phys_copy (see above) to copy
the message from the kernel to MM. - returns to ...

4a) mini_send

- MM is marked as no longer receiving, and return value for MM system call is set to
OK. - MM p_flags now 0 so ready is called to put MM back on the ready list.

5) ready (same file)

- the server queue is empty, so MM is placed at the head of the server queue. - returns
to mini_send, which returns to

3a) sys_call

- function is BOTH, so mini_rec is called for the user process.

4) mini_rec (same file)

- no messages are waiting, and no blocked interrupts are waiting - event_log is called

31

to record an EV_MSG_BLOCK for the user process

5) event_log (/src/kernel/logging.c)

- logging is disabled, so it returns immediately to ...

4a) mini rec

- proc entries set to record who message is expected from, and location of message buffer.
- unready is called to remove the process from the ready list

5) unready (/src/kernel/proc.c)

- rdy_head for user is set to nextproc (NIL_PROC in this case). - pick_proc called to
choose a new process to run.

6) pick_proc (same file)

- the first process found is MM in the server queue. proc_ptr is set to MM, and pick_proc
returns to unready, which returns to

4b) mini_rec

- user process marked as RECEIVING - MM has not just blocked, so we return to
sys_call which returns to ..

2c) s_call

- sets return register of user process with the result of sys_call, then returns to ...

1d) SunOSsig

- calls lock_pick_proc

2) lock_pick_proc (/src/kernel/proc.c)

- sets switching, calls pick _proc (as before chooses MM), resets switching - returns to

le) SunOSsig
- calls resume

2) resume (/src/kernel/mpx.c)

32

- calls memcpy (as above) to copy context structure from MM’s proc table entry to the
layer 1 stack. - calls 1leaving kernel

3) leaving kernel (/src/kernel/sunprotect.c)

- is not a user process, so no need to map it (MM always mapped). - protection is not
full, so simply returns to ...

2a) resume

- uses SunOS (as discussed above) to switch execution to MM in layer 3

In layer 3:

3a) _receive in /src/lib/sun4/sndrec.s

- execution resumes after the call to kill(2). - sigprocmask(2) is called via SunOS (de-
scribed above) to restore an empty signal mask. - Then we return to ...

2a) get_work in /src/mm/main.c

- sets the globals who (to the layer 4 process) and mm_call (to SETTICKETS) - then
returns to ...

la) main (same file)

- does some initialization and validation, then calls do_settickets via the call_vec
function pointer array.

2a) do_settickets in /src/mm/forkexit.c

- executes do_settickets which searces for the process with process id as destpid and
sets mp_proctick to the value of newtick which is the number of tickets assigned to the
process as passed by the user process. - makes a call to sys_settickets in layer 2.

In layer 2:

1) In file /src/lib/syslib/sys_settickets.c

- sets the fields of the message to the pid and the number of tickets to be set and then

makes a call to _taskcall. The destination task for the process is SYSTASK.

33

2) In file /src/lib/syslib/taskcall.c

- The implementation of _taskcall() is the same as _syscall() and as before it iden-
tifies the receiver of the message and passes the message. The message also contains a field
which is set to the syscall number

_sendrec executes exactly the same way before except now the process waiting to receive
the message is the SYSTASK rather than the MM.

In layer 2:

3) sys_task() in file /src/kernel/system.c

- sys_task() is implemented and the message is received - type of the message is rec-
ognized and the do_settickets () routine is called

4) do_settickets in the same file

- This routine searches for the process in the process table with process id found in the
message field. - Then it sets the p_proctick field of this process with the number of tickets
specified in the second field of the message. - Successful execution of this routine sets the
value of r to OK and control returns back to..

5) sys_task() in the same file

- This routine will now return the value of the call to the sender of the message which
in this case is MM.

After execution of send as before control returns back to MM in layer3

Back in layer 3

2b) do_settickets returns the code OK.

1b) main

- calls reply passing return code as OK.

2) reply in /src/mm/main.c

- does some validation checks - puts return code OK in the mm_out message. - calls send

34

to send mm_out back to the user mode process

3) _send in /src/lib/sun4/sndrec.s

- Proceeds as for sndrec above except that the parameter setup is somewhat different
(destination is layer 4 process; operation is SEND). - The USRI signal switches execution
back into ...

Layer 1 in SunOSsig

Execution is pretty much the same as before.

- unmap returns immediately because the process switched from (MM) is not user process.

- sys_call called with parameters (SEND, user process, reply msg).

- mini_send copies msg from MM to user process; user process is added to the layer 4
ready list queue by mini_send - mini _rec not called because this is a SEND.

- lock_pick_proc chooses MM as it is higher priority than the other ready process (the
user process).

- resume returns execution to MM ...

In Layer 3 (MM):

3a) _send

- execution resumes after the call to kill(2). - sigprocmask(2) is called via SunOS
(described above) to restore an empty signal mask. - Then we return to ...

2a) reply in /src/mm/main.c

- checks return result of _send OK, then returns to ...

Ic) main (same file)

- returns to top of look and calls get_work

2) get_work (same file)

- Calls _receive

3) _receive in /src/lib/sun4/sndrec.s

35

- Proceeds as for sndrec above except that the parameter setup is somewhat different
(src is ANY; operation is RECEIVE). - The USRI signal switches execution back into ...

Layer 1 in SunOSsig

Execution is pretty much the same as the last call from MM.

- sys_call called with parameters (RECEIVE, ANY, msg buffer).

- mini_send not called by syscall because this is a RECEIVE

- mini rec is called operating much as in the first system call. unready suspends MM
and pick_proc chooses the user process (it is the only one ready). MM has just blocked,
but sig_procs is 0 so inform is not called.

- lock_pick_proc also chooses the user process.

- In leaving kernel the process being resumed is a user process, so map_process is
called

4) map_process in /src/kernel/sunprotect.c

- No currently mapped process, so unmap process not called. - Makes three SunOS
calls (all as above) to add memory mappings for the three segments of the user process
settickets called in. - Returns to leaving kernel which returns to resume.

- resume returns execution to the user process ...

In user process

4b) _sndrec - execution resumes after the call to kill(2). - sigprocmask(2) is called via
SunOS (described above) to restore an empty signal mask. - Then we return to ...

3a) _syscall

- does some validation. - returns m_type field of the message sent by MM to ...

2a. _settickets

- returns the value returned by _syscall, which is OK returned from MM

36

B Changes in the code
Following is a listing of the files to which changes are made :

1. /include/minix/com.h - This file contains the various task numbers, function codes
and the reply codes. SYSTASK has a task number of -2. The different internal functions
for this task have functions codes assigned from 1-20. settickets being an additional

function call the function code for this is assigned to be 21.

2. /include/minix /syslib.h - This file contains the prototypes for the system library

functions. A prototype for the settickets() function is added.

3. /include/minix/callnr.h - This file defines the system call numbers. The new
system call is added to this table. The new system call is defined to have a system
call number 50. This is an unused call number and hence used to add the extra system

call.

4. /include/sys/types.h - This file contains the data types used in the different struc-

tures, inode etc. The data type for tickets is defined to be int.
5. /include/unistd.h - This files contains the prototype for the system call settickets().

6. /src/lib/posix/_settickets.c - This file contains code for implementing the message

passing between the user level to the memory manager ie. from layer 4 to layer 3

7. /src/lib/syslib/sys_settickets.c - This file contains the code for message passing

between the memory manager and the kernel ie. from layer 3 to layer 2.

8. /src/lib/sunsyscall/settickets.s - This file contains the Solaris related code. It con-

tains a branch instruction to be branch to _settickets in /src/lib/posiz/_settickets.c

37

10.

11.

12.

13.

14.

. /src/mm/table.c - This file contains a mapping of the system call numbers and the

routines that perform these system calls. The routine which implements the system

call settickets() is do_settickets and is found in /src/mm/forkezit.c

/src/mm/proto.h - This file contains the prototype declaration for the routines

which are found in /src/mm. The prototype for the routine do_settickets is defined.

/src/mm/mproc.h - This file contains the declaration for the process entry. Every
process entry contains the memory related information and basically represents a slot
in the process table. Thus for a process this slot number is the same slot number for
the kernel as well as the file system. In addition to the other information an extra
field is now added that contains information about the number of tickets for every

process.

/src/mm /forkexit.c - This file contains the implementation for the settickets()
system call. The routine basically looks for the process with the process identifier
destpid. It searches in the process table for the correct process entry. It then modifies
the value of the tickets assigned to this process with the new number of tickets specified
by the user as newticks. Then a call to the system task is made which will handle

the modification of the ticket information for the kernel.

/src/kernel/proc.h - This file contains the declaration for the process table. A new
field p_proctick is added to the process entry. This will contain information about

the number of tickets assigned to the process.

/src/kernel /system.c - This file contains the implementation of the system call.
This system task handles all these system calls. The system task receives the message

and identifies the routine to be called. The do_settickets routine will implement

38

the system call settickets(). do_settickets() is passed a message pointer. It will
again look in the process table for the process with the pid which is passed as a field in
the message. It will then modify the ticket count for that process with the new ticket
count again specified in the second field of the message. If system call is implemented

correctly it returns a code OK.

39

References

[Ash96]

Paul Ashton. Smx-the solaris port of minix. Technical report, September 1996.

[Com82] Houghton Mifflin Company. The American Heritage Dictionary, page 1097. Sec-

[Mil97]

[PMG]

[SHS99]

[STP91]

[SS99]

[TW97]

[Wal95]

ond college edition edition, 1982.

Milan Milenkovic. Operating Systems Concepts and Design. Tata McGraw Hill,

second edition, 1997.

David Petrou, John W. Milford, and Garth A. Gibson. Implementing lottery

scheduling: Matching the specializations in traditional schedulers. pages 1-14.

D. Sullivan, R. Haas, and M. Seltzer. Tickets and currencies revisited: Extensions

to multi-resource lottery scheduling, 1999.

A. Silberschatz, J.Peterson, and P.Galvin. Operating System Concepts. Addison
Wesley, third edition, 1991.

Brandon C.S. Sanders and Nathan R. Sprague. Lottery scheduling for
the linux 2.2.x kernel. http://www.cs.rochester.edu/u/sanders/linux-scheduler-

proj/lottery_scheduler/lottery_scheduler.html, 1999.

Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems Design and

Implementation, chapter Processes. Prentice Hall, second edition, 1997.

Carl A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share

Resource Management. PhD thesis, Massachusetts Institute of Technology, 1995.

40

[WW94] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
proportional-share reosource management. In Proceedings of the First Symposium

on Operating Systems Design and Implementation, Usenix Association, 1994.

41

