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Selecting the most appropriate sense for an ambiguous word is a common

problem in natural language processing. This dissertation pursues corpus–based ap-

proaches that learn probabilistic models of word sense disambiguation from large

amounts of text. These models consist of a parametric form and parameter esti-

mates. The parametric form characterizes the interactions among the contextual

features and the sense of the ambiguous word. Parameter estimates describe the

probability of observing different combinations of feature values. These models dis-

ambiguate by determining the most probable sense of an ambiguous word given the

context in which it occurs.

This dissertation presents several enhancements to existing supervised methods

of learning probabilistic models of disambiguation from sense–tagged text. A new

search strategy, forward sequential, guides the selection process through the space

of possible models. Each model considered for selection is judged by a new class of

evaluation metric, the information criteria. The combination of forward sequential

search and Akaike’s Information Criteria is shown to consistently select highly ac-

curate models of disambiguation. The same search strategy and evaluation criterion

also serve as the basis of the Naive Mix, a new supervised learning algorithm that

is shown to be competitive with leading machine learning methodologies. In these

comparisons the Naive Bayesian classifier also fares well which seems surprising since

it is based on a model where the parametric form is simply assumed. However, an

iv



explanation for this success is presented in terms of learning rates and bias–variance

decompositions of classification error.

Unfortunately, sense–tagged text only exists in small quantities and is expensive

to create. This substantially limits the portability of supervised learning approaches

to word sense disambiguation. This bottleneck is addressed by developing unsuper-

vised methods that learn probabilistic models from raw untagged text. However,

such text does not contain enough information to automatically select a parametric

form. Instead, one must simply be assumed. Given a form, the senses of ambiguous

words are treated as missing data and their values are imputed via the Expecta-

tion Maximization algorithm and Gibbs Sampling. Here the parametric form of the

Naive Bayesian classifier is employed. However, this methodology is appropriate for

any parametric form in the class of decomposable models. Several local–context,

frequency–based feature sets are also developed and shown to be appropriate for

unsupervised learning of word senses from raw untagged text.
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CHAPTER 1

INTRODUCTION

This dissertation is about computational methods that resolve the meanings of

ambiguous words in natural language text. Here, disambiguation is defined as the

selection of the intended sense of an ambiguous word from a known and finite set of

possible meanings. This choice is based upon a probabilistic model that tells which

member of the set of possible meanings is the most likely given the context in which

the ambiguous word occurs.

Resolving ambiguity is a routine process for a human; it requires little conscious

effort since a broad understanding of both language and the real–world are utilized

to make decisions about the intended sense of a word. For a human, the context in

which an ambiguous word occurs includes a wealth of knowledge beyond that which

is contained in the text. Modeling this vast amount of information in a representation

a computer program can access and make inferences from is an, as yet, unachieved

goal of Artificial Intelligence. Given the lack of such resources, this dissertation does

not attempt to duplicate the process a human uses to resolve ambiguity.

Instead, corpus–based methods are employed which make disambiguation deci-

sions based on probabilistic models learned from large quantities of naturally occur-

ring text. In these approaches, context is defined in a very limited way and consists

of information that can easily be extracted from the sentence in which an ambiguous

word occurs; no deep understanding of the linguistic structure or real–world under-

pinnings of a text is required. This results in methods that take advantage of the

abundance of text available online and do not require the availability of rich sources

of real–world knowledge.
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1.1. Word Sense Disambiguation

Most words have multiple possible senses, each of which is appropriate in certain

contexts. Such ambiguity can result in the misunderstanding of a sentence. For ex-

ample, the newspaper headline Drunk Gets 9 Years in Violin Case causes momentary

confusion due to word sense ambiguity. Does this imply that someone has been sen-

tenced to spend 9 years in a box used to store a musical instrument? Or has someone

has been sentenced to prison for 9 years for a crime involving a violin? Clearly the

latter interpretation is intended. The key to making this determination is resolving

the intended sense of case. This is not terribly difficult for a human since it is widely

known that people are not imprisoned in violin cases. However, a computer program

that attempts to resolve this same ambiguity will have a more challenging task since

it is not likely to have this particular piece of knowledge available.

The difficulty of resolving word sense ambiguity with a computer program was

first noted by Yehoshua Bar–Hillel, an early researcher in machine translation. In [3]

he presented the following example:

Little John was looking for his toy box. Finally, he found it. The box was

in the pen. John was very happy.

Bar-Hillel assumed that pen can have two senses: a writing instrument or an enclosure

where small children can play. He concluded that:

. . . no existing or imaginable program will enable an electronic computer

to determine that the word pen in the given sentence within the given

context has the second of the above meanings.

Disambiguating pen using a knowledge–based approach requires rather esoteric

pieces of information; “toy boxes are smaller than play pens” and “toy boxes are

larger than writing pens,” plus some mechanism for making inferences given these

facts. To have this available for all potential ambiguities is indeed an impossibility.

In that regard Bar–Hillel is correct. However, while such approaches require an
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impractical amount of real–world knowledge, corpus–based methods that learn from

large amounts of naturally occurring text offer a viable alternative.

Computational approaches that automatically perform word sense disambigua-

tion have potentially wide application. Resolving ambiguity is an important issue

in machine translation, document categorization, information retrieval, and language

understanding.

Consider an example from machine translation. The noun bill can refer to a

piece of legislation that is not yet law or to a statement requesting payment for services

rendered. However, in Spanish these two senses of bill have two distinct translations;

proyecto de ley and cuenta. To translate The Senate bill is being voted on tomorrow

from English to Spanish, the intended sense of bill must be resolved. Even a simple

word by word translation to Spanish is not possible without resolving this ambiguity.

Document classification can also hinge upon the interpretation of an ambiguous

word. Suppose that there are two documents where the word bill occurs a large

number of times. If a classification decision is made based on this fact and the sense

of bill is not known, it is possible that Peterson’s Field Guide to North American

Birds and the Federal Register will be considered the same type of document as both

contain frequent usages of bill.

1.2. Learning from Text

This dissertation focuses on corpus–based approaches to learning probabilistic

models that resolve the meaning of ambiguous words. These models indicate which

sense of an ambiguous word is most probable given the context in which it occurs. In

this framework disambiguation consists of classifying an ambiguous word into one of

several predetermined senses.

These probabilistic models are learned via supervised and unsupervised ap-

proaches. If manually disambiguated examples are available to serve as training data

then supervised learning is most effective. These examples take the form of sense–

tagged text which is created by collecting a large number of sentences that contain
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a particular ambiguous word. Each instance of the ambiguous word is manually an-

notated to indicate the most appropriate sense for that usage. Supervised learning

builds a generalized model from this set of examples and uses this model to disam-

biguate instances of the ambiguous word found in test data that is separate from the

training data.

If there are no training examples available then learning is unsupervised and is

based upon raw or untagged text. An unsupervised algorithm divides all the usages

of an ambiguous word into a specified number of groups based upon the context in

which each instance of the word occurs. There is no separation of the data into a

training and test sample.

Before either kind of learning can take place, a feature set must be developed.

This defines the context of the ambiguous word and consists of those properties of both

the ambiguous word and the sentence in which it occurs that are relevant to making a

sense distinction. These properties are generally referred to as contextual features or

simply features. Human intuition and linguistic insight are certainly desirable at this

stage. The development of a feature set is a subjective process; given the complexity

of human language there are a huge number of possible contextual features and it is

not possible to empirically examine even a fraction of them. This dissertation uses

an existing feature set for supervised learning and develops several new feature sets

appropriate for unsupervised learning.

Regardless of whether a probabilistic model is learned via supervised or unsu-

pervised techniques, the nature of the resulting model is the same. These models

consist of a parametric form and parameter estimates. The parametric form shows

which contextual features affect the values of other contextual features as well as

which contextual features affect the sense of the ambiguous word. The parameter

estimates tell how likely certain combinations of values for the contextual features

are to occur with a particular sense of an ambiguous word.

Thus, there are two steps to learning a probabilistic model of disambiguation.

First, the parametric form must either be specified by the user or learned from sense–
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tagged text. Second, parameter estimates are made based upon evidence in the

text. The following sections summarize how each of these steps is performed during

supervised and unsupervised learning. More details of the learning processes are

contained in Chapters 3 and 4. Empirical evaluation of these methods is presented

in Chapters 6 and 7.

1.2.1. Supervised Learning

The supervised approaches in this dissertation generally follow the model se-

lection method introduced by Bruce and Wiebe (e.g, [10], [11], and [12]). Their

method learns both the parametric form and parameter estimates of a special class of

probabilistic models, decomposable log–linear models. This dissertation extends their

approach by identifying alternative criteria for evaluating the suitability of a model

for disambiguation and also identifies an alternative strategy for searching the space

of possible models.

The approach of Bruce and Wiebe and the extensions described in this disser-

tation all have the objective of learning a single probabilistic model that adequately

characterizes a training sample for a given ambiguous word. However, this disserta-

tion shows that different models selected by different methodologies often result in

similar levels of disambiguation performance. This suggests that model selection is

somewhat uncertain and that a single “best” model may not exist for a particular

word. A new variation on the sequential model selection methodology, the Naive Mix,

is introduced and addresses this type of uncertainly. The Naive Mix is an averaged

probabilistic model that is based on an entire sequence of models found during a se-

lection process rather than just a single model. Empirical comparison shows that the

Naive Mix improves on the disambiguation performance of a single selected model

and is competitive with leading machine learning algorithms.

The Naive Bayesian classifier is a supervised learning method where the para-

metric form is assumed and only parameter estimates are learned from sense–tagged

text. Despite some history of success in word sense disambiguation and other appli-
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cations, the behavior of Naive Bayes has been poorly understood. This dissertation

includes an analysis that offers an explanation for its ability to perform at relatively

high levels of accuracy.

1.2.2. Unsupervised Learning

A general limitation of supervised learning approaches to word sense disam-

biguation is that sense–tagged text is not available for most domains. While sense–

tagged text is not as complicated to create as more elaborate representations of real–

world knowledge, it is still a time–consuming activity and limits the portability of

methods that require it. In order to overcome this difficulty, this dissertation develops

knowledge–lean approaches that learn probabilistic models from raw untagged text.

Raw text only consists of the words and punctuation that normally appear in

a document; there are no manually attached sense distinctions to ambiguous words

nor is any other kind of information augmented to the raw text. Even without sense–

tagged text it is still possible to learn a probabilistic model using an unsupervised

approach. In this case the parametric form must be specified by the user and then

parameter estimates can be made from the text. Based on its success in supervised

learning, this dissertation uses the parametric form of the Naive Bayesian classifier

when performing unsupervised learning of probabilistic models. However, estimating

parameters is more complicated in unsupervised learning than in the supervised case.

The parametric form of any probabilistic model of disambiguation must include

a feature representing the sense of the ambiguous word; however, raw text contains no

values for this feature. The sense is treated as a latent or missing feature. Two differ-

ent approaches to estimating parameters given missing data are evaluated; the EM al-

gorithm and Gibbs Sampling. The probabilistic models that result are also compared

to two well–known agglomerative clustering algorithms, Ward’s minimum–variance

method and McQuitty’s similarity analysis. The application of these methodologies

to word sense sense disambiguation is an important development since it eliminates

the requirement for sense–tagged text made by supervised learning algorithms.
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1.3. Basic Assumptions

There are several assumptions that underly both the supervised and unsuper-

vised approaches to word sense disambiguation presented in this dissertation:

1. A separate probabilistic model is learned for each ambiguous word.

2. Any part–of–speech ambiguity is resolved prior to sense disambiguation.1

3. Contextual features are only defined within the boundaries of the sentence in

which an ambiguous word occurs. In other words, only information that occurs

in the same sentence is used to resolve the meaning of an ambiguous word.

4. The possible senses of a word are defined by a dictionary and are known prior

to disambiguation. In this dissertation Longman’s Dictionary of Contemporary

English [75] and WordNet [60] are the sources of word meanings.

The relaxation or elimination of any of these assumptions presents opportunities

for future work that will be discussed further in Chapter 9.

1.4. Chapter Summaries

Chapter 2 develops background material regarding probabilistic models and

their use as classifiers. Particular emphasis is placed on the class of decomposable

models since they are used throughout this dissertation.

Chapter 3 discusses supervised learning approaches to word sense disambigua-

tion. The statistical model selection method of Bruce and Wiebe is outlined here and

alternatives to their model evaluation criteria and search strategy are presented. The

Naive Mix is introduced. This is a new supervised learning algorithm that extends

model selection from a process that selects a single probabilistic model to one that

finds an averaged model based on a sequence of probabilistic models. Each succeeding

1For example, share can be used as a noun, I have a share of stock, or as a verb, It would be nice

to share your stock.
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model in the sequence characterizes the training data increasingly well. The Naive

Bayesian classifier is also presented.

Chapter 4 addresses unsupervised learning of word senses from raw, untagged

text. This chapter shows how the EM algorithm and Gibbs Sampling can be em-

ployed to estimate the parameters of a model given the parametric form and the

systematic absence of data; in this case the sense of an ambiguous word is treated as

missing data. Two agglomerative clustering algorithms, Ward’s minimum–variance

method and McQuitty’s similarity analysis, are also presented and used as points of

comparison.

Chapter 5 describes the words that are disambiguated as part of the empirical

evaluation of the methods described in Chapters 3 and 4. The possible senses for each

word are defined and an empirical study of the distributional characteristics of each

word is presented. Four feature sets are also discussed. The feature set for supervised

learning is due to Bruce and Wiebe. There are three new feature sets introduced for

unsupervised learning.

Chapter 6 presents an empirical evaluation of the supervised learning algorithms

described in Chapter 3. There are four principal experiments. The first compares

the overall accuracy of a range of sequential model selection methods. The second

compares the accuracy of the Naive Mix to several leading machine learning algo-

rithms. The third determines the learning rate of the most accurate methods from

the first two experiments. The fourth decomposes the classification errors of the most

accurate methods into more fundamental components.

Chapter 7 makes several comparisons among the unsupervised learning meth-

ods presented in Chapter 5. The first is between the accuracy of probabilistic models

where the parametric form is assumed and parameter estimates are made via the EM

algorithm and Gibbs Sampling. The second employs two agglomerative clustering al-

gorithms, Ward’s minimum–variance method and McQuitty’s similarity analysis, and

determines which is the more accurate. Finally, the two most accurate approaches,

Gibbs Sampling and McQuitty’s similarity analysis, are compared.
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Chapter 8 reviews related work in word sense disambiguation. Methodologies

are grouped together based upon the type of knowledge source or data they require to

perform disambiguation. There are discussions of work based on semantic networks,

machine readable dictionaries, parallel translations of text, sense–tagged text, and

raw untagged text.

Chapter 9 summarizes the contributions of this dissertation and provides a

discussion of future research directions.
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CHAPTER 2

PROBABILISTIC MODELS

This chapter introduces the basics of probabilistic models and shows how such

models can be used as classifiers to perform word sense disambiguation. Particular

attention is paid to a special class of probabilistic model known as decomposable

log–linear models [26] since they are well suited for use with the supervised and

unsupervised learning methodologies described in Chapters 3 and 4.

2.1. Inferential Statistics

The purpose of inferential statistics is to learn something about a population

of interest. The characteristics of a population are described by parameters. Since

it is generally not possible to exhaustively study a population, estimated values for

parameters are learned from randomly selected samples of data from the population.

Each parameter is associated with a distinct event that can occur in the popu-

lation. An event is the state of a process at a particular moment in time. A common

example is coin tossing. This is a binomial process since there are only two possible

events; the coin toss comes up heads or tails. A process with more than two possible

events is multinomial. Tossing a die is an example since there are 6 possible events.

The events in this dissertation are sentences in which an ambiguous word occurs.

Each sentence is represented by a combination of discrete values for a set of random

variables. Each random variable represents a property or feature of the sentence.

The dependencies among these features are characterized by the parametric form of

a probabilistic model.

A feature vector is a particular instantiation of the random variables. Each

feature vector represents an observation or an instance of an event, i.e., a sentence
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with an ambiguous word. The exhaustive collection of all possible events given a set

of feature variables defines the event space.

The joint probability distribution of a set of feature variables indicates how likely

each event in the event space is to occur. The probability of observing a particular

event is described by a parameter. In addition to the parametric form, a probabilistic

model also includes estimated values for all of these parameters.

Suppose that in a random sample of events from a population there are N

observations of q distinct events, i.e., feature vectors, where each observation is de-

scribed by n discrete feature variables (F1, F2, . . . , Fn−1, Fn). Let fi and θi be the

frequency and probability of the ith feature vector, respectively. Then the data sam-

ple D = (f1, f2, . . . , fq) has a multinomial distribution with parameters (N ; Θ), where

Θ = (θ1, θ2, . . . , θq) defines the joint probability distribution of the feature variables

(F1, F2, . . . , Fn−1, Fn).

The parameters of a probabilistic model can be estimated using a number of

approaches; maximum likelihood and Bayesian estimation are described in the follow-

ing sections. The model selection methodologies described in Chapter 3 and the EM

algorithm from Chapter 4 employ maximum likelihood estimates. Gibbs Sampling,

also described in Chapter 4, makes use of Bayesian estimates.

2.1.1. Maximum Likelihood Estimation

Values for the parameters of a probabilistic model can be estimated using max-

imum likelihood estimates such that θ̂i = fi

N
. In this framework, a parameter can only

be estimated if the associated event is observed in a sample of data.

A maximum likelihood estimate maximizes the probability of obtaining the data

sample that was observed, D, by maximizing the likelihood function, p(D|Θ). The

likelihood function for a multinomial distribution is defined as follows:1

1Other distributions will have different formulations of the likelihood function.
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p(D|Θ) =
N !

∏q
i=1 fi!

q
∏

i=1

θ̂fi

i (2.1)

Implicit in the multinomial distribution is the assumption that all the features of

an event are dependent. When this is the case the value of any single feature variable

is directly affected by the values of all the other feature variables. A probabilistic

model where all features are dependent is considered saturated.

The danger of relying on a saturated probabilistic model is that reliable param-

eter estimates may be difficult to obtain. When using maximum likelihood estimates,

any event that is not observed in the data sample will have a zero–valued parameter

estimate associated with it. This is undesirable since the model regards the associated

event as an impossibility. It is more likely that the event is simply unusual and that

the sample is not large enough to gather adequate information regarding rare events

when using a saturated model.

However, if the event space is very small it may be reasonable to assume that

all feature variables are dependent on one another and that every possible event

can be observed in a data sample. For example, if an event space is defined by two

binary feature variables, (F1, F2), then the saturated model has four parameters, each

representing the probability of observing one of the four possible events. Table 2.1

shows a scenario where a sample consists of N = 150 events. The frequency counts of

these events are shown in column freq(F1, F2), and the resulting maximum likelihood

estimates are calculated and displayed in column MLE.

It is more often the case in real world problems that the number of possible

events is somewhat larger than four. The number of parameters needed to represent

these events in a probabilistic model is determined by the number of dependencies

among the feature variables. If the model is saturated then all of the features are

dependent on one another and the number of parameters in the probabilistic model

is equal to the number of possible events in the event space.
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Table 2.1. Maximum Likelihood Estimates

F1 F2 freq(F1, F2) MLE

0 0 21 θ̂1 = 21
150

= .14

0 1 38 θ̂2 = 38
150

= .25

1 0 60 θ̂3 = 60
150

= .40

1 1 31 θ̂4 = 31
150

= .21

Suppose that an event space is defined by a set of 20 binary feature variables

(F1, F2, · · · , F20). The joint probability distribution of this feature set consists of 220

parameters. Unless the number of observations in the data sample is greater than 220,

it is inevitable that there will be a great many parameter estimates with zero values.

If q < 220, where q represents the number of distinct events in a sample, then 220 − q

events will have zero estimates. This situation is exacerbated if the distribution of

events in the data sample is skewed, i.e., q ≪ N . Unfortunately, it is often the case

in natural language that the distribution of events is quite skewed (e.g. [74], [101]).

An alternative to using a saturated model is to find a probabilistic model with

fewer dependencies among the feature variables that still maintains a good fit to the

data sample. Such a model is more parsimonious and yet retains a reasonably close

characterization of the data. Given such a model, the joint probability distribution

can be expressed in terms of a smaller number of parameters.

Dependencies among feature variables can be eliminated if a pair of variables are

identified as conditionally independent. Feature variables F1 and F2 are conditionally

independent given S if:

p(F1 = f1|F2 = f2, S = s) = p(F1 = f1|S = s) (2.2)

or:
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p(F2 = f2|F1 = f1, S = s) = p(F2 = f2|S = s) (2.3)

In Equation 2.2, the probability of observing feature variable F1 with value f1

is not affected by the value of feature variable F2 if it is already known that feature

variable S has value s. A similar interpretation applies to Equation 2.3.2

An automatic method for selecting probabilistic models with fewer dependencies

among the feature variables is described by Bruce and Wiebe (e.g., [10], [11], [12]).

This method selects models from the class of decomposable log–linear models and

will be described in greater detail in Chapter 3.

2.1.2. Bayesian Estimation

Bayesian estimation of parameters is an alternative to maximum likelihood es-

timation. Such an estimate is the product of the likelihood function, p(D|Θ), and

the prior probability, p(Θ). This product defines the posterior probability function,

p(Θ|D), defined by Bayes Rule as:

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
(2.4)

The posterior function represents the probability of estimating the parameters,

Θ, given the observed sample, D. The likelihood function, p(D|Θ), represents the

probability of observing the sample, D, given that it comes from the population

characterized by the parameters, Θ. The prior probability function, p(Θ), represents

the unconditional probability that the parameters have values Θ. This is a subjective

probability that is estimated prior to sampling. Finally, p(D) is the probability of

observing a sample, D, regardless of the actual value of the parameters, Θ.

2In the remainder of this dissertation, a simplified notation will be employed where feature

variable names are not specified when they can be inferred from the feature values. For example,

in p(f1|f2, s) = p(f1|s) it is understood that the lower case letters refer to particular values for a

feature variable of the same name.
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When making a Bayesian estimate some care must be taken in specifying the

distribution of the prior probability p(Θ). The nature of the likelihood function

must be taken into account, otherwise the product of the likelihood function and the

prior function may lead to invalid results. Prior probabilities whose distributions lend

themselves to fundamentally sound computation of the posterior probability from the

likelihood function are known as conjugate priors. A prior probability is a conjugate

prior if it is related to the events represented by the likelihood function in such a

way that both the posterior and prior probabilities are members of the same family

of distributions.

For example, suppose a binomial process such as coin tossing is being modeled,

where the observations in a sample are classified into two mutually exclusive cate-

gories; heads or tails. The beta distribution is known to be conjugate to observations

in a binomial process. If the prior probability of observing a heads or tails is assigned

via a beta distribution, then the posterior probability will also be a member of the

beta family.

The multinomial distribution is the n–event generalization of the 2–event bi-

nomial distribution. The Dirichlet distribution is the n–event generalization of the

2–event beta distribution. Since the beta distribution is the conjugate prior of the

binomial distribution, it follows that the Dirichlet distribution is the conjugate prior

of the multinomial distribution. When the likelihood function is multinomial and

the prior function is specified using the Dirichlet distribution, the resulting posterior

probability function is expressed in terms of the Dirichlet distribution.

2.2. Decomposable Models

Decomposable models [26] are a subset of the class of Graphical Models [93]

which is in turn a subset of the class of log-linear models [5]. Decomposable models

can also be categorized as the class of models that are both Bayesian Networks [67]

and Graphical Models. They were first applied to natural language processing and

word sense disambiguation by Bruce and Wiebe (e.g., [10], [11], [12]).
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In any Graphical Model, feature variables are either dependent or conditionally

independent of one another. The parametric form of these models have a graphical

representation such that each feature variable in the model is represented by a node in

the graph, and there is an undirected edge between each pair of nodes corresponding

to dependent feature variables. Any two nodes that are not directly connected by an

edge are conditionally independent given the values of the nodes on the path that

connects them.

The graphical representation of a decomposable model corresponds to an undi-

rected chordal graph whose set of maximal cliques defines the joint probability dis-

tribution of the model. A graph is chordal if every cycle of length four or more has a

shortcut, i.e., a chord. A maximal clique is the largest set of nodes that are completely

connected, i.e., dependent.

In general, parameter estimates are based on sufficient statistics. These provide

all the information from the data sample that is needed to estimate the value of a

parameter. The sufficient statistics of the parameters of a decomposable model are

the marginal frequencies of the events represented by the feature variables that form

maximal cliques in the graphical representation. Each maximal clique is made up of a

subset of the feature variables that are all dependent. Together these features define a

marginal event space. The probability of observing any specific instantiation of these

features, i.e., a marginal event, is defined by the marginal probability distribution.

The joint probability distribution of a decomposable model is expressed as the

product of the marginal distributions of the variables in the maximal cliques of the

graphical representation, scaled by the marginal probability distributions of feature

variables common to two or more of these maximal sets. Because their joint distri-

butions have such closed–form expressions, the parameters of a decomposable model

can be estimated directly from the data sample without the need for an iterative

fitting procedure as is required, for example, to estimate the parameters of maximum

entropy models (e.g., [4]).
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Table 2.2. Sense–tagged text for bill

Sense–tagged sentences Feature vectors

C V R T S

I paid the bill/pay at the restaurant. no no yes no pay

Congress overrode the veto of that bill/law. yes yes no no law

Congress passed a new bill/law today. yes no no no law

The restaurant bill/pay does not include the tip. no no yes yes pay

The bill/law was killed in committee. no no no no law

2.2.1. Examples

To clarify these concepts, both the graphical representation and parameter es-

timates associated with several examples of decomposable models are presented in

terms of a simple word sense disambiguation example. The task is to disambiguate

various instances of bill by selecting one of two possible senses; a piece of pending

legislation or a statement requesting payment for services rendered.

Each sentence containing bill is represented using five binary feature variables.

The classification variable S represents the sense of bill. Four contextual feature

variables indicate whether or not a given word has occurred in the sentence with the

ambiguous use of bill. The presence or absence of Congress, veto, restaurant and tip,

are represented by binary variables C, V,R and T , respectively. These variables have

a value of yes if the word occurs in the sentence and no if it does not.

A sample of N sentences that contain bill is collected. The instances of bill

are manually annotated with sense values by a human judge. These sense–tagged

sentences are converted by a feature extractor into the feature vectors shown in Table

2.2.

Given five binary feature variables, there are 32 possible events in the event

space. If the parametric form is the saturated model then there are also 32 parameters

to estimate. For this example the saturated model is notated (CV RTS) and its
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Figure 2.1. Saturated Model (CV RTS)

graphical representation is shown in Figure 2.1. This model is decomposable as

there is a path of length one between any two feature variables in the graphical

representation.

In order to estimate values for all the parameters of the saturated model, every

possible event must be observed in the sample data. Let the parameter estimate

θ̂
F1,F2,...,Fn−1,S

f1,f2,...,fn−1,s represent the probability that a feature vector (f1, f2, . . . , fn−1, s) is ob-

served in the data sample where each sentence is represented by the random variables

(F1, F2, . . . , Fn−1, S). The parameter estimates of the saturated model are calculated

as follows:

θ̂C,V,R,T,S
c,v,r,t,s = p̂(c, v, r, t, s) =

freq(c, v, r, t, s)

N
(2.5)

However, an alternative to the saturated model is to use the model selection

process described in Chapter 3 to find a more parsimonious probabilistic model that

contains only the most important dependencies among the feature variables. This

model can then be used as a classifier to disambiguate subsequent occurrences of the

ambiguous word.

Suppose that the model selection process finds that the model (CSV )(RST ),

shown in Figure 2.2, is an adequate characterization of the data sample. There

are a number of properties of the model revealed in the graphical representation.
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Figure 2.2. Decomposable Model (CSV )(RST )

First, it is a decomposable model since all cycles of length four or more have a

chord. Second, conditional independence relationships can be read off the graph.

For example, the values of features R and V are conditionally independent given the

value of S; p(r|v, s) = p(r|s), or p(v|r, s) = p(v|s). Third, (CSV ) and (RST ) are

the maximal cliques. The variables in each clique are all dependent and each clique

defines a marginal distribution. Each marginal distribution defines a marginal event

space with eight possible events. Thus the total number of parameters needed to

define the joint probability distribution reduces from 32 to 16 when using this model

rather than the saturated model.

The maximum likelihood estimates for the parameters of the joint probability

distribution are expressed in terms of the parameters of the decomposable model. The

sufficient statistics of a decomposable model are the marginal frequencies of the vari-

ables represented in the maximal cliques of the graphical representation. Given the

parametric form (CSV )(RST ), the sufficient statistics are the marginal frequencies

freq(c, s, v) and freq(r, s, t). The parameters of the decomposable model are θ̂C,S,V
c,s,v

and θ̂R,S,T
r,s,t . These represent the probability that the marginal events (c, s, v) and

(r, s, t) will be observed in a data sample. These estimates are made by normalizing

the marginal frequencies by the sample size N :
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θ̂CSV
c,s,v = p̂(c, s, v) =

freq(c, s, v)

N
(2.6)

and

θ̂RST
r,s,t = p̂(r, s, t) =

freq(r, s, t)

N
(2.7)

Each parameter of the joint probability distribution can be expressed in terms of

these decomposable model parameters. The joint probability of observing the event

(c, v, r, t, s) is expressed as the product of the marginal probabilities of observing

marginal events (c, s, v) and (r, s, t):

θ̂CV RTS
c,v,r,t,s =

θ̂CSV
c,s,v × θ̂RST

r,s,t

θ̂S
s

(2.8)

While the denominator θ̂S
s represents an estimate of a marginal distribution, it is

not technically a parameter since it is completely determined by the numerator. The

denominator does not add any new information to the model, it simply factors out

any marginal distributions that occur in more than one of the marginal distributions

found in the numerator.

In contrast to the saturated model, the model of independence assumes that

there are no dependencies among any of the feature variables. For this example the

model of independence is notated (C)(V )(R)(T )(S) and the graphical representation

is shown in Figure 2.3. This model has five maximal cliques, each containing one node

and no dependencies. This defines five marginal distributions, each of which has two

possible values. The number of parameters needed to define the joint probability

distribution is reduced to 10. These parameters are estimated as follows:

θ̂C,V,R,T,S
c,v,r,t,s = θ̂C

c × θ̂V
v × θ̂R

r × θ̂T
t × θ̂S

s (2.9)
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Figure 2.3. Model of Independence (C)(V )(R)(T )(S)

This model indicates that the probability of observing a particular value for a

feature variable is not influenced by the values of any of the other feature variables.

No features affect the values of any other features. The model of independence is

trivially decomposable as there are no cycles in the graphical representation of the

model. Despite its simplicity, the model of independence is used throughout the

experimental evaluation described in Chapter 6. It serves as the basis of the majority

classifier, a probabilistic model that assigns the most frequent sense of an ambiguous

word in a sample of data to every instance of the ambiguous word it subsequently

encounters.

The Naive Bayesian classifier [33] also plays a role later in this dissertation. This

is a decomposable model that has a significant history in natural language processing

and a range of other applications. This model assumes that all of the contextual

features are conditionally independent given the value of the classification variable.

For the example in this chapter, the parametric form of Naive Bayes is notated

(CS)(RS)(TS)(V S) and has a graphical representation as shown in Figure 2.4. In

this model there are four maximal cliques, each with two nodes and one dependency.

The variables are binary so each of the four marginal distributions represents four

possible events. The parameter estimates for Naive Bayes are computed as follows:
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Figure 2.4. Naive Bayes Model (CS)(RS)(TS)(V S)

θ̂C,V,R,T,S
c,v,r,t,s =

θ̂C,S
c,s × θ̂V,S

v,s × θ̂R,S
r,s × θ̂T,S

t,s

θ̂S
s × θ̂S

s × θ̂S
s

(2.10)

By applying the following identities,

θ̂X,S
x,s = p̂(x, s) = p̂(x|s) × p̂(s) and θ̂S

s = p̂(s) (2.11)

the Naive Bayesian classifier can also be expressed in its more traditional representa-

tion:

p̂(c, v, r, t, s) = p̂(s) × p̂(c|s) × p̂(v|s) × p̂(r|s) × p̂(t|s) (2.12)

2.2.2. Decomposable Models as Classifiers

A probabilistic model consists of a parametric form that describes the depen-

dencies among the features and parameter estimates that tell how likely each possible

event is to occur. Such a model can be used as a classifier to identify the most

probable sense of an ambiguous word given the context in which it appears.

For example, suppose a sentence that contains an ambiguous word is represented

by the following feature vector:
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(C = c, V = v,R = r, T = t, S =?) (2.13)

The variable S represents the sense of an ambiguous word. Variables C, V ,

R, and T are the features that represent the context in which the ambiguous word

occurs. The values of the feature variables are known while the value of S is unknown.

Given x possible values of S, where each possible sense is notated sx, there are

x possible events associated with the incomplete feature vector in Equation 2.13.

A probabilistic classifier determines which of these possible events has the highest

associated probability according to the probabilistic model, i.e., it maximizes the

probability of S conditioned on the values of the observed feature variables.

Thus, disambiguation is performed via a simple maximization function. Given

values for the observed contextual features, a probabilistic classifier determines which

value of S is associated with the most probable event:

S =
argmax

sx p(sx|c, v, r, t) =
argmax

sx

p(c, v, r, t, sx)

p(c, v, r, t)
(2.14)

The denominator in Equation 2.14 acts as a constant since it does not include S.

As such it can be dropped and the maximization operation is simplified to finding the

value of S that maximizes the joint probability distribution of the feature variables

C, V,R, T, and S:

S =
argmax

sx p(c, v, r, t, sx) =
argmax

sx θ̂C,V,R,T,S
c,v,r,t,sx

(2.15)

This chapter has shown how estimates of the joint probability distribution can

be expressed in terms of more parsimonious decomposable models. The following

chapter shows how decomposable models can be automatically selected from sense–

tagged text.
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CHAPTER 3

SUPERVISED LEARNING FROM SENSE–TAGGED TEXT

When applied to classification problems, supervised learning is a methodology

where examples of properly classified events are used to train an algorithm that

will classify subsequent instances of similar events. For word sense disambiguation,

manually disambiguated usages of an ambiguous word serve as training examples.

This sense–tagged text is used to learn a probabilistic model that determines the

most probable sense of an ambiguous word, given the context in which it occurs.

In this dissertation, the objective of supervised learning is to select the paramet-

ric form of a decomposable model that represents the important dependencies among

a set of feature variables exhibited in a particular sample of sense–tagged text. Given

this form, the joint probability distribution of this set of feature variables can be ex-

pressed in terms of the marginal probability distributions of the decomposable model.

Once the values of these parameters are estimated, the probabilistic model is complete

and can be used as a classifier to perform disambiguation.

The challenge in learning probabilistic models is to locate a parametric form

that is both a specific representation of the important dependencies in the training

sample and yet general enough to successfully disambiguate previously unobserved

instances of the ambiguous word. A model is too complex if a substantial number

of parameters in the joint probability distribution have zero–valued estimates; this

indicates that the available data sample simply does not contain enough information

to support the estimates required by the model. However, a model is too simple if

relevant dependencies among features are not represented. In other words, the model

should achieve an appropriate balance between model complexity and model fit.
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There are several supervised learning methodologies discussed in this chapter.

Sequential model selection learns a single parametric form that is judged to achieve

the best balance between model complexity and fit for a given sample of sense–tagged

text. This methodology is extended by the Naive Mix, which learns an averaged prob-

abilistic model from the sequence of parametric forms generated during a sequential

model selection process. An alternative to learning the parametric form is to simply

assume one. In this case no search of parametric forms is conducted; the form is

specified by the user and the sense–tagged text is only utilized to make parameter

estimates. This is the methodology of the Naive Bayesian classifier [33], often simply

referred to as Naive Bayes.

The degree to which a probabilistic model successfully balances complexity and

fit is determined by its accuracy in disambiguating previously unobserved instances

of an ambiguous word. The methods discussed in this chapter are subjected to such

an evaluation in Chapter 6.

3.1. Sequential Model Selection

Sequential model selection integrates a search strategy and an evaluation crite-

rion. Since the number of possible parametric forms is exponential in the number of

features, an exhaustive search of the possible forms is usually not tractable. A search

strategy determines which parametric forms, from the set of all possible parametric

forms, will be considered during the model selection process. The evaluation crite-

rion is the ultimate judge of which parametric form achieves the most appropriate

balance between complexity and fit, where complexity is defined by the number of

dependencies in the model, i.e., the number of edges in its graphical representation.

The search strategies employed here are greedy and result in the evaluation of

models of steadily increasing or decreasing levels of complexity. A number of candidate

models are generated at each level of complexity. The evaluation criterion determines

which candidate model results in the best fit to the training sample; this model is

designated as the current model. Another set of candidate models is generated by
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increasing or decreasing the complexity of the current model by one dependency.

The process of evaluating candidates, selecting a current model, and generating new

candidate models from the current model is iterative and continues until a model is

found that achieves the best overall balance of complexity and fit. This is the selected

model and is the ultimate result of the sequential model selection process.

A selected model is parsimonious in that it has as few dependencies as are nec-

essary to characterize or fit the training sample. When using maximum likelihood

estimates, the saturated model exactly fits the distribution of the observed events

in the training sample. However, the number of parameters is equal to the number

of events in the event space and obtaining non–zero estimates for large numbers of

parameters is usually difficult. A parsimonious model should capture the important

dependencies among the features in a training sample and yet allow the joint proba-

bility distribution to be expressed relatively simply in terms of a smaller number of

decomposable model parameters.

As formulated in this dissertation, the model selection process also performs

feature selection. If a model is selected where there is no dependency between a

feature variable and the sense variable, then that feature is removed from the model

and will not impact disambiguation.

3.1.1. Search Strategy

Two sequential search strategies are employed in this dissertation: backward

sequential search [92] and forward sequential search [28]. These methods are also

known as backward elimination and forward inclusion.

Backward sequential search for probabilistic models of word sense disambigua-

tion was introduced by Bruce and Wiebe (e.g., [10], [11], [12]). This dissertation

introduces forward sequential search. Forward searches evaluate models of increasing

complexity based on how much candidate models improve upon the fit of the current

model, while backward searches evaluate candidate models based on how much they

degrade the fit of the current model.
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A forward sequential search begins by designating the model of independence

as the current model. The level of complexity is zero since there are no edges in the

graphical representation of this model. The set of candidate models is generated from

the model of independence and consists of all possible one edge decomposable models.

These are individually evaluated for fit by an evaluation criterion. The one edge

model that exhibits the greatest improvement in fit over the model of independence

is designated as the new current model. A new set of candidate models is generated by

adding an edge to the current model and consists of all possible two edge decomposable

models. These models are evaluated for fit and the two edge decomposable model

that most improves on the fit of the one edge current model becomes the new current

model. A new set of three edge candidate models is generated by adding one edge at

a time to the two edge current model. This sequential search continues until:

1. none of the candidate decomposable models of complexity level i + 1 results in

an appreciable improvement in fit over the current model of complexity level i,

as defined by the evaluation criterion, or

2. the current model is the saturated model.

In either case the current model becomes the selected model and the search ends.

In general then, during a forward search the current model is reset to the de-

composable model of complexity level i that most improves on the fit of the current

decomposable model of complexity level i − 1. All possible decomposable models of

complexity level i+1 that are generated from the current model of complexity level i

are considered as candidate models and then evaluated for fit. The candidate model

that most improves on the fit of the current model of complexity level i is designated

the new current model. This process continues until either there is no decomposable

model of complexity level i + 1 that results in an appreciable improvement in fit over

the current model or the current model of complexity level i is the saturated model.

In either case the current model is selected and the search ends.
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For the sparse and skewed samples typical of natural language data [101], for-

ward sequential search is a natural choice. Early in the search the models are of

low complexity and the number of parameters in the model is relatively small. This

results in few zero–valued estimates and ensures that the model selection process is

based upon the best available information from the training sample.

A backwards sequential search begins by designating the saturated model as

the current model. If there are n feature variables then the number of edges in the

saturated model is n(n−1)
2

. As an example, given 10 feature variables there are 45

edges in a saturated model. The set of candidate models consists of each possible

decomposable model with 44 edges generated by removing a single edge from the

saturated model. These candidates are evaluated for fit and the 44 edge model that

results in the least degradation in fit from the saturated model becomes the new

current model. Each possible 43 edge candidate decomposable model is generated by

removing a single edge from the 44 edge current model and then evaluated for fit.

The 43 edge decomposable candidate model that results in the least degradation in

fit from the 44 edge current model becomes the new current model. Each possible 42

edge candidate decomposable model is generated by removing a single edge from the

current 43 edge model and then evaluated for fit. This sequential search continues

until:

1. every candidate decomposable model of complexity level i − 1 results in an

appreciable degradation in fit from the current model of complexity level i, as

defined by the evaluation criterion, or

2. the current model is the model of independence.

In either case the current model is selected and the search ends.

In general then, during a backward search the current model is reset to the

decomposable model of complexity level i that results in the least degradation in fit

from the current model of complexity level i + 1. Each possible decomposable model

of complexity level i−1 is generated by removing a single edge from the current model
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of complexity level i and evaluated for fit. This process continues until either every

decomposable model of complexity level i−1 results in an appreciable degradation in

fit from the current model of complexity level i or the current model has complexity

level zero, i.e., the model of independence. In either case the current model is selected

and the search ends.

The backward search in this dissertation differs slightly from that of Bruce and

Wiebe. Their backward search begins with the saturated model and generates a se-

ries of models of steadily decreasingly complexity where the minimal or concluding

model is Naive Bayes. All models in this sequence are evaluated via a test of pre-

dictive accuracy; the model that achieves the best balance between complexity and

fit is the model that achieves the highest disambiguation accuracy. Here, backward

sequential search begins with the saturated model and generates a series of models

that concludes with the one that best balances complexity and fit, as judged by an

evaluation criterion. If no such model is found then the model of independence is the

concluding model in the sequence.

For sparse and skewed data samples, backward sequential search should be used

with care. Backward search begins with the saturated model where the number of

parameters equals the number of events in the event space. Early in the search the

models are of high complexity. Parameter estimates based on the saturated model or

other complex models are often unreliable since many of the marginal events required

to make maximum likelihood estimates are not observed in the training sample.

3.1.2. Evaluation Criteria

The degradation and improvement in fit of candidate models relative to the cur-

rent model is assessed by an evaluation criterion. Two different varieties of evaluation

criteria are employed in this dissertation; significance tests and information criteria.

The use of significance tests as evaluation criteria during sequential searches

for probabilistic models of word sense disambiguation was introduced by Bruce and

Wiebe (e.g., [10], [11], [12]). They employ the log–likelihood ratio G2 and assign
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significance values to this test statistic using an asymptotic distribution and an exact

conditional distribution. This dissertation expands the range of evaluation criteria

available for model selection by introducing two information criteria, Akaike’s Infor-

mation Criterion (AIC) [1] and the Bayesian Information Criterion (BIC) [86].

3.1.2.1. Significance Testing

In significance testing, a model is a hypothesized representation of the popula-

tion from which a training sample was drawn. The adequacy of this model is evaluated

via a test statistic that measures the fit of the model to the training sample.1 The fit

of the hypothesized model is judged acceptable if it differs from the training sample

by an amount that is consistent with sampling error, where that error is defined by

the distribution of the test statistic.

The log–likelihood ratio G2 is a frequently used test statistic:

G2 = 2 ×
q

∑

i=1

fi × log
fi

ei

(3.1)

where fi and ei are the observed and expected counts of the ith feature vector. The

observed count fi is calculated directly from the training sample while the expected

count ei is calculated assuming that the model under evaluation fits the sample, i.e.,

that the null hypothesis is true. This statistic measures the deviation between what

is observed in the training sample and what would be expected in that sample if the

hypothesized model is an accurate representation of the population.

The distribution of G2 is asymptotically approximated by the χ2 distribution

[94] with adjusted degrees of freedom (dof) equal to the number of parameters that

have non–zero estimates given the data in the sample. The degrees of freedom are

adjusted to remove those parameters in the hypothesized model that can not be

1When using maximum likelihood estimates, the training sample is exactly characterized by the

saturated model. Thus the fit of the hypothesized model to the training sample is assessed by

measuring the fit of the model to the saturated model.
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estimated from the training sample. These are parameters whose sufficient statistics

have a value of zero since the marginal events they are associated with do not occur in

the training sample. The statistical significance of a model is equal to the probability

of observing its associated G2 value in the χ2 distribution with appropriate degrees of

freedom. If this probability is less than a pre–defined cutoff value, α, then the deviance

of the hypothesized model from the training sample is less than would be expected

due to sampling error. This suggests that the hypothesized model is a reasonable

representation of the population from which the training sample was taken.

During backward sequential search a significance test determines if a candidate

model results in a significantly worse fit than the current model. During forward

search a significance test determines if a candidate model results in a significantly

better fit than the current model. This is a different formulation than the significance

test described above, where the hypothesized or candidate model is always fitted to

the saturated model. This dissertation treats sequential search as a series of local

evaluations, where the fit of candidate models is made relative to current models

that have one more or one less dependency, depending on the direction of the search.

This is in contrast to a global evaluation where the fit of candidate models is always

relative to the saturated model or some other fixed model.

The degree to which a candidate model improves upon or degrades the fit of the

current model is measured by the difference between the G2 values for the candidate

and current model, ∆G2. Like G2, the distribution of ∆G2 is approximated by a χ2

distribution with adjusted degrees of freedom equal to the difference in the adjusted

degrees of freedom of the candidate and current model, ∆dof [5].

During backward search a candidate model does not result in a significant degra-

dation in fit from the current model if the probability, i.e., significance, of its ∆G2

value is above a pre–determined cutoff, α, that defines the allowable sampling error.

This error is defined by the asymptotic distribution of ∆G2, which is in turn defined

by the χ2 distribution with degrees of freedom equal to ∆dof . If the error is small

then the candidate model is an adequate representations of the population.
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A candidate model of complexity level i− 1 inevitably results in a degradation

in fit from the current model of complexity level i. The objective of backward search

is to select the candidate model that results in the least degradation in fit from the

current model. Thus, the candidate model of complexity level i − 1 with the lowest

significance value less than α is selected as the current model of complexity level

i − 1. The degradation in fit is judged acceptable if the value of ∆G2 is statistically

insignificant, according to a χ2 distribution with degrees of freedom equal to ∆dof .

If the significance of ∆G2 is unacceptably large for all candidate models the selection

process stops and the current model becomes the ultimately selected model.

During forward search the candidate model has one more edge than the current

model. A candidate model of complexity level i + 1 inevitably improves upon the

fit of the current model of complexity level i. The objective of forward search is to

select the candidate model that results in the greatest increase in fit from the current

model. The candidate model of complexity level i + 1 with the largest significance

value greater than α is selected as the current model of complexity level i+1. This is

the model that results in the largest improvement in fit when moving from a model

of complexity level i to one of i + 1. The improvement in fit is judged acceptable if a

significance test shows that the value of ∆G2 is statistically significant. If all candidate

models result in insignificant levels of improvement in fit then model selection stops

and selects the current model of complexity level i.

While it is standard to use a χ2 distribution to assess the significance of G2 or

∆G2, it is known that this approximation may not hold when the data is sparse and

skewed [80]. An alternative to using an asymptotic approximation to the distribution

of test statistics such as G2 and ∆G2 is to define their exact distribution. There are

two ways to define the exact distribution of a test statistic:

1. enumerate all elements of that distribution as in Fisher’s Exact Test [35] or

2. sample from that distribution using a Monte Carlo sampling scheme [81].
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The significance of G2 and ∆G2 based on the exact conditional distribution does

not rely on an asymptotic approximation and is accurate for sparse and skewed data

samples. Sequential model selection using the exact conditional test is developed for

word sense disambiguation in [10]. The exact conditional test is also applied to the

identification of significant lexical relationships in [74].

This dissertation employs sequential model selection using both the asymptotic

approximation of the significance of G2 values as well as the exact conditional distri-

bution. The forward and backward sequential search procedures remain the same for

both methods; the distinction is in how significance is assigned. The asymptotic as-

sumption results in the assignment of significance values from a χ2 distribution while

the exact conditional test assigns significance based upon a Monte Carlo sampling

scheme.2

3.1.2.2. Information Criteria

Two information criteria are employed as evaluation criteria in this dissertation;

Akaike’s Information Criteria (AIC) and the Bayesian Information Criteria (BIC).

These criteria are formulated as follows for use during sequential model selection:

AIC = ∆G2 − 2 × ∆dof (3.2)

BIC = ∆G2 − log(N) × ∆dof (3.3)

where ∆G2 again measures the deviation in fit between the candidate model and

the current model. However, here ∆G2 is treated as a raw score and not assigned

significance. ∆dof represents the difference between the adjusted degrees of freedom

for the current and candidate models. Like ∆G2, it is treated as a raw score and is not

2The freely available software package CoCo [2] implements the Monte Carlo sampling scheme

described in [48].
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used to assign significance. In Equation 3.3, N represents the number of observations

in the training sample.

The information criteria are alternatives to using a pre–defined significance level,

α, to judge the acceptability of a model. AIC and BIC explicitly balance model fit

and complexity; fit is determined by the value of ∆G2 while complexity is expressed

in terms of the difference in the adjusted degrees of freedom of the two models, ∆dof .

Small values of ∆G2 imply that the fit of the candidate model to the training data

does not deviate greatly from the fit obtained by the current model. Likewise, small

values for the adjusted degrees of freedom, ∆dof , suggest that the candidate and

current models do not differ greatly in regards to complexity.

During backward search the candidate model with the lowest negative AIC

value is selected as the current model of complexity level i − 1. This is the model

that results in the least degradation in fit when moving from a model of complexity

level i to one of i− 1. This degradation is judged acceptable if the AIC value for the

candidate model of complexity level i − 1 is negative. If there are no such candidate

models then the degradation in fit is unacceptably large and model selection stops

and the current model of complexity level i becomes the selected model.

During forward search the candidate model with the largest positive AIC value

is selected as the current model of complexity level i + 1. This is the model that

results in the largest improvement in fit when moving from a model of complexity

level i to one of i + 1. This improvement is judged acceptable if the AIC value for

the model of complexity level i + 1 is positive. If there are no such models then the

improvement in fit is unacceptably small and model selection stops and the current

model of complexity level i becomes the selected model.

The information criteria have a number of appealing properties that make them

particularly well suited for sequential model selection. First, they do not require that

a pre–determined cutoff point be specified to stop the model selection process; a

mechanism to stop model selection is inherent in the formulation of the statistic.

Second, the balance between model complexity and fit is explicit in the statistic and
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Table 3.1. Model Selection Example Data

A B C freq(A,B,C)

0 0 0 0

0 0 1 1

0 1 0 5

0 1 1 12

1 0 0 0

1 0 1 3

1 1 0 2

1 1 1 1

can be directly controlled by adjusting the constant that precedes ∆dof . As this

value increases the selection process results in models of decreasing complexity.3

3.1.3. Examples

For clarity, the sequential model selection process is illustrated with two simple

examples; one using forward search in combination with AIC and the other using

backward search and AIC. These methodologies are abbreviated as FSS AIC and BSS

AIC, respectively. Both examples learn a parametric form from the 24 observation

training sample shown in Table 3.1, where the feature set consists of three binary

variables, A, B, and C. There are eight possible events in the event space. The

frequency with which each event occurs in the sample is shown by freq(A,B,C).

3.1.3.1. FSS AIC

During forward search, the candidate models are evaluated relative to how much

they improve upon the fit of the current model. Such an improvement is expected

since the candidate model has one more dependency than the current model.

3In general, BIC selects models of lower complexity than does AIC. This is discussed further in

Chapter 6.
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The value of ∆G2 measures the amount of deviance between the candidate

model and the current model; a large value implies that the candidate model greatly

increases the fit of the model. Only candidate models that have positive AIC values

improve upon the fit of the current model sufficiently to merit designation as the

new current model. A negative value for AIC during forward search indicates that

the increase in fit is outweighed by the resulting increase in complexity and will not

result in a model that attains an appropriate balance of complexity and fit.

The steps in sequential model selection using FSS AIC are shown in Table

3.2. The G2 values for the current and candidate models are shown, as is their

difference, ∆G2. The steps of the sequential search using forward search and AIC

are shown in Table 3.2. The value of ∆G2 measures the improvement in the fit

when a dependency is added to the current model. During forward search, ∆G2 is

calculated by subtracting the G2 value associated with the candidate model from the

G2 associated with the current model:

∆G2 = G2
current − G2

candidate (3.4)

This difference shows the degree to which the candidate model improves upon the fit

of the current model. A large value of ∆G2 shows that the fit of the candidate model

to the training sample is considerably better than that of the current model.

The degree to which complexity is increased by the addition of a dependency to

the candidate model is measured by the difference in the adjusted degrees of freedom

for the two models, ∆dof :

∆dof = dofcandidate − dofcurrent (3.5)

Step 1: Forward search begins with the model of independence, (A)(B)(C), as

the current model. The set of one edge decomposable candidate models is generated

by adding an edge to the model of independence. The candidate models include

(AC)(B), (A)(BC), and (AB)(C). These are all evaluated via AIC with the result
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Table 3.2. Model Selection Example: FSS AIC

Current G2 Candidate G2 ∆G2 ∆dof AIC

Step 1 (A)(B)(C) 10.14 (AC)(B) 10.08 0.06 1 -1.94

(A)(B)(C) 10.14 (A)(BC) 7.07 3.07 1 1.07

(A)(B)(C) 10.14 (AB)(C) 4.56 5.58 1 3.58

Step 2 (AB)(C) 4.56 (AB)(AC) 4.50 0.06 1 -1.94

(AB)(C) 4.56 (AB)(BC) 1.48 3.08 1 1.08

Step 3 (AB)(BC) 1.48 (ABC) 0.00 1.48 1 -0.52

Selected: (AB)(BC)

that (AB)(C) has the greatest positive AIC value. This candidate model exhibits the

greatest deviance from the current model and therefore most increases the fit. Thus,

(AB)(C) becomes the new current model.

Step 2: A new set of candidate models is generated by adding an edge to the cur-

rent model, (AB)(C). The candidate models are (AB)(AC) and (AB)(BC). These

are each evaluated relative to the current model (AB)(C). The model (AB)(BC) has

the greatest positive AIC value associated with it and thus most increases the fit over

the current model. The new current model is now (AB)(BC).

Step 3: The set of candidate models is generated by adding an edge to the

current model (AB)(BC). The only resulting candidate is (ABC), the saturated

model. However, when evaluated relative to the current model it has a negative AIC

value associated with it; this suggests that the increase in fit is not sufficient to merit

further increases in the complexity of the model. Thus, the current model (AB)(BC)

becomes the selected model and is the ultimate result of the selection process.

3.1.3.2. BSS AIC

During backward search, candidate models are evaluated based upon how much

they degrade the fit of the current model. Since the candidate models have one
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Table 3.3. Model Selection Example: BSS AIC

Candidate G2 Current G2 ∆G2 ∆dof AIC

Step 1 (AC)(BC) 7.00 (ABC) 0.00 7.00 1 5.00

(AB)(AC) 4.49 (ABC) 0.00 4.49 1 2.49

(AB)(BC) 1.48 (ABC) 0.00 1.48 1 -0.52

Step 2 (A)(BC) 7.07 (AB)(BC) 1.48 5.59 1 3.59

(AB)(C) 4.56 (AB)(BC) 1.48 3.08 1 1.08

Selected: (AB)(BC)

fewer dependency than the current model, it is inevitable that there will be some

degradation in fit.

During backward search only candidate models that have negative AIC values

are eligible to be designated current models. A positive AIC suggests that the degra-

dation in model fit that occurs due to removal of a dependency is too large and offsets

the benefits of reducing the complexity of the current model.

The steps of the sequential search using backward search and AIC are shown

in Table 3.3. The value of ∆G2 measures the degradation in fit when a dependency

is removed from the current model:

∆G2 = G2
candidate − G2

current (3.6)

The degree to which complexity is decreased by the removal of a dependency from

the candidate model is shown by the difference in the degrees of freedom for the two

models, ∆dof :

∆dof = dofcurrent − dofcandidate (3.7)

Step 1: A backward search begins with the saturated model, (ABC), as the

current model. The set of candidate models consists of all two edge models that
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are generated by removing a single edge from the saturated model. The models

(AC)(BC), (AB)(AC), and (AB)(BC) are evaluated relative to the saturated model.

(AC)(BC) has the lowest negative AIC value and becomes the current model.

Step 2: The candidate models are all the one edge models generated by remov-

ing a single edge from the current model. The models (A)(BC) and (AB)(C) are

evaluated and both have positive AIC values. Both result in a degradation in fit that

is not offset by an appropriate reduction in model complexity. Thus, model selection

stops and the current model, (AB)(BC), becomes the selected model.

3.2. Naive Mix

This dissertation introduces the Naive Mix, a new supervised learning algorithm

that extends the sequential model selection methodology. The usual objective of

model selection is to find a single model that achieves the best representation of

the training sample both in terms of complexity and fit. However, empirical results

described in Chapter 6 show that it is often the case that very different models can

result in nearly identical levels of disambiguation accuracy. This suggests that there

is an element of uncertainty in model selection and that a single best model may not

always exist.

The Naive Mix is based on the premise that each of the models that serve as

a current model during a sequential search have important information that can be

exploited for word sense disambiguation. The Naive Mix is an averaged probabilistic

model based upon the average of the parameter estimates for all of the current models

generated during a sequential model selection process.

Sequential methods of model selection result in a sequence of decomposable

models (m1,m2,. . ., mr−1,mr) where m1 is the initial current model and mr is the

selected model. Each model mi is designated as the current model at the ith step

in the search process. During forward search m1 is the model of independence and

during backward search m1 is the saturated model.
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Each model mi has a parametric form that expresses the dependencies among

the feature variables (F1, F2, . . ., Fn−1, S), where the sense of the ambiguous word

is represented by S and (F1, F2, . . .,Fn−1) represent the feature variables. The joint

probability distribution of this set of feature variables can be expressed in terms of

the marginal probability distributions defined by each decomposable model mi.

Given a sequence of current models found during a sequential search, the param-

eters of the joint probability distribution of the set of feature variables are estimated

based upon the marginal distributions of each of these models. In other words, r dif-

ferent estimates for the joint probability distribution of a set of feature variables are

made. These r estimates are averaged and the resulting joint probability distribution

is a Naive Mix:

θ̂(F1,F2,...,Fn−1,S)average =
1

r
×

r
∑

i=1

θ̂(F1,F2,...,Fn−1,S)mi (3.8)

where θ̂(F1,F2,...,Fn−1,S)mi represents the parameter estimates given that the parametric

form is mi.

A Naive Mix can be created using either forward or backward search. However,

there are a number of advantages to formulating a Naive Mix with a forward search.

First, the inclusion of very simple models in the mix eliminates the problem of zero–

valued parameter estimates in the averaged probabilistic model. The first model in

the Naive Mix is the model of independence which acts as a majority classifier and

has estimates associated with it for for every event in the event space. Second, for-

ward search incrementally builds on the strongest dependencies among features while

backward search incrementally removes the weakest dependencies. Thus a Naive Mix

formulated with backward search can potentially contain many irrelevant dependen-

cies while a forward search only includes the most important dependencies.

Consider an example that formulates a Naive Mix with a forward search; this

example follows the notation of the earlier bill example. Suppose that the sequence of

models shown in Table 3.4 are found to be the best fitting models by some evaluation
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Table 3.4. Sequence of Models for Naive Mix created with FSS

current model mixed model

m1 (C)(V)(R)(T)(S) (S)

m2 (CS)(V)(R)(T) (CS)

m3 (CS)(ST)(V)(R) (CS)(ST)

m4 (CS)(ST)(SV)(R) (CS)(ST)(SV)

m5 (CSV)(ST)(R) (CSV)(ST)

m6 (CSV)(ST)(TR) (CSV)(ST)

m7 (CSV)(RST) (CSV)(RST)

criterion at each step of the forward search. These represent the set of current models.

Any marginal distributions of the current models that do not include S, the

sense variable, can be eliminated from the model included in the mix. Such marginal

distributions simply act as constants in a probabilistic classifier and can be removed

from the mix without affecting the final result. In Table 3.4, the models in the

column mixed model are used to make the parameter estimates of the joint probability

distributions that are included in the Naive Mix.

The parameters of the joint probability distribution of each decomposable model

mi are expressed as the product of the marginal distributions of each current model.

The parameters of the joint distributions are averaged across all of the models to cre-

ate the Naive Mix. For example, the averaged parameter θ
(C,V,R,T,S)average

c,v,r,t,s is estimated

as follows:

θ
(C,V,R,T,S)average

c,v,r,t,s =
1

7
(θ̂

(C,V,R,T,S)m1

c,v,r,t,s + θ̂
(C,V,R,T,S)m2

c,v,r,t,s + θ̂
(C,V,R,T,S)m3

c,v,r,t,s +

θ̂
(C,V,R,T,S)m4

c,v,r,t,s + θ̂
(C,V,R,T,S)m5

c,v,r,t,s + θ̂
(C,V,R,T,S)m6

c,v,r,t,s + θ̂
(C,V,R,T,S)m7

c,v,r,t,s ) (3.9)

where
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θ̂
(C,V,R,T,S)m1

c,v,r,t,s = θ̂S
s , θ̂

(C,V,R,T,S)m2

c,v,r,t,s = θ̂C,S
c,s , θ̂

(C,V,R,T,S)m3

c,v,r,t,s =
θ̂C,S

c,s × θ̂S,T
s,t

θ̂S
s

θ
(C,V,R,T,S)m4

c,v,r,t,s =
θ̂C,S

c,s × θ̂S,T
s,t × θ̂S,V

s,V

θ̂S
s × θ̂S

s

, θ̂
(C,V,R,T,S)m5

c,v,r,t,s =
θ̂C,S,V

c,s,v × θ̂S,T
s,t

θ̂S
s

θ̂
(C,V,R,T,S)m6

c,v,r,t,s =
θ̂C,S,V

c,s,v × θ̂S,T
s,t

θ̂S
s

, θ
(C,V,R,T,S)m7

c,v,r,t,s =
θ̂C,S,V

c,s,v × θ̂R,S,T
r,s,t

θ̂S
s

Once the parameter estimates are made and averaged, the resulting probabilis-

tic model can be used as a classifier to perform disambiguation. Suppose that the

following feature vector represents a sentence containing an ambiguous use of bill. S

represents the sense of the ambiguous word and the other variables represent observed

features in the sentence:

(C = c, V = v,R = r, T = t, S =?) (3.10)

The value of S that maximizes θ̂
(C,V,R,T,S)average

c,v,r,t,sx
is determined to be the sense of

bill. Here again disambiguation reduces to finding the value of S that is most probable

in a particular context as defined by the observed values of the feature variables.

S =
argmax

sx θ̂
(C,V,R,T,S)average

c,v,r,t,sx
=

argmax
sx p(sx|c, v, r, t) (3.11)

The Naive Mix addresses the uncertainty that exists in model selection. Similar

difficulties in selecting single best models have been noted elsewhere; in fact, there is

a general trend in model selection research away from the selection of such models

(e.g., [53]). A similar movement exists in machine learning, based on the premise that

no learning algorithm is superior for all tasks [83]. This has lead to hybrid approaches
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that combine diverse learning paradigms (e.g., [31]) and approaches that select the

most appropriate learning algorithm based on the characteristics of the training data

(e.g., [8]).

3.3. Naive Bayes

Naive Bayes differs from the models learned via sequential model selection and

the Naive Mix since the parametric form of Naive Bayes is always the same and does

not have to be learned. Naive Bayes assumes that all feature variables are condi-

tionally independent given the value of the classification variable. Examples of both

the graphical representation of this parametric form and the associated parameter

estimates are shown in Chapter 2.

In disambiguation, feature variables represent contextual properties of the sen-

tence in which an ambiguous word occurs. The classification variable represents the

sense of the ambiguous word. Thus, Naive Bayes assumes that the values of any two

contextual features in a sentence do not directly affect each other. In general this

is not a likely representation of the dependencies among features in language. For

example, one kind of feature used in this dissertation represents the part–of–speech

of words that surround the ambiguous word. It is typically the case that the part–

of–speech of the i + 1th word in a sentence is dependent on the part–of–speech of the

ith word. When an article occurs in the ith position, one can predict that a noun or

adjective is more likely to occur at the i + 1th position than is a verb, for example.

However, despite the fact that Naive Bayes does not correspond to intuitions regard-

ing the dependencies among features, experimental results in Chapter 6 show that

Naive Bayes performs at levels comparable to models with learned parametric forms.

If the contextual features of a sentence are represented by variables (F1, F2, . . .,

Fn−1) and the sense of the ambiguous word is represented by S, then the parameter

estimates of Naive Bayes are calculated as follows:

43



θ̂
F1,F2,...,Fn−1,S

f1,f2,...,fn−1,s = θS
s ×

n−1
∏

i=1

θ̂Fi,S
fi,s

θ̂S
s

(3.12)

Several alternative but equivalent formulations are shown in Chapter 2.

Even with a large number of features, the number of parameters in Naive Bayes

is relatively small. For a problem with n feature variables, each having l possible

values, and a classification variable with s possible values, the number of parameters

in Naive Bayes is n∗ l∗s. More complicated models often require that an exponential

number of parameters be learned. For example, a saturated model given the same

scenario will have nl ∗ s parameters.
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CHAPTER 4

UNSUPERVISED LEARNING FROM RAW TEXT

The main limitation of the supervised learning methods presented in Chapter

3 is the need for sense–tagged text to serve as training examples. The creation of

such text is time–consuming and proves to be a significant bottleneck in porting and

scaling the supervised approaches to new and larger domains of text.

Unsupervised learning presents an alternative that eliminates this dependence

on sense–tagged text. The object of unsupervised learning is to determine the clas-

sification of each instance in a sample without using training examples. In word

sense disambiguation, this corresponds to grouping instances of an ambiguous word

into some pre–specified number of sense groups, where each group corresponds to a

distinct sense of the ambiguous word. This is done strictly based on information ob-

tained from raw untagged text; no external knowledge sources are employed. While

this increases the portability of these approaches, it also imposes an important limita-

tion. Since no knowledge beyond the raw text is employed, the unsupervised learning

algorithms do not have access to the sense inventory for a word. Thus, while they

create sense groups based on the features observed in the text, these groups are not

labeled with a definition or any other meaningful tag. If such labels are desired,

they must be attached after unsupervised learning has created the sense groups. One

means of attaching such labels is discussed in Chapter 7.

This chapter describes a methodology by which probabilistic models can be

learned from raw text. It requires that the variable values associated with the sense

of an ambiguous word be treated as missing or unobserved data in the sample. Given

that these values are never present in the data sample, it is not possible to conduct a

systematic search for the parametric form of a model; one must simply be assumed.
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In this framework, the Expectation Maximization (EM) algorithm [29] and Gibbs

Sampling [39] are used to estimate the parameters of a probabilistic model. As a

part of this process, values are imputed, i.e., filled–in, for the sense variable. This

effectively assigns instances of an ambiguous word to a particular sense group.

An alternative to this probabilistic methodology is to use an agglomerative

clustering algorithm that forms sense groups of untagged instances of an ambiguous

word by minimizing a distance measure between the instances of an ambiguous word

in each sense group. Two agglomerative algorithms are explored here, McQuitty’s

similarity analysis [55] and Ward’s minimum–variance method [91].

4.1. Probabilistic Models

In supervised learning, given the parametric form of a decomposable model,

maximum likelihood estimates of parameters are simple to compute. The sufficient

statistics of these parameters are the frequency counts of marginal events that are

defined by the marginal distributions of the model. These counts are obtained directly

from the training data. However, in unsupervised learning, parameter estimation is

more difficult since direct estimates from the sample are not possible given that data

is missing.

To illustrate the problem, the bill example from the previous chapter is recast

as a problem in unsupervised learning. Suppose that (CV S)(RTS) is the parametric

form of a decomposable model. In supervised learning, maximum likelihood estimates

of the parameters of the joint distribution are made by observing the frequency of

the marginal events (CV S) and (RTS). However, when sense–tagged text is not

available this estimate can not be computed directly since the value of S is unknown.

There is no way, for example, to directly count the occurrences of the marginal events

(C = yes, S = 1, V = no) and (C = yes, S = 2, V = no) in an untagged sample

of text; the only observed marginal event is (C = yes, S =?, V = no). However,

both the EM algorithm and Gibbs Sampling impute values for this missing data and

thereby make parameter estimation possible.

46



Here the assumption is made that the parametric form of the model is Naive

Bayes. In this model, all features are conditionally independent given the value of

the classification feature, i.e., the sense of the ambiguous word. This assumption is

based on the success of the Naive Bayes model when applied to supervised word–sense

disambiguation (e.g. [11], [37], [51], [62], [70], [73]).

In these discussions, the sense of an ambiguous word is represented by a feature

variable, S, whose value is missing. The observed contextual features are represented

by Y = (F1, F2, . . . , Fn). The complete data sample is then D = (Y, S) and the

parameters of the model are represented by the vector Θ.

4.1.1. EM Algorithm

The EM algorithm is an iterative estimation procedure in which a problem with

missing data is recast to make use of complete data estimation techniques. The EM

algorithm formalizes a long–standing method of making estimates for the parameters

of a model, Θ, when data is missing. A high–level description of the algorithm is as

follows:

1. Randomly estimate initial values for the parameters Θ. Call this set of estimates

Θold.

2. Replace the missing values of S by their expected values given the parameter

estimates Θold.

3. Re–estimate parameters based on the filled–in values for the missing variable

S. Call these parameter estimates Θnew.

4. Have Θold and Θnew converged? If not, rename Θnew as Θold and go to step 2.

4.1.1.1. General Description

At the heart of the EM Algorithm lies the Q-function. This is the expected

value of the log of the likelihood function for the complete data sample, D = (Y, S),
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where Y is the observed data and S is the missing sense value:

Q(Θnew|Θold) = E[ln p(Y, S|Θnew)|Θold, Y )] (4.1)

Here, Θold is the previous value of the maximum likelihood estimates of the parameters

and Θnew is the improved estimate; p(Y, S|Θnew) is the likelihood of observing the

complete data given the improved estimate of the model parameters.

When approximating the maximum of the likelihood function, the EM algorithm

starts from a randomly generated initial estimate of the model parameters and then

replaces Θold by the Θnew which maximizes Q(Θnew|Θold). This is a two step process,

where the first step is known as the expectation step, i.e., the E–step, and the second

is the maximization step, i.e., the M–step. The E–step finds the expected values of the

sufficient statistics of the complete model using the current estimates of the model

parameters. For decomposable models these sufficient statistics are the frequency

counts of events defined by the marginal distributions of the model. The M–step

makes maximum likelihood estimates of the model parameters using the sufficient

statistics from the E–step. These steps iterate until the parameter estimates Θold and

Θnew converge.

The M–step is usually easy, assuming it is easy for the complete data prob-

lem. As shown in Chapter 2, making parameter estimates for decomposable models

is straightforward. In the general case the E–step may be complex. However, for de-

composable models the E–step simplifies to the calculation of the expected marginal

event counts defined by a decomposable model, where the expectation is with respect

to Θold. The M–step simplifies to the calculation of new parameter estimates from

these counts. Further, these expected counts can be calculated by multiplying the

sample size N by the probability of the complete data within each marginal distri-

bution, given Θold and the observed data within each marginal Ym. This simplifies

to:
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freqnew(Sm, Ym) = p(Sm|Ym) × freq(Ym) (4.2)

where freqnew is the current estimate of the expected count and p(Sm|Ym) is formu-

lated using Θold.

4.1.1.2. Naive Bayes description

The expectation and maximization steps of the EM algorithm are outlined here.

It is assumed that the parametric form is Naive Bayes, although this discussion ex-

tends easily to any decomposable model [50]. Given that the parametric form is Naive

Bayes, it follows that:

p(F1, F2, . . . , Fn, S) = p(S) ×
n

∏

i=1

p(Fi|S) (4.3)

where p(S) and p(Fi|S) are the model parameters. This is equivalent to treating

p(Fi, S) as the model parameters since p(Fi, S) = p(Fi|S)
p(S)

. However, the conditional

representation lends itself to developing certain analogies between the EM algorithm

and Gibbs Sampling.

E–step: The expected values of the sufficient statistics of the Naive Bayes

model are computed. These are the frequency counts of marginal events of the form

(Fi, S) and are notated freq(Fi, S). Since S is unobserved, values for it must be

imputed before the marginal events can be counted. During the first iteration of the

EM algorithm, values for S are imputed by random initialization. Thereafter, S is

imputed with values that maximize the probability of observing a particular sense for

an ambiguous word in a given context:

S =
argmax

sx p̂(S|f1, f2, . . . , fn−1, fn) (4.4)

From p(a|b) = p(a,b)
p(b)

it follows that:
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p̂(S|f1, f2, . . . , fn−1, fn) =
p̂(f1, f2, . . . , fn−1, fn, S)

p̂(f1, f2, . . . , fn−1, fn)
(4.5)

And from p(a, b) =
∑

c p(a, b, c) it follows that:

p̂(f1, f2, . . . , fn−1, fn) =
∑

S

p̂(f1, f2, . . . , fn, S) (4.6)

Thus,

S =
argmax

sx

p̂(S) ×
∏n

i=1 p̂(fi|S)
∑

S p̂(f1, f2, . . . , fn, S)
(4.7)

This calculation determines the value of S to impute for each possible combi-

nation of observed feature values. Given imputed values for S, the expected values of

the marginal event counts, freq(Fi, S), are determined directly from the data sample

following Equation 4.2. These counts are the sufficient statistics for the Naive Bayes

model.

M–Step: The sufficient statistics from the E–step are used to re–estimate the

model parameters. This new set of estimates is designated Θnew while the previous

set of parameter estimates is called Θold. The model parameters p(S) and p(Fi|S) are

estimated as follows:

p̂(S) =
freq(S)

N
p̂(Fi|S) =

freq(Fi, S)

freq(S)
(4.8)

Convergence?: If the difference between the parameter estimates obtained in

the previous and current iteration is less than some pre–specified value ǫ, i.e.,:

||Θold − Θnew|| < ǫ (4.9)

then the parameter estimates have converged and the EM algorithm stops. If this

difference is greater than ǫ, Θnew is renamed Θold and the EM algorithm continues.
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Table 4.1. Unsupervised Learning Example Data

F1 F2 S

1 2 ?

1 2 ?

2 2 ?

2 2 ?

1 2 ?

1 1 ?

1 1 ?

1 1 ?

1 2 ?

2 2 ?

The EM algorithm is guaranteed to converge [29], however if the likelihood

function is very irregular it may converge to a local maxima and not find the global

maximum. In this case, an alternative is to use the more computationally expensive

method of Gibbs Sampling which is guaranteed to converge to a global maximum.

4.1.1.3. Naive Bayes example

The step by step operation of the EM algorithm is illustrated with a simple

example where the parametric form is assumed to be Naive Bayes. Suppose that there

is a data sample where events are described by 3 random variables. The variables

F1 and F2 are observed and have two possible values. The variable S represents the

class of the event but is unobserved. Given this formulation, the model parameters

are p(S), p(F1|S) and p(F2|S), following Equation 4.3. The data sample used in this

example has ten observations and is shown in Table 4.1.

E–Step Iteration 1: The EM algorithm begins by randomly assigning values

to S. Such an assignment is shown on the left side of Figure 4.1. Given these random

assignments, expected values for the sufficient statistics of the Naive Bayes model are
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F1 F2 S

1 2 1

1 2 3

2 2 2

2 2 2

1 2 1

1 1 3

1 1 1

1 1 2

1 2 2

2 2 1

F1

1 2

1 3 1 4

S 2 2 2 4

3 2 0 2

7 3 10

F2

1 2

1 1 3 4

S 2 1 3 4

3 1 1 2

7 3 10

Figure 4.1. E–Step Iteration 1

determined by counting the marginal events defined by Naive Bayes, i.e., freq(F1, S)

and freq(F2, S). These marginal event counts are conveniently represented in a cross–

classification or contingency table, as appears in the center and right of Figure 4.1.

For example, the center table shows that:

freq(F1 = 1, S = 1) = 3 freq(F1 = 2, S = 1) = 1

freq(F1 = 1, S = 2) = 2 freq(F1 = 2, S = 2) = 2

freq(F1 = 1, S = 3) = 2 freq(F1 = 2, S = 3) = 0

M–Step Iteration 1: Maximum likelihood estimates for the parameters of

Naive Bayes are made from the marginal event counts found during the E–step.

Given the marginal event counts in Figure 4.1, the parameter estimates are computed

following Equation 4.8. The values for these estimates found during iteration 1 are

shown in the contingency tables in Figure 4.2. For example, the center table shows

that:
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1 0.4

S 2 0.4

3 0.2

F1

1 2

1 0.75 0.25 1.0

S 2 0.50 0.50 1.0

3 1.00 0.00 1.0

F2

1 2

1 0.25 0.75 1.0

S 2 0.25 0.75 1.0

3 0.50 0.50 1.0

Figure 4.2. M–Step Iteration 1: p̂(S), p̂(F1|S), p̂(F2|S)

p̂(F1 = 1|S = 1) = 0.75 p̂(F1 = 2|S = 1) = 0.25

p̂(F1 = 1|S = 2) = 0.50 p̂(F1 = 2|S = 2) = 0.50

p̂(F1 = 1|S = 3) = 1.00 p̂(F1 = 2|S = 3) = 0.00

E–Step Iteration 2: After the first iteration of the EM algorithm, all subse-

quent iterations find the expected values of the marginal event counts by imputing

new values for S that maximize the following conditional distribution:

S =
argmax

s p̂(S|F1, F2) =
p̂(S) × p̂(F1|S) × p̂(F2|S)

p̂(F1, F2)
(4.10)

The estimates of the parameters required by Equation 4.10 are the estimates

made in the M–step of the previous iteration, shown in Figure 4.2. The computation

in Equation 4.10 results in the value of S that maximize the conditional probability

distribution where S is conditioned on the values of the observed features F1 and F2.

The values of p̂(S|F1, F2) are shown in Figure 4.3. The maximum estimate for each

given pair of values for the features (F1, F2) are shown in bold face. The value of S

associated with each of these maximum probabilities is imputed for each observation

in the data sample that shares the same values for the observed feature values. For
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F1 F2 S p̂(S|F1, F2)

1 1 1 .333

1 1 2 .222

1 1 3 .444

1 2 1 .474

1 2 2 .316

1 2 3 .211

2 1 1 .333

2 1 2 .667

2 1 3 .000

2 2 1 .333

2 2 2 .667

2 2 3 .000

Figure 4.3. E–Step Iteration 2

example, if (F1 = 1, F2 = 1, S =?) is an observation in the data sample, then the

value of 3 is imputed for S since p̂(S = 3|F1 = 1, F2 = 1) is greater than both

p̂(S = 2|F1 = 1, F2 = 1) and p̂(S = 1|F1 = 1, F2 = 1).

The data sample that results from these imputations for S is shown on the left of

Figure 4.4. The expected counts of the marginal events in that updated data sample

are shown in contingency table form in the center and right of this same figure.

M–Step Iteration 2: Given the expected values of the marginal event counts

from the previous E–step, values for the model parameters are re–estimated. Figure

4.5 shows the values for the parameter estimates p̂(S), p̂(F1|S), and p̂(F2|S).

At this point, two iterations of the EM algorithm have been performed. From

this point forward, at the conclusion of each iteration a check for convergence is made.

The parameters estimated during the previous iteration are Θold and those estimated

during the current iteration are Θnew. For example, during iterations 1 and 2 the

following estimates have been made:
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F1 F2 S

1 2 1

1 2 1

2 2 2

2 2 2

1 2 1

1 1 3

1 1 3

1 1 3

1 2 1

2 2 2

F1

1 2

1 4 0 4

S 2 0 3 3

3 3 0 3

7 3 10

F2

1 2

1 0 4 4

S 2 0 3 3

3 3 0 3

3 7 10

Figure 4.4. E–Step Iteration 2

1 0.4

S 2 0.3

3 0.3

F1

1 2

1 1.0 0.0 1.0

S 2 0.0 1.0 1.0

3 1.0 0.0 1.0

F2

1 2

1 0.0 1.0 1.0

S 2 0.0 1.0 1.0

3 1.0 0.0 1.0

Figure 4.5. M–Step Iteration 2: p̂(S), p̂(F1|S), p̂(F2|S)
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F1 F2 S p̂(S|F1, F2)

1 1 1 0.0

1 1 2 0.0

1 1 3 1.0

1 2 1 1.0

1 2 2 0.0

1 2 3 0.0

2 1 1 0.0

2 1 2 0.0

2 1 3 0.0

2 2 1 0.0

2 2 2 1.0

2 2 3 0.0

Figure 4.6. E–Step Iteration 3

Θold = {.4, .4, .2, .75, .25, .5, .5, 1.0, 0.0, .25, .75, .25, .75, .5, .5}

Θnew = {.4, .3, .3, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0}

The difference between Θold and Θold is considerable and certainly more than a

typical value of ǫ, i.e., .01 or .001. Thus, the EM algorithm continues for at least one

more iteration.

E–step Iteration 3: The expected values for the marginal event counts are

determined as in the previous iteration. First, the values of S that maximize the

conditional probability distribution of p̂(S|F1, F2) are determined. This maximization

is based on the parameter estimates, shown in Figure 4.5, which were determined

during the M–step of the previous iteration.

Figure 4.6 shows the estimated values for p̂(S|F1, F2), the conditional distribu-

tion of S given the values of the observed feature values. The maximum probability

for each given pair of feature values is shown in bold face. The values of S that
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F1 F2 S

1 2 1

1 2 1

2 2 2

2 2 2

1 2 1

1 1 3

1 1 3

1 1 3

1 2 1

2 2 2

Figure 4.7. E–Step Iteration 3

result in this maximized conditional distribution are imputed for the missing data of

observations in the sample that share the same observed feature values. The data

set that results from this imputation is shown in Figure 4.7. However, note that the

values found during the third iteration prove to be identical to those found during

the second iteration.

The expected counts of marginal events and the parameter estimates found

during iteration 3 are identical to those found during iteration 2. Given this, the

difference between Θold and Θnew is zero and the parameter estimates have converged.

The values for the missing variable S are assigned as shown in Figure 4.7. This is

an intuitively appealing result that can be interpreted in terms of assigning events to

classes. The event (F1 = 1, F2 = 1) belongs to class 3, event (F1 = 2, F2 = 2) belongs

to class 2, and event (F1 = 1, F2 = 2) belongs to class 1.

4.1.2. Gibbs Sampling

Gibbs Sampling is a more general tool than the EM algorithm in that it is

not restricted to handling missing data; it is a special case of Markov Chain Monte
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Carlo methods for approximate inference. These methods were first used for appli-

cations in statistical physics in the 1950’s; perhaps the most notable example being

the Metropolis algorithm [58]. Gibbs Sampling was originally presented in the con-

text of an image restoration problem but has since been applied to a wide range of

applications.

In general, Gibbs Sampling provides a means of approximating complex prob-

abilistic models. In unsupervised learning probabilistic models are complex because

there is missing data, i.e., the sense of the ambiguous word is unknown. Gibbs Sam-

pling approximates the distribution of the parameters of a model as if the missing

data were observed. By contrast, the EM algorithm simply maximizes the estimated

values for the parameters of a model, again by acting as if the missing data were

observed.

4.1.2.1. General Description

Gibbs Sampling has a Bayesian orientation in that it naturally incorporates

prior distributions, p(Θ), into the sampling process. When a prior distribution is

specified in conjunction with an observed data sample, Gibbs Sampling approximates

the posterior probability function, p(Θ|D), by taking a large number of samples from

it. If a prior distribution is not utilized then Gibbs Sampling still takes a large

number of samples, however, they are drawn from the likelihood function p(D|Θ). In

this dissertation, non–informative prior distributions are employed and the sampling

is from the posterior distribution function.

A Gibbs Sampler creates Markov Chains of parameter estimates and values for

missing data whose stationary distributions approximate the posterior distribution,

p(Θ|D), by simulating a random walk in the space of Θ. A Markov Chain is a series

of random variables (X0, X1, . . .) in which the influence of the values of (X0, . . . , Xn)

on the distribution of Xn+1 is mediated entirely by the value of Xn.

Let the values of the observed contextual feature variables be represented by

Y = (F1, F2, · · · , Fn−1, Fn) and let S represent the unknown sense of an ambiguous
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word. Given that the parametric form of the model is known, random initial values

are generated for the missing data S0 = (S0
1 , S

0
2 , . . . , S

0
N) and the unknown parameter

estimates of the assumed model Θ0 = (θ0
1, θ

0
2, . . . , θ

0
q). S0 is a vector containing a value

for each instance of the missing sense data, Θ0 is a vector containing the parameters

of the model, N is the number of observations in the data sample, and q is the number

of parameters in the model.

A Gibbs Sampler performs the following loop, where j is the iteration counter,

until convergence is detected:

Sj+1 ∼ p(S|θj
1, θ

j
2, · · · , θ

j
q, Y )

θj+1
1 ∼ p(θ1|θ

j
2, · · · , θ

j
q, Y, Sj+1)

θj+1
2 ∼ p(θ2|θ

j+1
1 , θj

3, · · · , θ
j
q, Y, Sj+1)

...

θj+1
q ∼ p(θq|θ

j+1
1 , · · · , θj+1

q−1, Y, Sj+1)

Each iteration of the Gibbs Sampler samples values for the missing data and for

the unknown parameter estimates. The values for the missing data are conditioned

on the values of the parameters and the observed data. The parameter estimates

are conditioned on the previously estimated values of the other parameters and the

missing data as well as the observed data.

A chain of values is constructed for each missing value and parameter esti-

mate via this sampling loop. Each chain is monitored for convergence. A range of

techniques for monitoring convergence are discussed in [88]; this dissertation uses

Geweke’s method [40]. In this approach, a chain is divided into two windows, one

at the beginning and the other at the end. Each window contains about 10% of the

total number of iterations in the chain. If the entire chain has reached a stationary

distribution, then these two windows, one early in the chain and the other late, will
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have approximately the same mean values. If they do not then the parameters have

not yet converged to a stationary distribution.

The early iterations of Gibbs Sampling produce chains of values with very high

variance. It is standard to discard some portion of the early iterations; this process

is commonly known as a burn–in. The general procedure followed here is to have a

500 iteration burn–in followed by 1000 iterations that are monitored for convergence.

If the chains do not converge after 1000 iterations then additional iterations in in-

crements of 500 are performed until they do. This procedure was designed following

recommendations by [79].

A proof that convergence on the posterior probability distribution is guaranteed

during Gibbs Sampling is given in [39]. Once convergence occurs, the approximation

to the posterior probability function can be summarized like any other probability

function. Also, the median value in each chain of sampled values for missing data

becomes the sense group to which an instance of an ambiguous word is ultimately

assigned.

4.1.2.2. Naive Bayes description

Gibbs Sampling is developed in further detail, given the assumption that the

parametric form is Naive Bayes. However, this discussion is easily extended to any

decomposable model. As in the previous example, the parameters of the model are

p(S) and p(Fi|S), following Equation 4.3.

A Gibbs Sampler generates chains of values for each missing instance of S in

the data sample and also for each of the parameters p̂(S) and p̂(Fi|S). Each of these

chains will eventually converge to a stationary distribution.

In this dissertation the observed data sample is multinomial, i.e., each instance

in the data sample is described by a combination of discrete feature values. As

was shown in Chapter 2, such a sample can be formally defined by a multinomial

distribution with parameters (N ; θ1, θ2, . . . , θq). However, here the distribution of

multinomial data is represented by the frequency counts for each possible event. This
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is notated as M(f1, f2, . . . , fq), where q is the number of possible events and fi is the

frequency of the ith event. For example, M(f1, f2, . . . , fq) represents a multinomial

distribution with q possible events where the ith event occurs fi times.

The conjugate prior to the multinomial distribution is the Dirichlet distribution,

described by D(α1, α2, . . . , αq), where αi represents the prior frequency of the ith

event. If all αi are set to 1 then a non–informative prior has been properly specified

[38]. For example, if q = 3, D(1, 1, 1) describes a non–informative Dirichlet prior

distribution.

Following Bayes Rule, the product of a prior distribution and the likelihood

distribution results in a posterior probability distribution. If the prior distribution

and the likelihood function are conjugate, then the posterior distribution has the same

distribution as the prior. Here, since the observed data is described by a multinomial

distribution and the prior is specified in terms of a Dirichlet distribution, the resulting

posterior distribution is Dirichlet.

A multinomial distribution and a Dirichlet distribution are multiplied by adding

the frequency counts associated with each possible event in the multinomial with the

prior frequency count as specified by the Dirichlet. The resulting sums specify the

parameters that describe a posterior Dirichlet distribution [38].

D(f1 + g1, . . . , fq−1 + gq−1, fq + gq) = M(f1, . . . , fq−1, fq) + D(g1, . . . , gq−1, gq)

This defines a distribution from which values can be sampled to approximate the

posterior distribution of the parameter estimates.

In this discussion, Gibbs Sampling is cast as a non–deterministic version of the

EM algorithm. This treatment is similar in spirit to that of [15], where the EM

algorithm is treated as a deterministic version of Gibbs Sampling.

1. Stochastic E–Step: The expected values of the sufficient statistics are cal-

culated. These are the counts of the marginal events defined by the marginal
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distributions of the Naive Bayes model, (Fi, S). However, before the marginal

events can be counted, values for S must be imputed for each instance in the

data sample. In the EM algorithm these values are obtained by finding the

value of S that maximizes p̂(S|F1, F2, . . . , Fn−1, Fn). In Gibbs Sampling, these

values are imputed via sampling from that same conditional distribution:

S ∼ p̂(S|f1, f2, . . . , fn−1, fn) =
p̂(S) ×

∏n
i p̂(Fi|S)

p̂(f1, f2, . . . , fn−1, fn)
(4.11)

This conditional distribution is based upon values for p̂(S) and p̂(Fi|S) that

are arrived at via sampling during the previous iteration of the stochastic M–

step. If this is the first iteration of the Gibbs Sampler, then these values come

about as the result of random initialization. After values for S are imputed via

sampling, the marginal events are counted and the stochastic E–step concludes.

2. Stochastic M–Step: The expected values of the sufficient statistics found

during the stochastic E-step are now used to re–estimate the parameters of the

model. The EM algorithm makes maximum likelihood estimates directly from

these marginal event counts. However, in Gibbs Sampling these marginal event

counts are used to describe a multinomial distribution that is multiplied by

a Dirichlet prior distribution to create a Dirichlet posterior distribution from

which values of the model parameters are sampled.

The observed frequency counts of marginal events are used to describe a multi-

nomial distribution from which samples for the model parameters can be drawn.

To approximate the conditional distribution of p̂(Fi|S) via sampling, suppose

there are 2 possible events when the value of S is fixed. The frequency count of

each event is represented by f1 and f2 and the multinomial distribution of this

data can be described by M(f1, f2). Further suppose that a non–information

prior Dirichlet distribution is specified, i.e., D(1, 1). These two distributions
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are multiplied to create a posterior Dirichlet distribution from which values for

p̂(Fi|S) are sampled:

p̂(Fi|S) ∼ D(f1 + 1, f2 + 1) = M(f1, f2) × D(1, 1) (4.12)

Values for p̂(S) are sampled along similar lines. After values for the model

parameters have been sampled, the stochastic M–step concludes.

3. Convergence?: After j iterations there are chains of length j for both the

sampled values for each model parameter and for each of the N missing sense

values in the data sample. After some set number of iterations, these chains are

checked for convergence.

Once convergence is detected, the median values in the chains created during

sampling are regarded as the estimates of parameters and missing data. For

example, suppose that (1, 1, 1, 2, 2, 2, 2, 2, 2, 3) is a chain that represents the

values for a missing sense value sampled for a particular instance in the data

sample. The median sense value is 2 and this value is imputed for S for that

observation in the sample.

4.1.2.3. Naive Bayes example

The same example used to demonstrate the EM algorithm is employed here

with Gibbs Sampling. The data sample is shown in Table 4.1 and the parametric

form of the model is Naive Bayes with model parameters p(S), p(F1|S), and p(F2|S).

Stochastic E–Step Iteration 1: Like the EM algorithm, Gibbs Sampling

begins by randomly assigning values to S. Assume that the random assignment of

values to S is as shown on the left of Figure 4.8 and the expected counts of marginal

events, as represented in the contingency tables, are as shown in the center and right

of that figure.
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F1 F2 S

1 2 1

1 2 3

2 2 2

2 2 2

1 2 1

1 1 3

1 1 1

1 1 2

1 2 2

2 2 1

F1

1 2

1 3 1 4

S 2 2 2 4

3 2 0 2

7 3 10

F2

1 2

1 1 3 4

S 2 1 3 4

3 1 1 2

7 3 10

Figure 4.8. Stochastic E–Step Iteration 1

Stochastic M–Step Iteration 1: In the EM algorithm the marginal event

counts are used directly to make maximum likelihood estimates for the model param-

eters. However, in Gibbs Sampling no maximum likelihood estimates are computed;

instead, the frequency counts of observed marginal events combine with a specified

prior distribution to describe a posterior distribution from which values for the model

parameters are sampled.

Each row in the contingency tables shown in Figure 4.8 represents counts of

marginal events where the value of S is fixed. These counts can be thought of as

describing a multinomial distribution that represents a conditional probability of the

form p̂(Fi|S). This conditional distribution is multiplied by a prior distribution to

define a posterior distribution from which estimated values for the model parameters

are sampled. For example, given that S has a fixed value of 1, the distribution of

p̂(F1|S = 1) is described by M(3, 1). Thus, based on the expected counts of the

marginal events in Figure 4.8 and the assumption that all priors are non–informative,

the following sampling scheme is devised:
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1 0.03

S 2 0.51

3 0.47

F1

1 2

1 0.64 0.36 1.0

S 2 0.54 0.46 1.0

3 0.76 0.24 1.0

F2

1 2

1 0.37 0.63 1.0

S 2 0.09 0.91 1.0

3 0.73 0.27 1.0

Figure 4.9. Stochastic M–step Iteration 1: p̂(S), p̂(F1|S), p̂(F2|S)

p̂(F1|S = 1) ∼ D(4, 2) = M(3, 1) × D(1, 1)

p̂(F1|S = 2) ∼ D(3, 3) = M(2, 2) × D(1, 1)

p̂(F1|S = 3) ∼ D(3, 1) = M(2, 0) × D(1, 1)

p̂(F2|S = 1) ∼ D(2, 4) = M(1, 3) × D(1, 1)

p̂(F2|S = 2) ∼ D(2, 4) = M(1, 3) × D(1, 1)

p̂(F2|S = 3) ∼ D(2, 2) = M(1, 1) × D(1, 1)

p̂(S) ∼ D(5, 5, 3) = M(4, 4, 2) × D(1, 1, 1)

The parameter estimates shown in Figure 4.9 are the result of this sampling

plan.

Stochastic E–Step Iteration 2: After the first iteration of Gibbs Sampling,

all subsequent iterations arrive at new values for the marginal event counts by sam-

pling new values for S from the following conditional distribution:

S ∼ p̂(S|F1, F2) =
p̂(S) × p̂(F1|S) × p̂(F2|S)

p̂(F1, F2)
(4.13)

The estimates of this conditional distribution are based upon the estimates of

the model parameters shown in Figure 4.9; these were obtained via sampling during
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F1 F2 S p̂(S|F1, F2)

1 1 1 .024

1 1 2 .085

1 1 3 .891

1 2 1 .033

1 2 2 .699

1 2 3 .267

2 1 1 .100

2 1 2 .525

2 1 3 .375

2 2 1 .028

2 2 2 .852

2 2 3 .120

Figure 4.10. E–Step Iteration 2

the stochastic M–step of the previous iteration. The estimated values of p̂(S|F1, F2)

are shown in Figure 4.10.

Rather than simply imputing the value of S that maximizes p̂(S|F1, F2), as is the

case in the EM algorithm, values of S are sampled from the conditional distributions

p̂(S|F1, F2). The result of this sampling process is an imputed value for S for a given

pair of feature values. The resulting data sample after imputation of S is shown on

the left in Figure 4.11. As an example of how Gibbs Sampling differs from the EM

algorithm, note that the first two observations in the data sample have the same

observed feature values, (F1 = 1, F2 = 2). However, the stochastic E–step imputes

different values of S for these observations. This occurs because a value of 2 is imputed

for S with a probability of 70% while a value of 1 is imputed with a probability of

27%. In the E–step of the EM algorithm, only the value of S that maximizes the

conditional probability is imputed.

Figure 4.11 shows the contingency tables of marginal event counts that result

after values for S are imputed.

66



F1 F2 S

1 2 2

1 2 3

2 2 2

2 2 2

1 2 3

1 1 3

1 1 3

1 1 3

1 2 2

2 2 2

F1

1 2

1 0 0 0

S 2 2 3 5

3 5 0 5

7 3 10

F2

1 2

1 0 0 0

S 2 0 5 5

3 3 2 5

3 7 10

Figure 4.11. Stochastic E–Step Iteration 2

Stochastic M–Step Iteration 2 Given the marginal event counts found dur-

ing the stochastic E–step, shown in Figure 4.11, sampling from the Dirichlet posterior

of the model parameters is performed according to the following scheme:

p̂(F1|S = 1) ∼ D(1, 1) = M(0, 0) × D(1, 1)

p̂(F1|S = 2) ∼ D(3, 4) = M(2, 3) × D(1, 1)

p̂(F1|S = 3) ∼ D(6, 1) = M(5, 0) × D(1, 1)

p̂(F2|S = 1) ∼ D(1, 1) = M(0, 0) × D(1, 1)

p̂(F2|S = 2) ∼ D(1, 6) = M(0, 5) × D(1, 1)

p̂(F2|S = 3) ∼ D(4, 3) = M(3, 2) × D(1, 1)

p̂(S) ∼ D(1, 6, 6) = M(0, 5, 5) × D(1, 1, 1)

Figure 4.12 shows the sampled estimates for p̂(S), p̂(F1|S), and p̂(F2|S). This

concludes the second iteration of the Gibbs Sampler.
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1 0.06

S 2 0.54

3 0.40

F1

1 2

1 0.25 0.75 1.0

S 2 0.68 0.32 1.0

3 0.93 0.06 1.0

F2

1 2

1 0.16 0.84 1.0

S 2 0.05 0.95 1.0

3 0.52 0.48 1.0

Figure 4.12. Stochastic M–step Iteration 2: p̂(S), p̂(F1|S), p̂(F2|S)

Stochastic E–step Iteration 3 Given the parameter estimates from the pre-

vious stochastic M–step, shown in Figure 4.12, conditional distributions for S given

the values of the observed features are defined, per Equation 4.13.

The resulting distributions are shown in Figure 4.13. From those distributions

imputed values for S are obtained via sampling. The updated data sample is shown

in Figure 4.14.

Once again, the expected counts of marginal events are represented in contin-

gency tables. These will be used to describe multinomial distributions that will be

used in conjunction with a non–informative prior to create the posterior distributions

from which new estimates of the model parameters will be sampled.

Normally Gibbs Sampling performs hundreds of iterations before it is checked

for convergence. However, in the interest of brevity no further calculations or sampling

operations will be shown. Unlike the EM algorithm, Gibbs Sampling does not stop

itself. It must be told how many iterations to perform and then the resulting chains

of parameter estimates and chains of missing values are checked for convergence. If

convergence does not occur then some fixed number of additional iterations must be

performed and then, once again, the resulting chains must be checked for convergence.
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F1 F2 S p̂(S|F1, F2)

1 1 1 0.009

1 1 2 0.085

1 1 3 0.906

1 2 1 0.024

1 2 2 0.645

1 2 3 0.331

2 1 1 0.250

2 1 2 0.321

2 1 3 0.429

2 2 1 0.181

2 2 2 0.759

2 2 3 0.056

Figure 4.13. Stochastic E–Step Iteration 3

F1 F2 S

1 2 2

1 2 2

2 2 2

2 2 2

1 2 3

1 1 3

1 1 3

1 1 3

1 2 2

2 2 2

Figure 4.14. Stochastic E–Step Iteration 3
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4.2. Agglomerative Clustering

In general, clustering methods rely on the assumption that classes of events

occupy distinct regions in a feature space. The distance between two points in a

multi–dimensional space can be measured using any of a wide variety of metrics (see,

e.g. [30]). Observations are grouped in the manner that minimizes the distance

between the members of each cluster. When applied to word sense disambiguation,

each cluster represents a particular sense group of an ambiguous word.

Ward’s minimum–variance clustering and McQuitty’s similarity analysis are

agglomerative clustering algorithms that only differ in regards to their distance mea-

sures. All agglomerative algorithms begin by placing each observation in a unique

cluster, i.e. a cluster of one. The two closest clusters are merged to form a new cluster

that replaces the two merged clusters. Merging of the two closest clusters continues

until some pre–specified number of clusters remain.

However, natural language data does not immediately lend itself to a distance–

based interpretation. Typical features represent part–of–speech tags, morphological

characteristics, and word co-occurrence; such features are nominal and their values

do not have scale. However, suppose that the values of a part–of–speech feature are

represented numerically such that noun = 1, verb = 2, adjective = 3, and adverb = 4.

While distance measures could be computed using this representation, they would be

meaningless since the fact that a noun has a smaller value than an adverb is purely

arbitrary and reflects nothing about the relationship between nouns and adverbs.

Thus, before a clustering algorithm is employed, the data must be converted

into a form where spatial distances actually convey a meaningful relationship between

observations. In this dissertation this is done by representing the data sample as a

dissimilarity matrix. Given N observations in a data sample, this can be represented

in a N × N dissimilarity matrix such that the value in cell (i, j), where i represents

the row number and j represents the column, is equal to the number of features in

observations i and j that do not match.
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noun verb car

adjective verb defeat

adverb verb car

noun verb car

0 2 1 0

2 0 2 2

1 2 0 1

0 2 1 0

Figure 4.15. Matrix of Feature Values, Dissimilarity Matrix

For example, in Figure 4.15 the matrix on the left represents a data sample

consisting of four observations, where each observation has three nominal features.

This sample is converted into a 4 × 4 dissimilarity matrix that is shown on the left

in this figure. In the dissimilarity matrix, cells (1, 2) and (2, 1) have the value 2,

indicating that the first and second observations in the matrix of feature values have

different values for two of the three features. A value of 0 indicates that observations

i and j are identical.

When clustering this data, each observation is represented by its corresponding

row (or column) in the dissimilarity matrix. Using this representation, observations

that fall close together in feature space are likely to belong to the same class and are

grouped together into clusters. In this dissertation, Ward’s and McQuitty’s methods

are used to form clusters of observations; each cluster corresponds to a sense group

of related instances of an ambiguous word.

4.2.1. Ward’s minimum–variance method

In Ward’s method, the internal variance of a cluster is the sum of squared

distances between each observation in the cluster and the mean observation for that

cluster, i.e., the average of all the observations in the cluster. At each step in Ward’s

method, a new cluster, CKL, with the smallest possible internal variance, is created

by merging the two clusters, CK and CL, that have the minimum variance between

them. The variance between CK and CL is computed as follows:
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VKL =
||xK − xL||

2

1
NK

+ 1
NL

(4.14)

where xK is the mean observation for cluster CK , NK is the number of observations

in CK , and xL and NL are defined similarly for CL.

Implicit in Ward’s method is the assumption that the sample comes from a

mixture of normal distributions [91]. Natural language data is typically not well

characterized by a normal distribution. However, when such data is converted into

a dissimilarity matrix there is reason to believe that a normal approximation is ad-

equate. The number of features employed here is relatively small, thus the number

of possible feature mismatches between observations is limited. This tends to have

a smoothing effect on data that may be quite sparse and skewed when represented

strictly as a matrix of feature values.

4.2.2. McQuitty’s similarity analysis

In McQuitty’s method, clusters are based on a simple averaging of the number

of dissimilar features as represented in the dissimilarity matrix.

At each step in McQuitty’s method, a new cluster, CKL, is formed by merging

the clusters CK and CL that have the fewest number of dissimilar features between

them. Put another way, these are the clusters that have the most number of features

in common. The clusters to be merged, CK and CL, are identified by finding the cell

(l, k) (or (k, l)), where k 6= l, that has the minimum value in the dissimilarity matrix.

Once the new cluster CKL is created, the dissimilarity matrix is updated to

reflect the number of dissimilar features between CKL and all other existing clusters.

The dissimilarity between any existing cluster CI and CKL is computed as:

DKL−I =
DKI + DLI

2
(4.15)

where DKI is the number of dissimilar features between clusters CK and CI and DLI

is similarly defined for clusters CL and CI . This is simply the average number of
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mismatches between each component of the new cluster and the components of the

existing cluster.

Unlike Ward’s method, McQuitty’s method makes no assumptions concerning

the underlying distribution of the data sample [55].
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CHAPTER 5

EXPERIMENTAL DATA

5.1. Words

In addition to having many possible meanings, words are also ambiguous syn-

tactically in that they can serve as multiple possible parts–of–speech. For instance,

line can be used as a noun, Cut the telephone line, or as a verb, I line my pockets

with cash. This dissertation does not address syntactic ambiguity; it is assumed that

this has been resolved for each of the 13 words studied here. Those words and their

part–of–speech are as follows:

• Adjectives: chief, common, last, and public.

• Nouns: bill, concern, drug, interest, and line.

• Verbs: agree, close, help, and include.

The line data [51] is from the ACL/DCI Wall Street Journal corpus [54] and

the American Printing House for the Blind corpus and tagged with WordNet [59]

senses. The remaining twelve words [13] are from the ACL/DCI Wall Street Journal

corpus and tagged with senses from the Longman Dictionary of Contemporary English

[75]. The text that occurs with these twelve words is tagged with part–of–speech

information using the Penn TreeBank tag set1.

The possible senses for each word are shown in Tables 5.1, 5.2, and 5.3. The

distribution of senses in the supervised and unsupervised learning experiments is also

1The line data is excluded from the supervised experiments since the text from the American

Printing House for the Blind is not part–of–speech tagged.
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shown. The sense inventories for the latter are reduced in order to eliminate very

small minority senses. Making fine grained sense distinctions using unsupervised

techniques is not considered in this dissertation and remains a challenging problem

for future work.

In the supervised and unsupervised experiments a separate model is learned

for each word. Only sentences that contain the ambiguous word for which a model

is being constructed are included in the learning process. This group of sentences

is referred to as a “word–corpus”. The number of sentences in each word–corpus is

shown in Table 5.1, 5.2, and 5.3 in the row “total count”.

5.2. Feature Sets

Each sentence containing an ambiguous word is reduced to a vector of feature

values. One set of features is employed in the supervised learning experiments and

three are used in the unsupervised. All of these features occur within the sentence in

which the ambiguous word occurs. Extending the features beyond sentence bound-

aries is a potential area for future work.

5.2.1. Supervised Learning Feature Set

The feature set used in the supervised experiments was developed by Bruce and

Wiebe and is described in [10], [11], [12], and [13]. In subsequent discussion this is re-

ferred to as feature set BW. This feature set has one morphological feature describing

the ambiguous word, four part–of-speech features describing the surrounding words,

and three co–occurrence features that indicate if certain key words occur anywhere

within the sentence.

Morphology: This feature represents the morphology of the ambiguous word.

It is binary for an ambiguous noun and indicates if it is singular or plural. It shows

the tense of an ambiguous verb and has up to 7 possible values. This feature is not

used for adjectives. It is represented by variable M .
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Table 5.1. Adjective Senses

supervised unsupervised

chief:

highest in rank: 86% 86%

most important; main: 14% 14%

total count: 1048 1048

common:

as in the phrase ‘common stock’: 80% 84%

belonging to or shared by 2 or more: 7% 8%

happening often; usual: 8% 8%

widely known; general; ordinary: 3%

of no special quality; ordinary: 1%

same relationship to 2 more or quantities: < 1%

total count: 1113 1060

last:

on the occasion nearest in the past: 93% 94%

after all others: 6% 6%

least desirable: < 1%

total count: 3187 3154

public:

concerning people in general: 56% 68%

concerning the government and people: 16% 19%

not secret or private: 11% 13%

for the use of everyone: 8%

to become a company: 6%

known to all or many: 3%

as in public TV or public radio 1%

total count: 871 715
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Table 5.2. Noun Senses

supervised unsupervised

bill:

a proposed law under consideration: 68% 68%

a piece of paper money or treasury bill: 22% 22%

a list of things bought and their price: 10% 10%

total count: 1341 1341

concern:

a business; firm: 64% 67%

worry; anxiety: 32% 33%

a matter of interest or importance 3%

serious care or interest 2%

total count: 1490 1429

drug:

a medicine; used to make medicine: 57% 57%

a habit-forming substance: 43% 43%

total count: 1217 1217

interest:

money paid for the use of money: 53% 59%

a share in a company or business: 21% 24%

readiness to give attention: 15% 17%

advantage, advancement or favor: 8%

activity, etc. that one gives attention to: 3%

quality of causing attention to be given to: < 1%

total count: 2367 2113

line:

a wire connecting telephones: 37%

a cord; cable: 32%

an orderly series: 30%

total count: 0 1149
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Table 5.3. Verb Senses

supervised unsupervised

agree:

to concede after disagreement: 74% 74%

to share the same opinion: 26% 26%

to be happy together; get on well together: < 1%

total count: 1115 1109

close:

to (cause to) end: 68% 77%

to (cause to) stop operation: 20% 23%

to close a deal: 6%

to (cause to) shut: 2%

to (cause to) be not open to the public: 2%

to come together by making less space between: 2%

total count: 1535 1354

help:

to enhance - inanimate object: 75% 79%

to assist - human object: 20% 21%

to make better - human object: 4%

to avoid; prevent; change - inanimate object: 1%

total count: 1398 1328

include:

to contain in addition to other parts: 91% 91%

to be a part of - human subject: 9% 9%

total count: 1526 1526
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Table 5.4. Supervised Co–occurrence features

C1 C2 C3

agree million that to

bill auction discount treasury

chief economist executive officer

close at cents trading

common million sense share

concern about million that

drug company FDA generic

help him not then

include are be in

interest in percent rate

last month week year

public going offering school

Part of Speech: These features represent the part–of–speech of words within

±i positions of the ambiguous word. Feature set BW contains features that indicate

the part of speech of words 1 and 2 positions to the left (–) and right (+) of the

ambiguous word. Each feature has one of 25 possible values which are derived from

the first letter of the Penn TreeBank tag contained in the ACL/DCI WSJ corpus.

These features are represented by variables P−2, P−1, P+1, and P+2.

Co–occurrences: These are binary features that indicate whether or not a

particular word occurs in the sentence with the ambiguous word. The values of

these features are selected from among the 400 words that occur most frequently in

each word–corpus. The three words chosen are most indicative of the sense of the

ambiguous word as judged by a test for independence. These features are represented

by variables C1, C2, and C3 and the words whose occurrence they represent are shown

in Table 5.4.
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5.2.2. Unsupervised Learning Feature Sets

There are three different feature sets employed in the unsupervised experiments.

This dissertation evaluates the effect that different types of features have on the

accuracy of unsupervised learning algorithms; particular attention is paid to features

that occur in close proximity to the ambiguous word, i.e., “local context” features.

As the amount of context is increased the size of the associated event space grows and

unsupervised methods require increasing amounts of computational time and space.

The unsupervised learning feature sets are designated A, B, and C. They are

composed of combinations of the following five types of features.

Morphology: This feature represents the morphology of ambiguous nouns and

verbs. It is the same as the morphology feature in set BW.

Part of Speech: As in feature set BW, these features represent the part–of–

speech of words that occur within 1 and 2 positions of the ambiguous word. However,

in the unsupervised experiments the range of possible values for these features is

reduced to five: noun, verb, adjective, adverb, or other. These crude distinctions are

made with the rule–based part–of–speech tagger incorporated in the Unix command

style [19]. The tags available in the ACL/DCI WSJ corpus are not used since such

high–quality, detailed tagging is not generally available for raw text. These features

are represented by variables P5−2, P5−1, P5+1, and P5+2.

Co–occurrences: These binary features represent whether or not certain high

frequency words in the sentence with the ambiguous word. These features differ

from the co–occurrence features in set BW since sense–tagged text is not available to

select their values via a test of independence. Rather, the words whose occurrences

are represented are determined by the most frequent content words2 that occur in each

word–corpus. Three such features are used. CF1 represents the most frequent content

word, CF2 the second most frequent, and CF3 the third. The words represented by

these features are shown in Table 5.5.

2Content words are defined here to include nouns, pronouns, verbs, adjectives and adverbs.
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Table 5.5. Unsupervised Co–occurrence Features

word CF1 CF2 CF3

chief officer executive president

common share million stock

last year week million

public offering million company

bill treasury billion house

concern million company market

drug fda company generic

interest rate million company

line he it telephone

agree million company pay

close trading exchange stock

help it say he

include million company year

Unrestricted Collocations: These features represent the most frequent words

that occur within ±2 positions of the ambiguous word. These features have 21 possible

values. Nineteen correspond to the 19 most frequent words that occur in that fixed

position in the word–corpus. There is also a value, (none), that indicates when

the position i to the left or right is occupied by a word that is not among the 19

most frequent, and a value, (null), indicating that the position ±i falls outside the

sentence boundary. These features are represented by variables UC−2, UC−1, UC+1,

and UC+2. For example, the values of the unrestricted collocation features for concern

are as follows:

• UC−2: and, the, a, of, to, financial, have, because, an, ’s, real, cause, calif.,

york, u.s., other, mass., german, jersey, (null), (none)

• UC−1 : the, services, of, products, banking, ’s, pharmaceutical, energy, their,

expressed, electronics, some, biotechnology, aerospace, environmental, such,
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japanese, gas, investment, (null), (none)

• UC+1: about, said, that, over, ’s, in, with, had, are, based, and, is, has, was,

to, for, among, will, did, (null), (none)

• UC+2: the, said, a, it, in, that, to, n’t, is, which, by, and, was, has, its, possible,

net, but, annual, (null), (none)

Content Collocations: These features represent high frequency content words

that occur within 1 position of the ambiguous word. The values of these features

are determined by the most frequent content words that occur on either side of the

ambiguous word in the word–corpus. These features are represented by variables

CC−1 and CC+1. The content collocations associated with concern are as follows:

• CC−1: services, products, banking, pharmaceutical, energy, expressed, electron-

ics, biotechnology, aerospace, environmental, japanese, gas, investment, food,

chemical, broadcasting, u.s., industrial, growing, (null), (none)

• CC+1: said, had, are, based, has, was, did, owned, were, regarding, have, de-

clined, expressed, currently, controlled, bought, announced, reported, posted,

(null), (none)

There is a limitation to frequency based features such as the co–occurrences and

collocations previously described; they contain little information about low frequency

minority senses and are skewed towards the majority sense. Consider the values of the

co–occurrence features associated with chief: officer, executive and president. Chief

has a majority class distribution of 86% and, not surprisingly, these three content

words are all indicative of “highest in rank”, the majority sense. However, when

using raw text it isn’t clear how features that are indicative of minority senses can be

identified. This remains an interesting question for future work.
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5.2.3. Feature Sets and Event Distributions

The 4 feature sets used in this dissertation are designated BW, A, B, and C.

The supervised experiments are conducted with feature set BW and the unsupervised

with A, B, and C. Each of these feature sets results in a different event space, i.e.,

the set of possible marginal events. The formulation of each feature set as well as the

maximum size of the event spaces associated with the saturated model and the Naive

Bayes model are as follows:

• BW: M,P−2, P−1, P+1, P+2, C1, C2, C3

Saturated Event Space: 15,857,856

Naive Bayes Event Space: 534

• A: M,P5−2, P5−1, P5+1, P5+2, CF1, CF2, CF3

Saturated Event Space: 105,000

Naive Bayes Event Space: 99

• B: M,UC−2, UC−1, UC+1, UC+2

Saturated Event Space: 4,084,101

Naive Bayes Event Space: 273

• C: M,P5−2, P5−1, P5+1, P5+2, CC−1, CC+1

Saturated Event Space: 5,788,125

Naive Bayes Event Space: 207

The minimum size of the event space depends on the number of possible senses

and the value of the morphological feature. It also varies if possible values of a feature

variable do not occur in the training data. For example, if there are 20 possible values

for a feature and only 5 are observed in the training data the parameter estimates

associated with the 15 non–occurring events will be zero. The degrees of freedom of

models are adjusted to eliminate zero estimates and reduce the size of the event space

further.
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Tables 5.6 through 5.18 contrast the size of the event spaces associated with the

saturated model and the Naive Bayes model. This illustrates that event distributions

are very skewed under the saturated model and that this skewness is reduced, but not

eliminated, with the Naive Bayes model. The reduction in model complexity results

in a smaller number of marginal events that must be observed to make parameter

estimates. The number of marginal events given the saturated model and Naive Bayes

are shown in the row “total events”.

For example, as shown in Table 5.13, the number of marginal events for interest

under the saturated model and feature set BW is approximately 16,000,000 while

under Naive Bayes it is 534. Given such a large number of marginal events under the

saturated model it is inevitable that most of these will not be observed and parameter

estimates will be zero since the training sample sizes are so small by comparison.

However, when the model is simplified the number of marginal events is reduced and

the percentage of marginal events that are observed in the training data increases.

For interest, 99.9% of the marginal events under the saturated model for feature set

BW are unobserved while under Naive Bayes only 36.9% are never observed. The

distribution of the event space for all words is smoothed and results in more reliable

parameter estimates since the majority of possible marginal events are observed in

the training data.
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Table 5.6. Event Distribution for Adjective chief

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 99.1 99.9 99.9 19.4 13.0 29.5 26.3

1–5 ≪0.1 0.8 0.1 0.1 32.7 22.2 39.2 36.8

6–10 ≪0.1 0.1 0.0 0.0 7.1 5.6 9.0 6.1

11–50 ≪0.1 0.1 0.0 0.0 16.3 14.8 11.4 11.4

51–100 ≪0.1 0.0 0.0 0.0 9.2 5.6 4.2 6.1

101–1000 0.0 0.0 0.0 0.0 15.3 38.9 6.6 13.2

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 1.4×105 1.6×104 6.7×105 6.4×105 98 54 166 114

Table 5.7. Event Distribution for Adjective common

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 99.1 99.9 99.9 42.1 7.1 40.5 42.2

1–5 ≪0.1 0.8 ≪0.1 ≪0.1 30.6 28.6 27.8 25.5

6–10 ≪0.1 0.1 0.0 0.0 8.5 6.0 10.7 4.7

11–50 ≪0.1 0.1 0.0 0.0 11.7 26.2 12.3 15.1

51–100 0.0 0.0 0.0 0.0 2.7 15.5 5.2 6.3

101–1000 0.0 0.0 0.0 0.0 4.4 16.7 3.6 6.3

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 1.6×106 3.0×104 1.1×106 1.7×106 366 84 252 192
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Table 5.8. Event Distribution for Adjective last

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 95.5 99.8 99.9 33.3 1.9 27.9 30.5

1–5 ≪0.1 3.3 0.2 0.1 23.4 17.3 12.2 10.2

6–10 ≪0.1 0.4 0.0 0.0 4.7 3.8 6.4 7.8

11–50 ≪0.1 0.7 0.0 0.0 16.7 11.5 35.5 22.7

51–100 0.0 0.1 0.0 0.0 4.2 15.4 7.0 10.2

101–1000 0.0 0.0 0.0 0.0 14.1 32.7 8.7 14.1

1000+ 0.0 0.0 0.0 0.0 3.6 17.3 2.3 4.7

total events 1.0×106 8.0×103 4.1×105 4.8×105 192 52 172 128

Table 5.9. Event Distribution for Adjective public

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 99.2 99.9 99.9 38.3 8.3 28.5 38.3

1–5 ≪0.1 0.8 ≪0.1 ≪0.1 32.0 20.2 37.8 25.9

6–10 ≪0.1 0.0 0.0 0.0 10.7 9.5 15.7 9.0

11–50 ≪0.1 0.0 0.0 0.0 12.9 25.0 10.8 13.9

51–100 0.0 0.0 0.0 0.0 3.2 17.9 4.8 6.5

101–1000 0.0 0.0 0.0 0.0 2.9 19.0 2.4 6.5

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 2.3×106 3.0×104 1.0×106 1.9×106 441 84 249 201
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Table 5.10. Event Distribution for Noun bill

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 99.2 99.9 99.9 15.4 10.0 30.3 38.3

1–5 ≪0.1 0.8 ≪0.1 ≪0.1 24.4 12.2 25.7 13.4

6–10 ≪0.1 0.0 0.0 0.0 9.5 6.7 10.7 10.9

11–50 ≪0.1 0.0 0.0 0.0 27.4 21.1 23.4 17.9

51–100 0.0 0.0 0.0 0.0 11.4 17.8 5.7 8.0

101–1000 0.0 0.0 0.0 0.0 11.9 32.2 4.2 11.4

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 2.2×106 6.0×104 2.6×106 3.5×106 201 90 261 201

Table 5.11. Event Distribution for Noun concern

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 97.7 99.9 99.9 25.4 3.6 22.8 29.0

1–5 ≪0.1 2.1 0.1 ≪0.1 30.6 3.6 19.1 13.7

6–10 ≪0.1 0.1 0.0 0.0 8.6 7.1 17.9 16.1

11–50 ≪0.1 0.1 0.0 0.0 19.4 25.0 27.8 17.7

51–100 0.0 0.0 0.0 0.0 4.1 7.1 2.5 2.4

101–1000 0.0 0.0 0.0 0.0 11.9 53.6 9.9 21.0

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 2.9×106 2.0×104 6.1×105 1.0×106 268 56 162 124
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Table 5.12. Event Distribution for Noun drug

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 98.6 99.9 99.9 6.6 3.4 15.1 25.8

1–5 ≪0.1 1.3 0.1 ≪0.1 17.6 10.3 21.1 18.0

6–10 ≪0.1 0.1 0.0 0.0 11.0 5.2 19.9 12.5

11–50 ≪0.1 0.1 0.0 0.0 33.1 19.0 34.3 19.5

51–100 0.0 0.0 0.0 0.0 14.0 15.5 1.8 5.5

101–1000 0.0 0.0 0.0 0.0 17.6 46.6 7.8 18.8

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 2.3×106 3.0×104 9.6×105 1.6×106 136 58 166 128

Table 5.13. Event Distribution for Noun interest

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 98.7 99.9 99.9 36.9 6.9 22.5 33.3

1–5 ≪0.1 1.1 ≪0.1 0.1 26.2 8.0 25.7 5.2

6–10 ≪0.1 0.1 0.0 0.0 6.0 4.6 11.6 3.0

11–50 ≪0.1 0.1 0.0 0.0 16.7 16.1 26.1 20.0

51–100 0.0 0.0 0.0 0.0 6.2 17.2 5.6 11.1

101–1000 0.0 0.0 0.0 0.0 7.5 42.5 8.0 25.9

1000+ 0.0 0.0 0.0 0.0 0.6 4.6 0.4 1.5

total events 1.6×107 4.5×104 1.4×106 6.8×105 534 87 249 135
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Table 5.14. Event Distribution for Noun line

event Saturated Naive Bayes

count BW A B C BW A B C

0 na 97.9 99.9 99.9 na 2.4 22.4 34.4

1–5 na 2.0 0.1 ≪0.1 na 9.5 34.6 20.4

6–10 na 0.1 0.0 0.0 na 4.8 14.2 7.5

11–50 na 0.0 0.0 0.0 na 19.0 18.7 12.9

51–100 na 0.0 0.0 0.0 na 22.6 2.0 9.7

101–1000 na 0.0 0.0 0.0 na 41.7 8.1 15.1

1000+ na 0.0 0.0 0.0 na 0.0 0.0 0.0

total events na 3.0×104 9.6×105 1.5 ×106 na 84 246 186

Table 5.15. Event Distribution for Verb agree

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 99.4 99.9 99.9 36.2 3.1 16.5 12.3

1–5 ≪0.1 0.5 ≪0.1 ≪0.1 23.2 10.9 29.4 34.6

6–10 ≪0.1 0.1 0.0 0.0 6.8 6.3 16.5 7.7

11–50 ≪0.1 0.0 0.0 0.0 18.4 28.1 24.7 21.5

51–100 0.0 0.0 0.0 0.0 3.9 14.1 7.1 8.5

101–1000 0.0 0.0 0.0 0.0 11.1 37.5 5.9 15.4

1000+ 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0

total events 5.1×106 2.8×106 1.8×106 2.8×106 207 64 170 130
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Table 5.16. Event Distribution for Verb close

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 99.4 99.9 99.9 28.6 1.5 25.3 22.8

1–5 ≪0.1 0.6 ≪0.1 ≪0.1 36.2 16.7 23.0 17.6

6–10 ≪0.1 0.0 0.0 0.0 7.4 6.1 9.6 11.0

11–50 ≪0.1 0.0 0.0 0.0 18.6 24.2 29.8 25.0

51–100 0.0 0.0 0.0 0.0 3.6 15.2 4.5 8.8

101–1000 0.0 0.0 0.0 0.0 5.7 36.4 7.9 14.7

1000+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

total events 9.5×106 7.0×104 2.5×106 3.7×106 420 66 178 136

Table 5.17. Event Distribution for Verb help

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 98.6 99.9 99.9 28.7 0.0 8.6 11.2

1–5 ≪0.1 1.4 ≪0.1 ≪0.1 27.6 1.6 31.6 28.4

6–10 ≪0.1 0.0 0.0 0.0 8.1 3.2 23.0 13.4

11–50 ≪0.1 0.0 0.0 0.0 21.3 33.9 25.9 23.1

51–100 0.0 0.0 0.0 0.0 6.6 17.7 3.4 7.5

101–1000 0.0 0.0 0.0 0.0 7.0 43.5 7.5 16.4

1000+ 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0

total events 6.9×106 4.8×104 2.0×106 2.6×106 272 62 174 134
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Table 5.18. Event Distribution for Verb include

event Saturated Naive Bayes

count BW A B C BW A B C

0 99.9 98.8 99.9 99.9 13.7 1.6 25.9 23.1

1–5 ≪0.1 1.1 ≪0.1 ≪0.1 26.0 12.5 18.4 23.1

6–10 ≪0.1 0.1 0.0 0.0 6.8 6.3 15.5 14.9

11–50 0.0 0.0 0.0 0.0 26.7 28.1 26.4 17.9

51–100 0.0 0.0 0.0 0.0 10.3 7.8 5.2 3.7

101–1000 0.0 0.0 0.0 0.0 15.1 39.1 8.0 15.7

1000+ 0.0 0.0 0.0 0.0 1.4 0.0 0.6 1.5

total events 3.9×106 6.0×104 2.0×106 3.2×106 146 61 174 134
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CHAPTER 6

SUPERVISED LEARNING EXPERIMENTAL RESULTS

The theoretical foundations of sequential model selection and the Naive Mix

are introduced in Chapter 3. This chapter discusses four experiments that evaluate

these methods.1 The principal measure is disambiguation accuracy, the percentage

of ambiguous words in a held–out test sample that are disambiguated correctly.

The first experiment measures the accuracy of models selected using various

combinations of search strategy and evaluation criterion. The second compares the

accuracy of the Naive Mix to several leading machine learning algorithms. The third

experiment studies the learning rate of the most accurate methods from the first two

experiments. The final experiment decomposes the overall classification error of two

of the most accurate methods into more fundamental components.

6.1. Experiment 1: Sequential Model Selection

In the first experiment, each of the eight possible combinations of search strategy

and evaluation criterion as described in Chapter 3 are utilized to select a probabilistic

model of disambiguation for each word.

The accuracy of each model is evaluated via 10–fold cross validation. All of the

sense–tagged examples for a word are randomly shuffled and divided into 10 equal

folds. Nine folds are used as the training sample and the remaining fold acts as a

held–out test set. This process is repeated 10 times so that each fold serves as the

test set once. The disambiguation accuracy for each word is the average accuracy

across all 10 test sets.

1The freely available software package CoCo [2] was used in conjunction with the Class.3.0 clas-

sifier [68] for all the model selection experiments.
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Within this first experiment there are four separate analyses performed. The

first examines the overall disambiguation accuracy of the selected models for each

word. The second evaluates model complexity by comparing the number of interac-

tions in the various models. The third assesses the robustness of the selection process

relative to changes in the search strategy. The fourth and final analysis is a case

study of the model selection process for a single word.

All of these evaluations assume that the overall objective of sequential model

selection is to automatically stop the search process at an accurate model of disam-

biguation. However, there are alternatives to this orientation. For example, Bruce

and Wiebe (e.g., [10], [11], and [12]) use backward search and the exact conditional

test to generate a sequence of models beginning with the saturated model and con-

cluding with Naive Bayes. The most accurate model is selected from this sequence

using a test of predictive accuracy.

6.1.1. Overall Accuracy

Table 6.1 shows the accuracy and standard deviation of models selected using

each evaluation criterion with forward (F) and backward (S) sequential search. The

accuracy of Naive Bayes and the majority classifier are also reported since they serve

as simple benchmarks; neither performs a model search but rather rely upon assumed

parametric forms. When averaged over all twelve words, Naive Bayes and FSS AIC

are the most accurate approaches.2 However, the differences between Naive Bayes,

FSS AIC, and BSS AIC are not statistically significant for any word. Throughout

this evaluation, judgments regarding the significance of differences are made using a

two–sided pairwise t–test where p = .01.

A reasonable lower bound on supervised disambiguation algorithms is the ac-

curacy attained by the majority classifier. The majority classifier is based on the

2Each combination of strategy and criterion is sometimes referred to in an abbreviated form. For

example, the combination of a forward sequential search and Akaike’s Information Criteria is called

FSS AIC.
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Table 6.1. Sequential Model Selection Accuracy

Majority Naive G2 ∼ χ2 exact AIC BIC

Bayes

agree .777 .032 .930 .026 B .914 .018 .915 .019 .909 .026 .924 .023

F .916 .026 .896 .030 .911 .026 .921 .024

bill .681 .044 .865 .026 B .634 .073 .612 .022 .836 .036 .850 .034

F .778 .048 .625 .039 .851 .029 .851 .041

chief .862 .026 .943 .015 B .945 .020 .895 .033 .945 .020 .936 .020

F .926 .027 .891 .043 .939 .020 .943 .021

close .680 .033 .817 .023 B .687 .039 .739 .029 .806 .029 .742 .031

F .773 .035 .646 .037 .810 .040 .763 .040

common .802 .029 .832 .034 B .843 .030 .802 .058 .850 .019 .815 .030

F .848 .023 .747 .066 .846 .023 .815 .030

concern .639 .054 .859 .037 B .565 .055 .753 .033 .838 .038 .767 .031

F .820 .044 .618 .106 .830 .025 .864 .038

drug .575 .033 .807 .036 B .695 .091 .806 .040 .792 .043 .784 .041

F .790 .052 .527 .048 .800 .037 .784 .041

help .753 .032 .780 .033 B .770 .049 .769 .037 .777 .036 .797 .030

F .793 .035 .779 .037 .798 .033 .797 .030

include .912 .024 .944 .021 B .922 .019 .938 .020 .912 .030 .949 .016

F .953 .014 .735 .142 .950 .012 .950 .019

interest .529 .026 .763 .016 B .476 .040 .498 .034 .751 .018 .676 .025

F .713 .037 .441 .032 .757 .026 .734 .020

last .933 .014 .919 .011 B .895 .023 .849 .018 .931 .015 .920 .011

F .898 .021 .849 .021 .927 .021 .915 .012

public .560 .055 .593 .054 B .610 .048 .551 .042 .600 .047 .597 .053

F .616 .049 .472 .095 .614 .053 .602 .050

average .725 .838 B .746 .761 .829 .813

F .819 .712 .836 .828
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model of independence and classifies each instance of an ambiguous word with the

most frequent sense in the training data.

Neither AIC nor BIC ever selects a model that results in accuracy significantly

less than the lower bound. This is true for both forward and backward searches.

However, FSS exact conditional has accuracy significantly less than the lower bound

for four words and BSS exact conditional has accuracy below the lower bound for two

words. FSS G2 ∼ χ2 and BSS G2 ∼ χ2 are significantly less accurate than the lower

bound for one and two words respectively. These cases are italicized in Table 6.1.

This behavior is suggestive of a difficulty in using significance tests as evaluation

criteria when the objective of model selection is to automatically stop the search

process at an accurate model of disambiguation. The value of α determines when

the selection process will stop; unfortunately there is no single value of α that leads

to consistent results. In this experiment the α values .01, .05, .001, and .0001 are

evaluated and .0001 is found to select the most accurate models overall. However,

there is considerable variation from word to word and improved results are likely if α

is adjusted for each word.

It is generally expected that the accuracy of the majority classifier will be im-

proved upon by more sophisticated models. The majority classifier does not take into

account any of the available contextual information when performing disambiguation;

presumably a model that does will prove to be more accurate.

However, there are four words where no method ever significantly improves

upon the majority classifier; help, include, last, and public. Two of these words, last

and include, have majority senses of over 90% so significant improvement over the

lower bound is not likely. But the majority senses of public and help are 56% and 75%

so there is certainly room for improvement. However, the most accurate models for

these words have 4 and 6 interactions and disregard most of the features in set BW.

For these two words the set of features may need to be modified to disambiguate at

higher levels of accuracy.
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6.1.2. Model Complexity

The number of interactions in a model is a general indicator of the complexity of

the model. Given n features, the saturated model has n2−n
2

interactions, Naive Bayes

has n interactions, and the model of independence has 0. Table 6.2 shows the number

of interactions in the models selected by each combination of evaluation criterion and

search strategy. The number of interactions in Naive Bayes is included as a point of

comparison although this is not a selected model.

This table shows that BIC and G2 ∼ χ2 often select models with fewer interac-

tions than either AIC or the exact conditional test. However, these models also result

in reduced accuracy when compared to AIC. Since BIC assesses a greater penalty on

complexity than AIC, it has a stronger bias towards less complex models. As a result,

BSS BIC is more aggressive in removing interactions than BSS AIC; similarly FSS

BIC is more conservative than FSS AIC in adding them.

The comparable levels of accuracy among models selected with the information

criteria and Naive Bayes are curious since Table 6.2 shows that these methods select

models of differing complexity. For example, the model selected for bill by FSS AIC

has 20 interactions, the model selected by FSS BIC has 11, and Naive Bayes has only

9. However, the accuracy of these 3 models is nearly identical.

The fact that models of differing levels of complexity yield similar levels of

accuracy demonstrates that model selection is an uncertain enterprise. In other words,

there is not a single model for a word that will result in overall superior disambiguation

accuracy. This motivates the development of the Naive Mix, an extension to the

sequential model selection process that is evaluated later in this chapter.

6.1.3. Model Selection as a Robust Process

A model selection process is robust when models of similar accuracy are se-

lected as a result of both a forward and a backward search using the same evaluation

criterion. In general the information criteria result in a robust selection process while

the significance tests do not.
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Table 6.2. Complexity of Selected Models

Naive G2 ∼ χ2 exact AIC BIC

Bayes .0001 .0001

agree 9 B 8 10 15 9

F 12 15 13 7

bill 9 B 22 25 26 7

F 20 28 20 11

chief 8 B 6 17 14 6

F 6 18 14 7

close 9 B 12 13 13 3

F 13 19 10 3

common 8 B 4 10 7 2

F 4 16 7 2

concern 9 B 5 15 16 6

F 17 24 13 9

drug 9 B 10 7 14 9

F 10 19 12 9

help 9 B 7 6 6 4

F 3 9 4 4

include 9 B 6 3 16 8

F 6 22 9 9

interest 9 B 24 24 21 6

F 22 32 15 4

last 8 B 8 9 14 9

F 15 18 14 2

public 8 B 7 9 8 3

F 6 11 6 3

average 9 B 10 12 14 6

F 11 19 11 6
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In Figure 6.1 each point represents the accuracy of models selected using the

specified evaluation criterion with backward and forward search. The BSS coordinate

is the accuracy attained by the model selected during backward search while the FSS

coordinate is the accuracy resulting from forward search. Points that fall close to the

line BSS = FSS represent an evaluation criterion that selects models of similar

accuracy regardless of search strategy. Figure 6.1 (top) shows that, in general, the

information criteria select models of similar accuracy using either forward or backward

search.

However, Figure 6.1 (bottom) shows that the significance tests are sensitive to

changes in search strategy. For example, BSS exact conditional is more accurate than

FSS exact conditional. FSS G2 ∼ χ2 is slightly more accurate than BSS G2 ∼ χ2.

This suggests that the value of α may need to be adjusted depending on the direction

of the search strategy. The following section shows that this is due to changes in the

bias of the evaluation criteria that are caused by changing the search strategy.

6.1.4. Model selection for Noun interest

The model selection process for interest is discussed in some detail here. Figures

6.2 and 6.3 show the accuracy and recall3 of the model at each level of complexity

during the selection process. The rightmost point on each plot is the measure as-

sociated with the model ultimately selected by the evaluation criterion and search

strategy.

As shown in Table 6.2, BIC selects models that have fewer interactions than the

other criteria. Table 6.1 indicates that this often results in less accurate classification

than AIC. In Figure 6.2, BSS BIC (top) removes too many interactions and goes

past the more accurate model selected by AIC, while FSS BIC (bottom) does not

add enough interactions and stops short of selecting a highly accurate model. For

3The percentage of ambiguous words in a held out test sample that are disambiguated, correctly

or not. A word is not disambiguated if any of the model parameters needed to assign a sense tag

cannot be estimated from the training sample.
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interest, BSS BIC selects a model of 6 interactions while FSS BIC selects a model of

4 interactions. The other combinations of strategy and criterion select models with

between 15 and 32 interactions and result in higher levels of accuracy. As mentioned

previously, the bias of BIC towards models with small numbers of interactions is not

surprising given the large penalty that it assesses to complexity.

The exact conditional test suffers from the reverse problem in that it selects

models with too many interactions. BSS exact conditional removes a small number

of interactions while FSS exact conditional adds a great many; in both cases the

resulting models have lower accuracy than the other approaches.

Figure 6.3 shows that for both forward and backward search, models of relatively

low recall are selected by the exact conditional test. This suggests that the selected

models are overly complex and contain many parameters that can not be estimated

from the training data.

The contrast between the exact conditional test and the other criteria is stark

during backward search. Figures 6.2 (top) and 6.3 (top) show that the exact condi-

tional test remains at low levels of accuracy and recall while the other criteria rapidly

increase both recall and accuracy. However, during forward search Figures 6.2 (bot-

tom) and 6.3 (bottom) show there is little difference among the criteria; all select

high recall models that achieve high accuracy early in the search.

A backward search begins with the saturated model. For feature set BW sat-

urated models have millions of parameters to estimate. The information criteria

remove the interactions that result in models with the highest degrees of freedom in

the early stages of the search. This is a consequence of the complexity penalty that

both AIC and BIC assess. The significance test G2 ∼ χ2 also targets interactions with

high degrees of freedom for removal. When G2 values are assigned significance there

is an implicit weighting for complexity. Larger degrees of freedom result in smaller

significance values due to the nature of the χ2 distribution. Interactions that result

in models with very high degrees of freedom and are more likely to be removed early

in the course of a backward search since they have smaller significance values.
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The bias of the information criteria and G2 ∼ χ2 towards removing interactions

with high degrees of freedom results in a rapid reduction in the number of model

parameters to estimate. This in turn increases the percentage of model parameters

that can be estimated from the training data. In Figure 6.3 (top), recall increases

rapidly as interactions with high degrees of freedom are removed by the information

criteria. Most of the model parameters can be estimated from the training data early

in the search process and this results in a rapid increase in accuracy.

On the other hand, the exact conditional test does not take degrees of freedom

into account when evaluating models. Interactions are removed or added via signif-

icance values that are based upon the distribution of randomly generated values of

G2 relative to the observed value of G2. Thus, the exact conditional test may result

in the removal of interactions with relatively small degrees of freedom in cases where

the information criteria and G2 ∼ χ2 would remove interactions with higher degrees

of freedom. During a backward search the exact conditional test has a different bias;

the other criteria tend to remove interactions that result in models with large degrees

of freedom while the exact conditional test removes interactions that maintain the fit

of the model to the training data.

However, during forward search the exact conditional test achieves approxi-

mately the same levels of recall and accuracy as do the other criteria. Forward search

begins with the model of independence. The information criteria add those interac-

tions that most increase the fit of the model; in the early stages of forward search this

results in a bias towards interactions that have lower degrees of freedom. The same

occurs with G2 ∼ χ2 since it seeks to add those interactions that have the largest

significance value. Interactions with smaller degrees of freedom will tend to have

higher significance values due to the nature of the χ2 distribution. Thus, during a

forward search all of the criteria are biased towards the inclusion of interactions with

lower degrees of freedom. This results in models that have relatively small numbers

of model parameters; both recall and accuracy are likely to be high.
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The only difference among the criteria during forward search is that the signifi-

cance tests tend to add too many interactions to the model. During a forward search

where the evaluation criteria is a significance test, the value of α should be larger than

in the backward search in order to stop the selection process sooner. This has the

added benefit of reducing the computational complexity of the exact conditional test

since the number of random tables that must be generated to assess the significance

of each interaction is 1/α [48].

6.2. Experiment 2: Naive Mix

The Naive Mix is defined in Section 3.2 and extends sequential model selection

methods by allowing for the incorporation of uncertainty in the development of the

model. Rather than attempting to find a single most accurate model, the Naive Mix

forms an averaged probabilistic model from the sequence of models generated during

FSS AIC. In this experiment the Naive Mix is compared to the following machine

learning algorithms:

PEBLS [23]: A k nearest–neighbor algorithm where classification is performed

by assigning an ambiguous word to the majority class of the k–nearest training ex-

amples. In these experiments each ambiguous word is assigned the sense of the single

most similar training example, i.e., k = 1.

C4.5 [78]: A decision tree learner in which classification rules are formulated

by recursively partitioning the training sample. Each nested partition is based on the

feature value that provides the greatest increase in the information gain ratio for the

current partition.

CN2 [22]: A rule induction algorithm that selects classification rules that cover

the largest possible subsets of the training sample as measured by the Laplace error

estimate.

The Naive Mix, C4.5, CN2, and any model selection method using forward

sequential search all perform general–to–specific searches that add features to the

learned representation of the training sample based on some measure of information
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content increase. These methods all perform feature selection and have a bias towards

simpler models. All of these methods can suffer from fragmentation when learning

from sparse training data. Fragmentation occurs when the model is complex, in-

corporating a large number of feature values to describe a small number of training

instances. When this occurs, there is inadequate support in the training data for

the inference being specified by the model. The Naive Mix is designed to reduce the

effects of fragmentation in a general–to–specific search by averaging the distributions

of high complexity models with those of low complexity models that include only the

most relevant features.

The nearest–neighbor algorithm PEBLS shares a number of traits with Naive

Bayes. Neither perform a search to create a representation of the training sample.

Naive Bayes assumes the form of a model in which all features are regarded as relevant

to disambiguation but, as in PEBLS, their interdependencies are not considered.

Weights are assigned to features via parameter estimates from the training sample.

These weights allow some discounting of less relevant features. Here, PEBLS stores

all instances of the training sample and treats each feature independently and equally,

making it susceptible to irrelevant features.

Table 6.3 shows the accuracy of the Naive Mix, Naive Bayes, the majority

classifier, C4.5, CN2, and PEBLS. The accuracies of the sequential model selection

methods from the first experiment are directly comparable to these since both are

evaluated via 10–fold cross validation using all of the sense–tagged examples for each

word.

Based on a word by word comparison, this experiment shows that the Naive

Mix improves upon the accuracy of models selected by FSS AIC. However, in general

there prove to be few significant differences between the accuracy of the Naive Mix,

Naive Bayes, C4.5, PEBLS, and CN2.

The success of Naive Bayes in the first two experiments is a bit surprising since

it neither performs feature selection nor a model search. Despite this, it is among the

most accurate of the methods considered in this study.
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Table 6.3. Naive Mix and Machine Learning Accuracy

Majority Naive PEBLS Naive

classifier Bayes k=1 C4.5 CN2 Mix

agree .777 .032 .930 .026 .928 .030 .947 .031 .947 .031 .948 .017

bill .681 .044 .865 .026 .855 .034 .878 .029 .873 .035 .897 .026

chief .862 .026 .943 .015 .945 .018 .947 .020 .945 .013 .951 .016

close .680 .033 .817 .023 .843 .042 .853 .021 .834 .036 .831 .033

common .802 .029 .832 .034 .853 .019 .871 .030 .803 .029 .853 .024

concern .639 .054 .859 .037 .840 .036 .852 .042 .859 .033 .846 .039

drug .575 .033 .807 .036 .778 .034 .798 .038 .777 .069 .815 .041

help .753 .032 .780 .033 .710 .047 .790 .039 .779 .045 .796 .038

include .912 .024 .944 .021 .939 .015 .954 .019 .951 .018 .956 .018

interest .529 .026 .763 .016 .768 .020 .793 .019 .729 .034 .800 .019

last .933 .014 .919 .011 .947 .012 .945 .008 .935 .013 .940 .016

public .560 .055 .593 .054 .536 .039 .598 .047 .579 .057 .615 .055

average .725 .838 .829 .852 .834 .854
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Table 6.4. Naive Bayes Comparison

Average win–tie–loss

Accuracy

Naive Mix .854 0–9–3

C4.5 .852 0–9–3

Naive Bayes .838

FSS AIC .836 0–12–0

BSS AIC .829 0–12–0

PEBLS .829 1–10–1

FSS BIC .828 1–11–0

FSS G2 .819 1–11–0

BSS BIC .813 3–9–0

BSS exact .761 6–6–0

BSS G2 .746 5–7–0

Majority .725 8–4–0

FSS exact .712 9–3–0

Table 6.4 summarizes the accuracy of Naive Bayes relative to the other methods

employed in the first two experiments. The accuracy reported is based on 10–fold

cross validation. The win–tie–loss measure is also shown; this indicates the number

of times Naive Bayes is significantly more–equally–less accurate than the competing

method. The win–tie–loss record 1–10–1 associated with PEBLS means that Naive

Bayes is significantly more accurate than PEBLS for 1 word, not significantly different

than PEBLS for 10 words, and significantly less accurate than PEBLS for 1 word.

This measure shows that there are only 7 out of a possible 144 cases where Naive Bayes

is significantly less accurate than a competing method. The cases where a competing

method is significantly more accurate than Naive Bayes are shown in Table 6.3 in

bold face. There is no such case in Table 6.1; Naive Bayes is never significantly less

accurate than a sequential model selection method in the first experiment.
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The success of Naive Bayes in these experiments confirms the results of previous

studies of disambiguation. For instance, [51] compares a neural network, Naive Bayes,

and a content vector when disambiguating six senses of line.4 They report that all

three methods are equally accurate. The line data is utilized again in [62] with an

even wider range of methods. Naive Bayes, a perceptron, a decision tree learner,

a nearest–neighbor classifier, a logic based disjunctive normal form learner, a logic

based conjunctive normal form learner, and a decision list learner are compared. Naive

Bayes and the perceptron are found to be the most accurate approaches. Finally, [63]

compare PEBLS and Naive Bayes and finds them to be of comparable accuracy when

disambiguating the Defence Science Organization sense–tagged corpus [64]. However,

all of these studies differ from this dissertation in that they employ a feature set that

consists of thousands of binary co–occurrence features, each of which represents the

occurrence of a particular word within some fixed distance of the ambiguous word.

This feature set is commonly known as bag–of–words.

The relatively high accuracy achieved by Naive Bayes in disambiguation is some-

times explained as a consequence of the bag–of–words feature set, e.g., [70]. Given

so many features, the assumptions of conditional independence made by Naive Bayes

are potentially valid and may result in a model that fits the training data reasonably

well. However, this explanation does not apply to feature set BW since a previous

study [13] shows that all of these features are good indicators of the sense of the

ambiguous word. In addition, Naive Bayes is successful in a number of other domains

where the bag–of–words explanation is not relevant.

For example, [22] compare Naive Bayes, a rule induction system, and a deci-

sion tree learner. They find that Naive Bayes performs as accurately as these more

sophisticated methods in various medical diagnosis problems.

A more extensive study of Naive Bayes appears in [49]. They compare Naive

Bayes and a decision tree learner using data from the University of California at

4This data is described in Chapter 5, Experimental Data.
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Irvine (UCI) Machine Learning repository [57]. For 4 of 5 naturally occurring data

sets they report that Naive Bayes is the more accurate. They also present an average

case analysis of Naive Bayes that is verified empirically using artificial data.

Naive Bayes and more elaborate Bayesian networks that diagnose the cause of

acute abdominal pain are compared in [76]. They argue that simple classification

models will often outperform more detailed ones if the domain is complex and the

amount of data available is relatively small. Their experiment consists of 1270 cases,

each of which has 169 features. They find that the Naive Bayes model with 169

interactions is more accurate than a Bayesian network that has 590 interactions.

A software agent that learns to rate Web pages according to a user’s level of

interest is discussed in [66]. They construct a profile using examples of pages that a

user likes and dislikes. They compare Naive Bayes, a nearest–neighbor algorithm, a

term–weighting method from information retrieval, a perceptron, and a multi–layer

neural network and find that Naive Bayes is most accurate at predicting Web pages

a user will find interesting.

Finally, [32] compare the accuracy of Naive Bayes with a decision tree learner,

a nearest–neighbor algorithm, and a rule induction system. They report that Naive

Bayes is at least as accurate as the rule induction system and nearest–neighbor algo-

rithm for 22 of 28 UCI data sets and at least as accurate as the decision tree learner

for 20 of 28 data sets. They also present an extensive analysis of the conditions under

which Naive Bayes is an optimal classifier even when the conditional independence

assumptions are not valid.

6.3. Experiment 3: Learning Rate

The first two experiments suggest that Naive Bayes may be an effective gen-

eral purpose method of disambiguation. However, these experiments only study the

disambiguation accuracy of models that are learned from relatively large amounts of

training data, i.e, 90% of the total available sense–tagged text for a word.

109



The third experiment differentiates among the most accurate methods in the

first two experiments by training each algorithm with steadily increasing amounts of

training data and studying the learning rate. This shows the relationship between

accuracy and the number of training examples. A “slow” learning rate implies that

accuracy gradually increases with the number of training examples. A “fast” learning

rate suggests an algorithm that attains high accuracy with a very small number of

examples. This experiment compares the learning rates of the Naive Mix, Naive

Bayes, C4.5, and FSS AIC.

A variant of 10–fold cross validation is employed. Each word–corpus is divided

into 10 folds; the desired number of training examples are sampled from 9 folds and

the remaining fold is held out as the test set. Each algorithm learns a model from the

training data and uses this to disambiguate the test set. This is repeated until each

fold serves as the test set once. The accuracy reported is averaged over all 10 folds.

This procedure is repeated with increasing quantities of training data. In this

experiment the number of training examples is first 10, then 50, and then 100. There-

after the number of examples is incremented 100 at a time until all the available

training data is used. For each amount of training data the accuracy attained for all

the words belonging to a particular part–of–speech are averaged. These values are

plotted in Figures 6.4 through 6.6 and show the learning rate for each method for

each part–of–speech. Also included is the learning rate of the majority classifier. This

proves to be constant since it classifies every held–out instance of an ambiguous word

with the most frequent sense in the training data. This is easy to correctly identify

even with very small amounts of training data due to the skewed sense distributions.

Adjectives C4.5, FSS AIC, and the Naive Mix achieve nearly the same level of

accuracy learning from 10 examples as they do 900 examples. Naive Bayes has a slower

learning rate; accuracy is low with a small number of examples but improves with

the addition of training data. Naive Bayes achieves approximately the same accuracy

as C4.5, FSS AIC, and the Naive Mix after 300 training examples. However, none of

the methods significantly exceeds the accuracy of the majority classifier.
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Figure 6.6. Learning Rate for Verbs

Nouns C4.5, FSS AIC, and the Naive Mix are nearly as accurate as the ma-

jority classifier after only learning from 10 training examples. However, unlike the

adjectives, accuracy increases with additional training data and significantly exceeds

the majority classifier. Like the adjectives, Naive Bayes begins at very low accuracy

but reaches the same level as C4.5, FSS AIC, and the Naive Mix when approximately

300 training examples are available.

Verbs As is the case with adjectives and nouns, Naive Bayes begins at a very low

level of accuracy while C4.5, FSS AIC, and the Naive Mix nearly match the accuracy

of the majority classifier after only 10 training examples. All methods exceed the

majority classifier and perform at nearly exactly the same level of accuracy after

learning from approximately 600 examples.

The main distinction among these approaches is that Naive Bayes has a slower

learning rate; C4.5, FSS AIC, and the Naive Mix achieve at least the accuracy of

the majority classifier after just 10 or 50 examples. However, after 300–600 examples
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all of the methods perform at roughly the same level of accuracy and no method

shows significant improvement in accuracy when given more training examples. This

suggests that high levels of accuracy in word sense disambiguation are attainable with

relatively small quantities of training data.

The fast learning rates of C4.5, FSS AIC, and the Naive Mix are largely due

to skewed sense distributions, especially for adjectives and verbs. A small number

of examples is sufficient to correctly determine the majority sense. With only 10 or

50 examples to learn from, a decision tree or probabilistic model consists of a few

features and relies upon knowledge of the majority sense to perform disambiguation.

Given the large majority senses that exist, most models are able to attain high levels

of accuracy with very small numbers of examples. However, Naive Bayes estimates

model parameters that involve all of the contextual features even when there is only a

very small amount of training data. In these cases it becomes an inaccurate classifier

since it is easily mislead by spurious relationships in the data that do not hold true

in larger samples.

6.4. Experiment 4: Bias Variance Decomposition

The success of Naive Bayes may seem a bit mysterious. It is a simple approach

that does not perform feature selection nor does it engage in a systematic search

for a model. It simply assumes a parametric form that is usually not an accurate

representation of the interactions among contextual features. Despite this, it performs

as accurately as any other method except when the amount of training data is small.

The decomposition of classification error, i.e., (1 − accuracy), into bias and

variance components offers an explanation for this behavior. This experiment shows

that different representations of the same training data attain similar levels of accu-

racy due to the differing degrees with which bias and variance contribute to overall

classification error.5

5There are two different senses of bias used in this dissertation. One indicates a preference

exhibited by a learning algorithm. The other refers to a component of classification error. Hopefully,
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The estimated bias of an algorithm reflects how often the average classifications,

across multiple training samples, of a learned model fail to correspond to the actual

classifications in the held–out test data. Variance estimates the degree to which the

classifications predicted by the learned model vary across multiple training samples.

An algorithm that always makes the same classification regardless of the training data

will have variance of 0.

Decision tree learners are inherently unstable in that they produce very dif-

ferent models across multiple samples of training data, even if there are only minor

differences in the samples [7]. These models result in different levels of accuracy when

applied to a held–out test set. Such algorithms are said to have low bias and high

variance.

Naive Bayes is more robust in that it is relatively unaffected by minor changes

in the training data. Naive Bayes is not particularly representative of the training

data since the parametric form is assumed rather than learned. Naive Bayes is an

example of a high bias and low variance algorithm.

This experiment estimates the degree to which bias and variance contribute

to the classification error made by Naive Bayes and the decision tree learner MC46.

Naive Bayes represents a high bias and low variance approach while MC4 represents

a low bias and high variance algorithm. The estimates of bias and variance reported

here are made following the sampling procedure described in [47]:

1. Randomly divide the data into two sets, D and E. D serves as a super–set of

the training sample while E is the held–out test set.

2. Generate T samples of size m from D. Let the size of D = 2m so that there

are
(

2m

m

)

possible training sets. For even a small value of m this will ensure

that there are relatively few duplicate training sets sampled from D.

the context will be sufficient to allow for immediate disambiguation.

6The MLC++[46] version of C4.5.
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3. Run a learning algorithm on the T training samples. Classify each observation

in the test–set E using each of the T learned models. Store these results in an

array called R.

4. Array R and the correct classifications of E serve as the input to the procedure

described in [47] that estimates bias and variance.

As discussed in [47], the reliability of the bias and variance estimates depends

upon having as large a test set as possible. Therefore, a training sample size of

m = 400 is employed since this is generally the lowest number of examples where

the decision tree learner and Naive Bayes perform at comparable levels of accuracy.

The size of the D is set to 800 and T = 1000 different training samples are randomly

selected.

Table 6.5 shows the bias and variance estimates for MC4 and Naive Bayes using

a training sample size of 400. The size of the test set is also listed. The results in

this table are divided into three groups. In the first group, Naive Bayes has higher

bias and lower variance than MC4. This corresponds to what would be expected; a

decision tree learner should have lower bias since it learns a more representative model

of the training data than Naive Bayes. The second group has very similar bias and

variance for Naive Bayes and MC4. Only drug falls into this group; for this word both

Naive Bayes and a learned decision tree have approximately the same representational

power. In the third group of results MC4 has higher bias and lower variance than

Naive Bayes. This is the reverse of what is expected and initially appears somewhat

counter–intuitive.

However, the words in this third group have appeared together in a previous ex-

periment; they are the same words where no supervised learning method significantly

improves upon the accuracy of the majority classifier: help, last, include, and public.

For these words disambiguation accuracy is based almost entirely on knowledge of

the majority sense; the contextual features provide little information helpful in dis-

ambiguation. However, Naive Bayes assumes a parametric form that includes all of
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Table 6.5. Bias Variance Estimates, m = 400

word test Naive Bayes MC4

size bias var error bias var error

agree 550 .063 .014 .077 .048 .021 .069

bill 540 .133 .027 .160 .110 .039 .149

chief 240 .060 .004 .064 .037 .020 .057

close 730 .137 .028 .165 .110 .054 .164

common 310 .140 .027 .167 .116 .027 .143

concern 790 .112 .027 .139 .101 .035 .136

interest 1560 .212 .051 .263 .189 .089 .278

drug 420 .192 .027 .219 .192 .017 .208

help 590 .182 .037 .219 .207 .028 .235

last 2380 .044 .013 .057 .051 .006 .057

include 760 .055 .010 .065 .086 .007 .093

public 70 .359 .071 .430 .381 .024 .405

the contextual features. This accounts for the higher amounts of variance since these

irrelevant features are included in the model and affect disambiguation. However, the

decision tree learner disregards features that are not relevant and essentially becomes

a majority classifier where variance is very low and bias is the main source of error.

The data in Table 6.5 is presented again as correlation plots in Figures 6.7, 6.8,

and 6.9. The classification error, bias, and variance for each word are represented by

a point in each plot. The x coordinate represents the estimate associated with Naive

Bayes and the y coordinate is associated with MC4. Thus, points on or near x = y

are associated with measures that have nearly identical estimates for Naive Bayes and

MC4 for a particular word.

Figure 6.7 confirms that the two methods result in approximately the same level

of classification error. Figure 6.8 shows that the bias error of Naive Bayes is at least

slightly higher for 8 of 12 words. And Figure 6.9 confirms that the variance error

tends to be greater for MC4.
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CHAPTER 7

UNSUPERVISED LEARNING EXPERIMENTAL RESULTS

This chapter contains an experimental evaluation of the unsupervised learning

methodologies described in Chapter 4. These approaches differ from the supervised

learning methods in that no sense–tagged text is required; only raw untagged text is

used to perform disambiguation.

A probabilistic model of disambiguation is learned from raw text by treating the

sense of an ambiguous word as missing data. As discussed in Chapter 4, the learning

is restricted to parameter estimation since the parametric form must be specified

rather than learned. These experiments assume that the parametric form is Naive

Bayes and use two different methods to estimate parameter values; the EM algorithm

and Gibbs Sampling. Two agglomerative clustering algorithms are also considered,

Ward’s minimum–variance method and McQuitty’s similarity analysis. As discussed

in Chapter 4, these methods perform disambiguation based upon measures of distance

that are derived from a dissimilarity matrix representation of the raw untagged text.1

There is one experiment discussed in this chapter. Thirteen words are dis-

ambiguated using four unsupervised methodologies where the context in which the

ambiguous word occurs is represented by three different feature sets. This results in

disambiguation by 156 possible combinations of word, method, and feature set. Each

possible combination is repeated 25 times in order to measure the deviation intro-

duced by randomly selecting initial parameter estimates for the EM algorithm and

1The freely available software package Bugs [41] was used for all Gibbs Sampling experiments.

Various freely available implementations of the EM algorithm were employed; AutoClass [18],

GAMES [89], and CoCo [2]. The commercial software package SAS [82], was used to perform

the agglomerative clustering methods.
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Gibbs Sampling, and randomly selecting among equally distant clusters when using

Ward’s and McQuitty’s algorithms. The results of this experiment are evaluated in

terms of disambiguation accuracy. However, as will be outlined in Section 7.1, the

evaluation methodology for unsupervised learning is somewhat different than in the

supervised case.

There are three pairwise analyses of the four unsupervised algorithms presented.

First, the accuracy of the probabilistic models where the parameter estimates are

learned with the EM algorithm and Gibbs Sampling are compared. Second, the

accuracy of agglomerative clustering performed by Ward’s and McQuitty’s methods

are compared. The final analysis compares the two most accurate methods from the

first two pairwise comparisons, McQuitty’s similarity analysis and Gibbs Sampling.

Each analysis contains two discussions. First, a methodological comparison is

made that highlights any significant differences in accuracy between two unsuper-

vised learning algorithms when both use the same feature set. Second, a feature set

comparison is made that focuses on the variations in accuracy for an unsupervised

learner as different feature sets are used.

7.1. Assessing Accuracy in Unsupervised Learning

In the supervised learning experiments, accuracy is the rate of agreement be-

tween the sense tags automatically assigned by a learned model and the sense tags

assigned by a human judge. This definition of accuracy is also employed in the un-

supervised experiment. However, the means of arriving at that evaluation measure

are different and in fact point to some important differences between supervised and

unsupervised learning.

In supervised learning accuracy is fairly easy to measure. The supervised algo-

rithm learns from examples where a human judge has assigned sense tags to ambigu-

ous words that refer to specific entries in the sense inventory of a word. For example,

given multiple instances of line and the sense inventory (telephone, series, cable),

a human judge tags some instances with the telephone sense, others with the cable
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sense, and still others with the series sense. From these examples, the supervised

algorithm learns how to assign these same meaningful tags to other instances of the

ambiguous word.

In the supervised framework, the act of sense–tagging richly augments the

knowledge contained in a text by creating a link from the manually disambiguated

instances of a word to a sense inventory provided by a dictionary or other lexical

resource. These links are critical for evaluation relative to a human judge since they

connect the text to the same sense inventory that the human tagger used. However,

in unsupervised learning no such links exist. The text is disconnected from the sense

inventory. No human tagger is involved and the only information available to the

unsupervised learner is the raw text which has no links to a sense inventory or any

other external knowledge source.

An unsupervised algorithm is limited to creating sense groups. A sense group

is simply a number of instances of an ambiguous word that are considered to belong

to the same sense. However, there is no link from the members of the sense group

to a sense inventory. The sense group is labeled by the unsupervised learner but this

label has no relation to the sense inventory nor does it describe the contents of the

group; it essentially meaningless.

In order to evaluate the accuracy of the unsupervised algorithm relative to a

human judge, a mapping between the uninformative labels attached to sense groups

and the sense inventory for a word must be established. In supervised learning these

mappings are automatic since the human tagger provides the link between the text

and the sense inventory. In unsupervised learning this mapping must be made as a

second step after the sense groups are learned.2

Consider the following example. Suppose there are 10 instances of line to be

disambiguated. A human tagger is told that there are three entries in the sense

2The separation of disambiguation into a two step process is discussed in [85]. There the act of

creating sense groups is termed sense discrimination and the process of attaching meaningful labels

to these groups is called sense labeling.
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inventory, (telephone, series, cable). The human assigns these sense tags as shown in

Figure 7.1. An unsupervised learner is given these same 10 instances and told that

there are three possible senses. It divides the usages of the ambiguous word into the

3 sense groups shown in Figure 7.2.

At this point there is not an immediately apparent means to assess the agree-

ment between the sense group assignments made by the unsupervised learner and the

sense tags assigned by the human judge. In order to determine accuracy, the sense

groups must be linked to the entries in the sense inventory. For this example there are

6 possible mappings between (1,2,3) and (telephone, series, cable).3 Each possible

mapping is examined to determine which results in the closest agreement with the

human judge.

One possible mapping is shown in Figure 7.3. Sense group 1 is assigned sense

tag series, sense group 2 is assigned cable, and sense group 3 is assigned telephone.

The shaded instances show where the sense group label matches the sense tag assigned

by the human judge. In this figure, 3 of 10 instances agree and result in unsupervised

accuracy of 30%.

A second possible mapping is shown in Figure 7.4. Sense group 1 is assigned

series, 2 is assigned telephone, and 3 is assigned cable. Here 7 of 10 instances agree

3Given n sense groups to be assigned n meaningful sense tags, there are n! possible mappings to

be considered.
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with the human judge so accuracy is 70%. The other four possible mappings are

evaluated and the maximum accuracy is reported as the unsupervised accuracy.

Given this evaluation methodology, a convenient means of determining a lower

bound for unsupervised disambiguation accuracy emerges. An unsupervised learner

can achieve accuracy equal to the percentage of the majority sense by not performing

any disambiguation at all. In other words, a lower bound classifier for unsupervised

learning simply assigns every instance of an ambiguous word to the same sense group.

This is somewhat analogous to supervised learning where the lower bound is estab-

lished by assigning every instance of an ambiguous word to the most frequent sense

in the training data, i.e., the majority sense. However, in supervised learning it is

relatively easy to exceed this lower bound. The same does not prove to be true for

unsupervised learning.

7.2. Analysis 1: Probabilistic Models

The first analysis of this experiment compares the accuracy of a probabilistic

model where the parametric form is assumed to be Naive Bayes and the parameter

estimates are learned by the EM algorithm and Gibbs Sampling. Table 7.1 shows the

average unsupervised disambiguation accuracy and standard deviation for each com-

bination of word, feature set, and parameter estimation method over 25 trials, where

each trial begins with a different random initialization of the parameter estimates.

In this table, significant differences in the disambiguation accuracy of a word

using the EM algorithm and Gibbs Sampling for a given feature set are shown in bold

face. These differences are discussed in Section 7.2.1, the methodological comparison.

The highest overall accuracy for a word using either the EM algorithm or Gibbs

Sampling and any of the three feature sets is shown in parenthesis. Any other values

that are not significantly less than the maximum accuracy are underlined. These

results are discussed in Section 7.2.2, the feature set comparison.4

4As in the supervised learning experiments, judgments as to the significance of differences in

accuracy are made by a two tailed t–test where p = .01.
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Table 7.1. Unsupervised Accuracy of EM and Gibbs

Feature Set A Feature Set B Feature Set C

Maj. Gibbs EM Gibbs EM Gibbs EM

chief .861 .719 .01 (.729 .06) .648 .00 .646 .01 .728 .04 .697 .06

common .842 .522 .00 .521 .00 .507 .07 .464 .06 (.670 .01) .543 .09

last .940 .900 .00 .903 .00 (.912 .00) .909 .00 .908 .00 .874 .07

public .683 .514 .00 .473 .03 .478 .04 .411 .03 (.578 .00) .507 .03

adjectives .832 .663 .657 .636 .608 .721 .655

bill .681 .590 .04 .537 .05 (.705 .10) .624 .08 .592 .04 .569 .04

concern .638 (.842 .00) (.842 .00) .819 .01 .840 .02 .785 .01 .758 .09

drug .567 (.676 .00) .658 .03 .543 .04 .551 .05 .674 .06 .652 .04

interest .593 .627 .08 .616 .06 (.652 .04) .615 .05 .617 .05 .649 .09

line .373 .446 .02 .457 .01 (.477 .03) .474 .03 .457 .01 .458 .01

nouns .570 .636 .622 .639 .621 .625 .617

agree .740 .609 .07 .631 .08 (.714 .14) .683 .14 .685 .14 .685 .14

close .771 .564 .09 .560 .08 (.714 .05) .672 .06 .636 .05 .648 .05

help .780 .658 .04 .586 .05 .524 .00 .526 .00 (.696 .05) .602 .03

include .910 .734 .08 .725 .02 (.833 .03) .783 .07 .551 .06 .535 .00

verbs .800 .641 .626 .696 .666 .632 .618

overall .734 .646 .634 .657 .631 .659 .629
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Figure 7.5. Probabilistic Model Correlation of Accuracy for all words
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7.2.1. Methodological Comparison

This comparison studies the effect on disambiguation accuracy of learning pa-

rameter estimates for a probabilistic model using Gibbs Sampling and the EM algo-

rithm. The motivation for the comparison is that while the EM algorithm is easy to

implement and generally quick to converge, it is also prone to converging at local max-

ima rather than a global maximum. However, while Gibbs Sampling is guaranteed

to converge at the global maximum, it does so at greater computational expense.

This experiment shows that there are only a few cases where a probabilistic

model with parameter estimates learned by Gibbs Sampling results in significantly

different disambiguation than the model arrived at with the EM algorithm. Of the 39

possible pairwise comparisons (13 words × 3 feature sets) between the EM algorithm

and Gibbs Sampling, only 7 result in significant differences. Of those, all favor Gibbs

Sampling. Those cases are shown in bold face in Table 7.1.

The lack of significant differences between the EM algorithm and Gibbs Sam-

pling is somewhat surprising given that the EM algorithm can converge to local max-

ima when the distribution of the likelihood function is not well approximated by the

normal distribution. However, in this experiment the EM algorithm does not appear

to have great difficulty with local maxima, often converging within 20 iterations to

essentially the same estimates obtained by Gibbs Sampling.

The use of Naive Bayes as the parametric form of the probabilistic model pro-

vides at least a partial explanation for the comparable results obtained with the EM

algorithm and Gibbs Sampling. Chapter 5 presents the distribution of the event

counts in the experimental data when the parametric form of the model is Naive

Bayes. These distributions prove to be relatively smooth for the three unsupervised

feature sets and are not dominated by events that are never observed in the data; in

fact, a majority of the possible events for each word are observed. If the parametric

form of the model were more complex than Naive Bayes, it would certainly be the

case that the distribution of event counts would be more skewed and that the EM

algorithm would be more susceptible to becoming trapped at a local maxima. How-

127



ever, the specification of Naive Bayes as the parametric form of the model seems to

avoid this difficulty.

While the number of significant differences between the EM algorithm and Gibbs

Sampling is small, the correlation plot comparing the accuracy of the two methods

in Figure 7.5 reveals a consistent increase in the accuracy of Gibbs Sampling relative

to the EM algorithm. Each point on this plot shows the accuracy attained by the

probabilistic model where parameter estimates are learned by the EM algorithm and

Gibbs Sampling for a given word and feature set. Figure 7.6 again shows the correla-

tion of accuracy, but only for the nouns. This shows the comparable performance of

both methods and suggests that Gibbs Sampling has a particular advantage over the

EM algorithm for the adjectives and verbs. This is not surprising since the adjectives

and verbs have the most skewed distributions of senses and are more likely to cause

difficulty for the EM algorithm than are the nouns.

The standard deviations associated with the two approaches also prove to be

similar, generally falling between .03 and .10. A standard deviation of .00 indicates

that the exact same sense group is created by each of the 25 trials of the algorithm.

The larger the deviation the more variation there is in the sense groups created from

trial to trial. The standard deviation observed is somewhat larger than expected,

particularly since neither method has substantial difficulties with local maxima. This

suggests that there is some degree of noise in the data that is obscuring sense distinc-

tions and causing the variance in the results from trial to trial.

There are several possible sources of noise in this data. The very crude part–

of–speech distinctions made in feature sets A and C may not provide sufficient infor-

mation to distinguish among senses. In addition, this tagging was performed without

the benefit of training data and is likely to contain inaccuracies.

The frequency based co–occurrences in feature sets B and C include a value

that signifies that the word at a specified position relative to the ambiguous word is

not among the 19 most frequent words that occur at this position with all instances

of the ambiguous word; this lumps together a great many words into a single feature
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value and may further blur the ability of the learning algorithm to accurately make

sense distinctions.

The difficulty in unsupervised learning is that features must be selected from

raw untagged text. The availability of accurately part–of–speech tagged text can

not be assumed, nor can the ability to select feature values that are indicative of

minority senses. Raw untagged text generally does not lend itself to fine grained

feature values that are able to identify particular senses; generally speaking features

must be selected simply based on frequency counts and lead to a certain amount of

noise in the data.

A noteworthy result is that only the nouns are disambiguated with accuracy

greater than the discussed lower bound for unsupervised learning. The accuracy of

the probabilistic models is less than the lower bound when the percentage of the

majority sense exceeds 68%. However, even in cases where the accuracy of the EM

algorithm and Gibbs Sampling is less than the lower bound, these methods are often

still providing high accuracy disambiguation. For example, Gibbs Sampling is able

to achieve 91% accuracy for last and 83% accuracy for include.

The relative success of noun disambiguation is at least partially explained by the

fact that, as a class, the nouns have the most uniform distribution of senses. However,

the distribution of senses is not the only factor affecting disambiguation accuracy; the

performance of the EM algorithm and Gibbs Sampling is quite different for bill and

public despite having roughly the same sense distributions.

It is difficult to quantify the effect of the distribution of senses on a learning

algorithm, particularly when using naturally occurring data. In previous unsupervised

experiments with interest, using a feature set similar to A, an increase of 36 percentage

points over the accuracy of the lower bound was achieved when the 3 senses were

evenly distributed in the training data [71]. Here, the most accurate performance

using larger samples and a natural distribution of senses is only an increase of 20

percentage points over the accuracy of the lower bound.
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The actual distribution of senses does not closely correspond to the distribution

of senses discovered by either method. As examples, the distribution of senses dis-

covered by the EM algorithm and Gibbs Sampling relative to the known distribution

of senses is illustrated in Figures 7.7, 7.8 and 7.9. These show the confusion matrices

associated with the disambiguation of concern, interest, and help, using feature sets

A, B, and C, respectively. A confusion matrix shows the number of cases where the

sense discovered by the algorithm agrees with the manually assigned sense along the

main diagonal; disagreements are shown in the rest of the matrix. The row totals

show the actual distribution of senses while the column totals show the discovered

distributions.

In general, these matrices show that the EM algorithm and Gibbs Sampling

result in distributions of senses that are more balanced than those of the actual

distribution. This is at least partially due to the assumption made prior to learning

by the unsupervised methods that each possible sense is equally likely. Adjusting this

prior assumption could result in the discovery of less balanced distributions of senses

and is an interesting direction for future research.

The fact that the EM algorithm and Gibbs Sampling often arrive at similar

results suggests that a combination of the these methods might be appropriate for this

data. It is proposed in [56] that the Gibbs Sampler be initialized with the parameters

that the EM algorithm converges upon rather than with randomly selected values.

If the EM algorithm has found a local maxima then the Gibbs Sampler can escape

it and find the global maximum. However, if the EM algorithm has already found

the global maximum then the Gibbs Sampler will converge quickly and confirm this

result.

7.2.2. Feature Set Comparison

While there is little variation between the EM algorithm and Gibbs Sampling

given a particular word and feature set, there are differences in the accuracy attained

for each method as they are used with different feature sets. In general, variation
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Discovered

Actual worry business

worry 384 63 447

business 132 656 788

516 719 1235

EM - 1040 correct

Discovered

Actual worry business

worry 384 63 447

business 132 656 788

516 719 1235

Gibbs - 1040 correct

Figure 7.7. concern - Feature Set A
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Discovered

Actual attention share money

attention 127 230 4 361

share 134 364 2 500

money 320 124 808 1252

581 718 814 2113

EM - 1299 correct

Discovered

Actual attention share money

attention 152 205 4 361

share 134 364 2 500

money 297 94 861 1252

583 663 867 2113

Gibbs - 1377 correct

Figure 7.8. interest - Feature Set B
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Discovered

Actual assist enhance

assist 119 160 279

enhance 344 644 988

463 804 1267

EM - 763 correct

Discovered

Actual assist enhance

assist 169 110 279

enhance 276 712 988

445 822 1267

Gibbs - 881 correct

Figure 7.9. help - Feature Set C
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in the accuracy of a method when using different feature sets suggests that certain

types of features are more or less appropriate for particular words. Table 7.1 shows

the maximum accuracy for each word in parenthesis. Any accuracies that are not

significantly less than this are underlined.

There are a number of cases where the same method attains very different levels

of accuracy when used with different feature sets. For example, the accuracies of the

EM algorithm and Gibbs Sampling for bill and include are much higher with feature

set B than with A or C. Less extreme examples of the same behavior are shown

by agree and close. However, the accuracies for drug and help are much lower with

feature set B than with A or C. A less extreme example is chief.

The separation of behavior between feature sets A and C and feature set B is

due to the nature of the features in these sets. A and C both include part–of–speech

features while feature set B does not. It appears that the usefulness of part–of–

speech features for disambiguation varies considerably from word to word. The fact

that 3 of 4 verbs perform at higher levels of accuracy with feature set B suggests that

part–of–speech features may not be helpful when disambiguating verbs.

When using either the EM algorithm or Gibbs Sampling, line, interest, and last

result in very similar disambiguation accuracy regardless of the feature set. In fact,

for interest and line there are no significant differences among any combination of

method and feature set. This lack of variation shows that the different feature sets

are not able to make sufficient distinctions among all words. It may also point to

limitations in Naive Bayes. While it performs well in general, there may be certain

words and feature sets for which the assumptions it makes are not appropriate.

The performance of concern is slightly unusual; it disambiguates most accu-

rately with feature sets A and B. However, the only feature in common between sets

A and B is the morphological feature; it seems unlikely that this accounts for the

high disambiguation accuracy achieved using both sets. A more likely explanation

is that the part–of–speech features from set A somewhat duplicate the information

contained in the unrestricted co–occurrences of set B. Unrestricted co–occurrences
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can be largely dominated by non–content words that provide more syntactic rather

than semantic information. This same explanation may apply in cases such as line

and interest where the results for feature sets A, B, and C are very similar. Feature

sets A and C rely heavily upon part–of–speech features which largely convey syntactic

information. If the co–occurrences in feature set B are also essentially representing

syntactic information, then similar performance across all feature sets is possible.

The highest average accuracy achieved for adjectives occurs when Gibbs Sam-

pling is used in combination with feature set C. The adjectives have the most skewed

sense distributions and set C has the largest dimensionality of the feature sets. Given

this combination of circumstances, it appears that the EM algorithm gets trapped at

local maxima for common and public; Gibbs Sampling finds a global maximum and

results in significantly better accuracy in these cases.

Feature set B appears to be well suited for bill but fares poorly with drug.

Otherwise there is not a clear pattern as to which feature set is most accurate for

the nouns. The relatively similar behavior across the feature sets suggests that cer-

tain features are either essentially duplicating one another or that there are features

included in these sets that are simply not useful for the disambiguation of nouns.

While it is clear that the part–of–speech and co–occurrence features are contributing

to disambiguation accuracy, it is less certain that the morphological and collocation

features make significant contributions.

7.3. Analysis 2: Agglomerative Clustering

The second analysis of this experiment compares the accuracy of two agglomer-

ative clustering algorithms, Ward’s minimum variance method and McQuitty’s sim-

ilarity analysis. Table 7.2 shows the average accuracy and standard deviation of

disambiguation over 25 random trials for each combination of word, method, and

feature set. The repeated trials are necessary to determine the impact of randomly

breaking ties during clustering. As in the first analysis, both methodological and

feature set comparisons are presented.

135



Table 7.2. Unsupervised Accuracy of Agglomerative Clustering

Feature Set A Feature Set B Feature Set C

Maj. McQuitty Ward McQuitty Ward McQuitty Ward

chief .861 .844 .05 .721 .01 .831 .06 .611 .01 (.856 .00) .673 .03

common .842 .648 .12 .513 .08 .797 .04 .444 .04 (.799 .06) .561 .05

last .940 (.791 .12) .598 .09 .541 .11 .659 .03 .636 .07 .601 .08

public .683 .560 .08 .450 .05 .558 .07 .461 .03 (.628 .05) .488 .04

adjectives .832 .711 .571 .682 .544 .730 .581

bill .681 .669 .08 .647 .11 (.753 .05) .600 .04 .561 .10 .515 .04

concern .638 .629 .07 .741 .04 .679 .04 .697 .02 .614 .08 (.758 .04)

drug .567 .530 .03 .557 .06 .521 .01 .528 .00 .573 .06 (.632 .06)

interest .593 .601 .04 .619 .04 (.653 .06) .552 .06 .651 .02 .615 .04

line .373 .420 .03 (.441 .03) .403 .02 .428 .03 .410 .02 .427 .02

nouns .570 .570 .601 .602 .561 .562 .589

agree .740 .610 .08 .547 .03 .678 .08 .613 .04 (.685 .07) .601 .00

close .771 .616 .09 .531 .02 .667 .07 .664 .00 (.720 .11) .645 .04

help .780 (.713 .05) .591 .05 .636 .11 .519 .01 .700 .06 .570 .03

include .910 (.880 .06) .707 .08 .767 .09 .770 .06 .768 .17 .558 .04

verbs .800 .705 .594 .687 .642 .718 .593

overall .734 .655 .589 .653 .580 .662 .588
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Figure 7.10. Agglomerative Clustering Correlation of Accuracy for all words

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Ward

McQuitty

Feature Set A 3

3

3

3

3

3

Feature Set B +

+

+

+
+

+

Feature Set C 2

2

2

2
2

2

Figure 7.11. Agglomerative Clustering Correlation of Accuracy for Nouns

137



7.3.1. Methodological Comparison

Ward’s and McQuitty’s methods are both agglomerative clustering algorithms

and differ only in the distance measure each uses to determine if an instance of an

ambiguous word belongs in a particular sense group. Since distance is not implicit

in the features used in this experiment, the data representing the instances of an

ambiguous word must be converted into a form where distance can be measured. In

this dissertation that representation is a dissimilarity matrix.

Ward’s method is based on a classical measure, Euclidean distance, while Mc-

Quitty’s method employs a simple count of the number of dissimilar features to es-

tablish group membership. The dramatic difference in the nature of these distance

measures motivates their inclusion in this study.

Unlike the probabilistic models, there are significant differences in the accuracy

of the two agglomerative clustering algorithms given a particular feature set. Of

the 39 possible pairwise comparisons, 17 result in significant differences. There are 2

cases where Ward’s method is significantly more accurate and 15 favoring McQuitty’s

similarity analysis. The significant differences are shown in bold face in Table 7.2.

The plot of the correlation of accuracy between Ward’s and McQuitty’s meth-

ods in Figure 7.10 shows that McQuitty’s method generally is the more accurate.

However, in Figure 7.11 the correlation plot is restricted to the nouns and Ward’s

method is shown to be slightly more accurate. This is also illustrated in Table 7.2,

where there are only three significant differences among the nouns; in two of those

cases Ward’s method is the most accurate. Thus, it is only for verbs and adjectives

that McQuitty’s method shows a decisive advantage.

As is the case with the probabilistic models, only the nouns are consistently

disambiguated with accuracy greater than the majority sense. However, McQuitty’s

method achieves accuracy comparable to the majority sense for a few of the adjectives

and verbs when the standard deviation is taken into account. This occurs for chief

with all feature sets, common for sets B and C, close for set C, and include for set A.
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There appears to be significant relationships among the actual sense distribu-

tions of the ambiguous words, the inherent biases of the agglomerative clustering

algorithms, and the accuracy attained by each method. Ward’s method has a well–

known bias towards finding balanced distributions of sense groups [91]. However,

McQuitty’s method has no such bias since there are no underlying parametric models

or distributional assumptions that influence the algorithm.5 The tendencies of both

agglomerative methods are illustrated in Figures 7.12, 7.13, and 7.14. These show the

confusion matrices for the same word and feature set combinations that are discussed

in the first analysis. These illustrate the bias of Ward’s method towards the discovery

of balanced sense distributions while also showing that McQuitty’s similarity analysis

tends to find more skewed distributions.

The bias of Ward’s method towards balanced distributions of senses results in

accurate disambiguation of the nouns but also leads to rather poor performance with

adjectives and verbs. As the actual distribution of senses grows more skewed, Ward’s

method becomes less accurate. By contrast, McQuitty’s method performs fairly well

with words that have skewed distributions of senses. It has no bias regarding the

distribution of senses it discovers and is able to learn very unbalanced distributions.

The standard deviations in Table 7.2 measure the impact of randomly breaking

ties during the clustering process. A standard deviation of .00 indicates that no ties

occurred during clustering; in this case the agglomerative algorithm is deterministic

and the sense groups discovered from trial to trial are identical. As clustering becomes

more influenced by random breaking of ties, the standard deviation will increase since

the sense groups created will vary from trial to trial.

Overall, the standard deviation for McQuitty’s similarity analysis is greater than

that of Ward’s method. This is not surprising given the simplicity of McQuitty’s

approach; distances are based on a count of the dissimilar features between two

5In this regard McQuitty’s method is unique among the four unsupervised approaches discussed

in this dissertation. Recall that both the EM algorithm and Gibbs Sampling also tend to find

balanced distributions of senses.
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Discovered

Actual worry business

worry 166 281 447

business 181 607 788

347 888 1235

McQuitty - 773 correct

Discovered

Actual worry business

worry 288 159 447

business 155 633 788

443 792 1235

Ward - 921 correct

Figure 7.12. concern - Feature Set A
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Discovered

Actual attention share money

attention 53 6 302 361

share 58 187 255 500

money 108 4 1140 1252

219 197 1697 2113

McQuitty - 1380 correct

Discovered

Actual attention share money

attention 280 3 78 361

share 240 197 63 500

money 559 0 693 1252

1079 200 834 2113

Ward - 1170 correct

Figure 7.13. interest - Feature Set B
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Discovered

Actual assist enhance

assist 45 234 279

enhance 146 842 988

191 1076 1267

McQuitty - 887 correct

Discovered

Actual assist enhance

assist 88 191 279

enhance 354 634 988

442 825 1267

Ward - 722 correct

Figure 7.14. help - Feature Set C

142



instances of an ambiguous word. Ties are common given these sets since they contain

relatively small numbers of features; A has 8, B has 5, and C has 7.

However, Ward’s method computes Euclidean distances in n–space. While this

more detailed measure results in fewer ties, there are still enough to cause relatively

large amounts of deviation for some words. This suggests that the conversion of raw

text into a dissimilarity matrix representation results in a reduction in the discrimi-

nating power of the feature set to the point where ties are still common.

In general, these standard deviations suggest that the feature sets need to be

expanded to provide more distinctions between instances of an ambiguous word when

using the agglomerative clustering algorithms.

7.3.2. Feature Set Comparison

When using probabilistic models, feature sets A and C result in similar perfor-

mance and often have an inverse relationship to the accuracy attained with feature

set B. For example, if set B results in high accuracy then A and C may not. When

feature set A and C result in high accuracy then set B often does not. These patterns

hold for 7 of 13 words when disambiguating with probabilistic models. This suggests

that the features common to sets A and C, the part–of–speech of surrounding words,

are a main contributor to disambiguation accuracy when using probabilistic models.

However, when an agglomerative approach is employed these patterns are much

less pronounced. The only cases where results from set A and set C are more accurate

than those from set B are when McQuitty’s method is used to disambiguate help and

when Ward’s method is used for concern. The only case where feature set B is most

accurate is when McQuitty’s method is used to disambiguate bill.

This change in behavior suggests that the data representation employed by

the agglomerative methods blurs some distinctions that are present in the frequency

count data used by the probabilistic models. While both the probabilistic models and

agglomerative methods use the same feature sets, the agglomerative methods convert

the data into a dissimilarity matrix representation that shows how many features
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differ between instances of an ambiguous word; however, it makes no distinctions as

to which features differ. Thus the part–of–speech distinctions that appear to have

significant impact on disambiguation accuracy when using probabilistic models are

not distinguishable from other features in the dissimilarity matrix representation.

Overall the combination of McQuitty’s similarity analysis with feature set C

results in consistently high accuracy for the adjectives and verbs. Feature set C has

the highest dimensionality of the three feature sets. Thus, the number of dissimilar

features between two instances of an ambiguous word will likely be fairly high most of

the time since there are a large number of possible values for the features. This results

in the creation of a large sense group where all members have fairly high dissimilarity

counts. The distribution of discovered senses in this case will be skewed and likely

correspond fairly well with the actual distributions.

The only cases where McQuitty’s method and feature set C fares poorly for the

verbs and adjectives are for last and include. These are interesting exceptions in that

these two words have the largest majority senses, .94% and .91% respectively. They

are both most accurately disambiguated with feature set A; no other combination of

feature set and method results in comparable performance. Agglomerative clustering

based on dissimilarity counts of the features in set A is particularly effective with

these words. This suggests that the combination of a low dimensional feature set

with a word that has an extremely skewed distribution of senses may be appropriate.

There is not a clear pattern as to which feature sets lead to accurate disam-

biguation of nouns. For concern, Ward’s method in conjunction with feature sets A

and C achieves the highest accuracy. Ward’s method is also most accurate for drug

when used with feature set C. The success of Ward’s method for these two nouns is

related to the general tendency of Ward’s method to find balanced distributions of

senses. As is the case in the probabilistic models, interest and line do not show great

variation from one feature set to the next. This again suggests that the dissimilarity

matrix may be reducing the granularity of the information available to the clustering

algorithm by reducing the distinctions that the feature sets are able to represent.
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7.4. Analysis 3: Gibbs Sampling and McQuitty’s Similarity Analysis

The first analysis in Section 7.2 shows that Gibbs Sampling offers some im-

provement over the EM algorithm, particularly for adjectives and verbs. The second

analysis in Section 7.3 shows that McQuitty’s similarity analysis is often more ac-

curate than Ward’s method; primarily when disambiguating adjectives and verbs.

This final analysis compares McQuitty’s method and Gibbs Sampling. This section

only contains a methodological comparison since the feature set comparisons for Mc-

Quitty’s method and Gibbs Sampling are included in the first two analyses.

Table 7.3 reformats the accuracies reported in the previous two analyses for

easy comparison. As before, significant differences between the two methods for a

particular word and feature set are shown in bold face. The maximum accuracy for

a word is in parenthesis and any accuracies that are not significantly less than this

maximum are underlined.

There are a relatively large number of significant differences between Gibbs

Sampling and McQuitty’s similarity analysis given a particular feature set. Of the

39 pairwise comparisons, 19 show significant differences. Gibbs Sampling is more

accurate in 10 of those cases and McQuitty’s method is more accurate in 9. These

significant differences are shown in bold face in Table 7.3.

The correlation of accuracy between Gibbs Sampling and McQuitty’s method

is shown in Figure 7.15. Since there is not a clear pattern associated with the per-

formance of the methods, this data is broken down into separate correlation plots for

adjectives, nouns, and verbs in Figures 7.16, 7.17, and 7.18.

Figure 7.16 shows that McQuitty’s method is generally more accurate for ad-

jectives, the exception being last for all three feature sets. Figure 7.17 suggests that

Gibbs Sampling is more accurate for the nouns. Figure 7.18 shows that McQuitty’s

method is generally more accurate for the verbs, although not so dramatically as is

the case with the adjectives.
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Table 7.3. Unsupervised Accuracy of Gibbs and McQuitty’s

Feature Set A Feature Set B Feature Set C

Maj. Gibbs McQuitty Gibbs McQuitty Gibbs McQuitty

chief .861 .719 .01 .844 .05 .648 .00 .831 .06 .728 .04 (.856 .00)

common .842 .522 .00 .648 .12 .507 .07 .797 .04 .670 .11 (.799 .06)

last .940 .900 .00 .791 .12 (.912 .00) .541 .11 .908 .00 .636 .07

public .683 .514 .00 .560 .08 .478 .04 .558 .07 .578 .00 (.628 .05)

adjectives .832 .663 .711 .636 .682 .721 .730

bill .681 .590 .04 .669 .08 .705 .10 (.753 .05) .592 .04 .561 .10

concern .638 (.842 .00) .629 .07 .819 .01 .679 .04 .785 .01 .614 .08

drug .567 (.676 .00) .530 .03 .543 .04 .521 .01 .674 .06 .573 .06

interest .593 .627 .08 .601 .04 .652 .04 (.653 .06) .617 .05 .651 .02

line .373 .446 .02 .420 .03 (.477 .03) .403 .02 .457 .01 .410 .02

nouns .570 .636 .570 .639 .602 .625 .562

agree .740 .609 .07 .610 .08 (.714 .14) .678 .08 .685 .14 .685 .07

close .771 .564 .09 .616 .09 .714 .05 .667 .07 .636 .05 (.720 .11)

help .780 .658 .04 (.713 .05) .524 .00 .636 .11 .696 .05 .700 .06

include .910 .734 .08 (.880 .06) .833 .03 .767 .09 .551 .06 .768 .17

verbs .800 .641 .705 .696 .687 .632 .718

average .734 .646 .655 .657 .653 .659 .662
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Figure 7.15. Gibbs and McQuitty’s Correlation of Accuracy for all words
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Figure 7.16. Gibbs and McQuitty’s Correlation of Accuracy for Adjectives
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Figure 7.17. Gibbs and McQuitty’s Correlation of Accuracy for Nouns
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Figure 7.18. Gibbs and McQuitty’s Correlation of Accuracy for Verbs
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Of the 19 significant differences, 10 occur among the adjectives, 7 occur among

the nouns, and 2 occur among the verbs. The distribution of senses plays a role in

these results, particularly for the adjectives. Of the 10 significant differences among

the adjectives, 7 favor McQuitty’s method. Given the tendency of McQuitty’s method

to discover skewed sense distributions this is not surprising. Of the 7 significant differ-

ences observed among the nouns, all favor Gibbs Sampling. Again, this is somewhat

expected given the bias of Gibbs Sampling towards discovering balanced distribu-

tions of senses. Finally, the two significant differences in the verbs favor McQuitty’s

method. Despite having rather skewed sense distributions, McQuitty’s method and

Gibbs Sampling perform at comparable levels of accuracy for the verbs. This indi-

cates that the greater granularity of the data representation used by Gibbs Sampling

is sometimes sufficient to offset the bias of McQuitty’s method towards discovering

skewed sense distributions.

Direct comparison of McQuitty’s method and Gibbs Sampling must take into

account the differences in the data representations employed. McQuitty’s similarity

analysis is based upon counts of the number of dissimilar features between multiple

instances of the ambiguous word. A probabilistic model is based upon frequency

counts of the marginal events as defined by its parametric form. Given these rather

different representations, it is not surprising that the accuracies for the two meth-

ods for a given word and feature set are often quite different. However, this makes

the few cases where the two methods achieve nearly identical results all the more

intriguing. For example, agree with feature sets A and C, interest with feature set

B, and help with feature set C, all achieve very similar levels of accuracy despite the

differences in representation. Understanding the conditions that lead to these results

is an interesting area for future work.

In general, these results suggest that the characteristics of a feature set must

be compatible with the learning algorithm in order to achieve good results. Gibbs

Sampling benefits from feature sets that contain a small number of features that

each have a limited number of possible values. This allows for accurate parameter
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estimation, particularly when the parametric form is a simple model such as Naive

Bayes. For example, the ability learn reliable parameter estimates contributes to the

high accuracy that Gibbs Sampling achieves with feature set A for the nouns. By

contrast, McQuitty’s method generally benefits from larger numbers of features and

higher dimensional spaces. Given such data, a dissimilarity matrix becomes a richer

source of information that can be used to make more fine grained distinctions than

is the case with a small number of features. This data representation contributes to

the overall high accuracy attained with feature set C for adjectives and verbs.
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CHAPTER 8

RELATED WORK

Much of the early work in word sense disambiguation relied on the use of rich,

manually–crafted knowledge sources such as semantic networks and concept hier-

archies (e.g., [43], [87], [95]). While these systems were very successful in limited

domains, they tended to be difficult to scale up or port to new domains.

As the difficulty in creating knowledge–rich resources for larger domains became

apparent, research shifted to exploiting online lexical resources that were already con-

structed such as dictionaries, thesaruses, and encyclopedias (e.g., [52], [97]). While

these are rich sources of knowledge that offer relatively broad coverage of both lan-

guage and topic, they are not designed for use with a mechanical inferencing algo-

rithm. Rather, these resources are intended for a human user who will apply their own

inferencing methods to find and understand the information in the lexical resource.

Recent work in disambiguation has been geared towards corpus–based, statisti-

cal methods (e.g., [11], [12], [64], [63], [70], [73], [96]). These approaches often employ

supervised learning algorithms and require the availability of manually created train-

ing examples from which to learn. However, sense–tagged generally does not exist in

large quantities and it proves expensive to create.

The difficulties in building semantic networks, the lack of automatic inferencing

algorithms appropriate for lexical resources designed for human use, and the time

consuming nature of manually sense–tagging text; all these factors lead to the real-

ization that the only truly broad–coverage knowledge resource currently available for

word sense disambiguation is raw untagged text. However, the lack of any systematic

structure and the absence of points of reference to external knowledge sources makes

untagged text a very challenging resource from which to learn.
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It is difficult to precisely quantify the degree of structure and richness in a

knowledge source for word sense disambiguation. The following is an approximate

and subjective ranking, beginning with the richest and most structured sources of

knowledge and ending with raw untagged text, the most impoverished and unstruc-

tured source considered here.

1. semantic networks, concept hierarchies

2. machine readable dictionaries, thesaruses

3. parallel translations

4. sense–tagged corpora

5. raw untagged corpora

This chapter discusses representative approaches to word sense disambiguation

that employ each of these different kinds of knowledge resources.

8.1. Semantic Networks

A semantic network is a highly structured knowledge source where nodes repre-

sent concepts and related concepts are connected by links of various types. Common

examples of links include is–a, has–part, and is–made–of.

Semantic networks are often used to model and enforce selectional restrictions,

a concept that finds its roots in Case Grammar [34]. This is a lexically based linguistic

formalism where verbs are defined based on the roles, i.e, case frames, of the words

that they may be validly used with. As a simple example, suppose that the verb hit

is defined as follows:

hit :: [AGENT:human] [OBJECT:projectile] [INSTRUMENT:club]

AGENT, OBJECT and INSTRUMENT are just a few examples of possible case

frames. The selectional restrictions on these frames are specified in lower case letters.
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BOY HIT BALL  BAT

HUMAN

   PROJECTILE 

    CLUB

       HIT

IS-A 
IS-A

IS-A

IS-A

INSTRUMENT

 OBJECT

AGENT

Figure 8.1. Simple Semantic Network

This definition tells us that the verb hit expects that the AGENT who performs the

hitting is a human, that the OBJECT that AGENT hits is a projectile, and that the

INSTRUMENT the AGENT uses to hit the OBJECT with is a club.

In these approaches nouns are often defined in terms of subsuming relations as

shown in a IS-A hierarchy. A bat is a club, a boy is a human, and a ball is a projectile.

A Case Grammar parser will accept the sentence The boy hit the ball with a bat since

all of the selectional restrictions imposed by the verb are honored.

Case Grammar and selectional restrictions are conveniently mapped onto a se-

mantic network. The nodes of the network represent concepts and the links between

nodes enforce the selectional restrictions. A semantic network representation of the

Case Grammar for hit appears in Figure 8.1. Here the nouns and verbs in the sentence

are shown in boxes, the concepts are in ovals, and the links are labeled appropriately.

Once a semantic network is constructed, word sense disambiguation can be

performed using marker passing as an inference mechanism. Marker passing was

introduced in [77] as a means of spreading activation on semantic memory. Marker

passing was extended to serve as an inferencing mechanism by [17].

Markers are able to travel through the semantic network, visiting the nodes

and moving along the links. Markers are restricted as to what types of links they

may travel along. Inferencing is achieved by propagating markers from the concepts
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of interest and determining at what concepts they intersect in the network. These

points of intersection will reveal some kind of relationship between the two concepts

that may not have been previously realized.

Marker passing has been widely used in language processing for various infer-

encing problems, including word sense disambiguation (e.g. [21], [43], [61], [65], and

[100]). Generally the words in a sentence activate the concepts that they are linked to

by passing a marker. The activated concepts continue to propagate markers to other

concepts until the network eventually stabilizes. This stabilized network represents

the disambiguated sentence.

Marker passing offers tremendous opportunities to exploit parallel computer

architectures. It is also an intuitively appealing approach that may ultimately allow

for the development of reasonable cognitive models of disambiguation. However, the

question of how to construct the underlying representations remains problematic. One

approach that has proven successful is to learn selectional constraints via interactive

training with a user (e.g. [16], [45]). Another option is to automatically construct

these representations from existing resources such as a machine readable dictionary

(e.g. [14], [20], [90]).

8.2. Machine Readable Dictionaries

Machine readable dictionaries were first applied to word sense disambiguation

in [52]. There, pine cone was disambiguated based on the dictionary definitions of

pine and cone. It was noted that the definitions of pine and cone both contained

references to the concept of a tree:

pine: any of a genus of coniferous evergreen trees which have slender elon-

gated needles and some of which are valuable timber trees or ornamentals

cone: a mass of ovule-bearing or pollen-bearing scales or bracts in trees

of the pine family or in cycads that are arranged usually on a somewhat

elongated axis
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By unifying these references to tree a computer program inferred that pine cone is the

fruit of a tree rather than an edible receptacle for a pine tree. Experimental results

for this approach are reported at 50%–70% accuracy for short passages from Pride

and Prejudice and an Associated Press news story.

[97] presents an approach where ambiguous words that occur in encyclopedia

entries are disambiguated with respect to categories defined in Roget’s Thesaurus.

A Naive Bayes model is developed that contains 100 feature variables and a single

variable representing the sense of the ambiguous word. The feature variables are the

50 words to the left and right of the ambiguous word. The parameter estimates for

this model are made using category information from Roget’s Thesaurus. There are

1042 categories in Roget’s. Typical examples of categories include tools–machinery

or animal–insect, and each category is described by a broad set of relations (similar

to those represented by links in a semantic network) that typically consist of over

3,000 words. After the parameter estimates are made from the entries describing

Roget’s categories, this probabilistic model is used to disambiguate instances of twelve

ambiguous words found in the June 1991 version of Grolier’s Encyclopedia. Accuracy

is reported at above 90% for 11 of 12 words with between 2 and 6 possible senses.

While machine readable dictionaries are a promising resource for disambigua-

tion, it can sometimes be the case that dictionary entries are too brief to provide all

of the salient collocations or other clues that might identify the sense of an ambigu-

ous word. However, as online dictionaries grow more extensive their usefulness as a

knowledge source in corpus–based language processing will likewise increase.

8.3. Parallel Translations

Given the expense of manually tagging ambiguous words with senses, it is natu-

ral to ask if there are clever means of obtaining sense–tagged text that avoid the need

for manual intervention. In fact, the use of parallel translations is such an approach.

This methodology relies upon the premise that while a word may be ambiguous in

one language, the various senses may have distinct word forms in another language.

155



Consider the word bill in English. It has many possible senses, among them

pending legislation and statement requesting payment. In Spanish these two senses

have distinct word forms, proyecto de ley and cuenta. Suppose the following usages

of bill are found in parallel English and Spanish text:

1E) The bill is too much.

1S) La cuenta es demasiado.

2E) The bill to save the banks is good.

2S) El proyecto de ley para salvar los bancos es bueno.

From the Spanish text it is clear that usage of bill in sentence 1E) refers to

a statement requesting payment while the usage in sentence 2E) refers to pending

legislation. Thus, the sense distinction made in Spanish is utilized to assign the

appropriate sense–tags to bill in English.

This approach to creating sense–tagged text has been pursued mainly in French

and English due to the availability of parallel translations of the Canadian Parlia-

mentary Proceedings, i.e., the Hansards, (e.g. [9], [37]). Once the sense–tags are

obtained from a parallel translation, supervised learning methods can be employed

as if the tagging had been performed manually. Naive Bayes with a large window of

context is employed in [37] while [9] identify a single binary feature that makes the

sense distinction.

However, given the nature of the Hansards, it is in fact rather difficult to locate

many words that are truly ambiguous within that domain. For example,[37] point

out that while bank is highly ambiguous in general text, in the Hansards it nearly

always is used to refer to a financial institution. Indeed, the location of more diverse

parallel bilingual texts remains the main obstacle to wider use of this approach.

A related method described in [24] finds translations between Hebrew and En-

glish using co–occurrence statistics from independent Hebrew and English corpora.

This approach is somewhat more flexible in that it does not require the availability

of diverse parallel bilingual corpora.
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An unanswered question is key to determining the viability of parallel corpora

approaches; how large is the set of words that are ambiguous in both languages? If it

is small then this approach is certainly viable. If not, then it may suffer from scaling

problems much like other resources.

8.4. Sense–Tagged Corpora

The earliest use of sense–tagged text to create models of word sense disambigua-

tion may have been that of [44]. They built 1,815 models of disambiguation manually,

focusing on words that occur at least 20 times in a corpus of 510,976 words. Their

models consist of sets of rules and use features that are found within four positions of

the ambiguous word. These features include the part–of–speech of surrounding words,

the morphology of the ambiguous word, and membership of surrounding words into

one of sixteen possible semantic categories: Animate, Human, Collective, Abstract

Noun, Social Place, Body Part, Political, Economic, Color, Communications, Emo-

tions, Frequency, Evaluative Adjective, Dimensionality Adjective, Position Adjective,

and Degree Adverb.

An early automatic approach where models are learned from sense–tagged text

is presented in [6]. Two–thousand sense–tagged instances for each of five words were

created, where each word had three or four possible senses. A decision tree learner

was provided with 1,500 training examples for each word, where each example was

characterized by 81 binary features representing the presence or absence of certain

“contextual categories”. There are three varieties of contextual category; subject

categories from Longman’s Dictionary of Contemporary English, the 41 words that

occur most frequently within two positions of the ambiguous word, and the 40 content

words that occur most frequently in the sentence with an ambiguous word. It was

found that the dictionary categories resulted in 47% accuracy, the 41 most frequent

words resulted in 72% accuracy, and the 40 most frequent content words resulted in

75% accuracy.
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Early probabilistic approaches typically attempted to identify and exploit a

single very powerful contextual feature to perform disambiguation. For example [9],

[25], and [98] all present methods for identifying a single feature that is sufficient to

make highly accurate disambiguation decisions. In [98] for example, it is reported

that a single collocation feature, content–word–to–the–right, results in accuracy well

over 90% for binary sense distinctions.

In order to utilize probabilistic models with more complicated interactions

among feature variables, [12] introduced the use of sequential model selection and

decomposable models for word sense disambiguation. Prior to this, statistical analy-

sis of natural language data was often limited to the application of standard models,

such as n-grams and Naive Bayes. They developed a sequential model selection pro-

cedure using backward search and the exact conditional test in combination with a

test for model predictive power. In their procedure, the exact conditional test is used

to guide the generation of new models and a test of model predictive power was used

to select the final model from among those generated during the search.

The supervised learning portion of this dissertation largely consists of exten-

sions to the work of Bruce and Wiebe. As such, their methods are discussed rather

extensively in Chapter 3 and their feature set and sense–tagged text is described in

Chapter 5.

What emerges throughout the literature of corpus–based approaches to word

sense disambiguation is considerable variation in the methodologies, a wide range of

feature sets, and a great variety in the types of text that have been disambiguated.

Unfortunately, comparative studies of these approaches have been relatively rare.

As mentioned in Chapter 6, [51] compare a neural network, a Naive Bayes

classifier, and a content vector when disambiguating six senses of line. It is reported

that all three methods are equally accurate. This same data is utilized by [62] and

applied to an even wider range of approaches; a Naive Bayes classifier, a perceptron,

a decision–tree, a nearest–neighbor classifier, a logic based Disjunctive Normal Form

learner, a logic based Conjunctive Normal Form learner, and a decision list learner
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are all compared. It is found that the Naive Bayes classifier and the perceptron prove

to be the most accurate of these approaches.

Both studies employ the same feature set for the line data. It consists of binary

features that represent the occurrence of all words within approximately a 50 word

window of the ambiguous word, resulting in nearly 3,000 binary features. Given

the vast size of the event space, representations of training data created by simple

approaches such as Naive Bayes and the perceptron capture the same information as

those created by more sophisticated methods.

A comparative study of the nearest neighbor classifier PEBLS and the backward

sequential model selection method of [12] is presented by [64]. They compare the

performance of the two methods at disambiguating 6 senses of interest. They report

that PEBLS achieves accuracy of 87% while [12] report accuracy of 78%.1 They

expand upon the feature set used in [12] (feature set BW) by including collocation

features and verb–object relationships. Their feature set consists of the following:

1. collocations that occur within one word of the ambiguous word

2. part–of–speech of words ± 3 positions of ambiguous word

3. morphology of the ambiguous word

4. unordered set of surrounding key–words, i.e., co–occurrences

5. verb–object syntactic relations

[64] evaluate the relative contribution of each type of feature to the overall

disambiguation accuracy. They report that the collocations provide nearly all of the

disambiguation accuracy, while the part–of–speech and morphological information

also prove useful. The unordered sets of surrounding key–words and verb–object

syntactic relations tended to contribute very little to disambiguation accuracy. Thus,

1The same data is employed in this dissertation and the highest accuracy attained is 76±2%.
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the improvement in accuracy that they report may be due to their use of collocations

features.

The fundamental limitation of supervised learning approaches to word sense

disambiguation is the availability of sense–tagged text. The largest available source

of sense–tagged text is the Defense System Organization 192,800 sense–tagged word

corpus [64]. There are 191 different nouns and verbs that are sense–tagged. The

average number of senses per noun is 7.8 and 12.0 senses per verb. The only other

large source of sense–tagged text that is widely available is a 100,000 word subset of

the Brown Corpus [36]. Both of these corpora are tagged with WordNet senses. By

way of speculation, if all of the “privately held” sense–tagged text was added to the

300,000 words provided by the two corpora above, it seems unlikely that the total

number of sense–tagged instances would exceed one–million words.

8.5. Raw Untagged Corpora

There are in fact relatively few “pure” unsupervised methodologies for word

sense disambiguation that rely strictly on raw untagged text (e.g., [69], [72], [84],

[85]). More typically, bootstrapping approaches have been employed. The first such

example is described in [42]. There a supervised learning algorithm is trained with a

small amount of manually sense–tagged text and applied to a held out test set. Those

examples in the test set that are most confidently disambiguated are added to the

training sample and the supervised learning algorithm is re–trained with this larger

collection of examples.

[99] describes a more recent bootstrapping approach. This method takes advan-

tage of the one sense per collocation hypothesis put forth in [98], where it is observed

that words have a strong tendency to be used only in one sense in a given colloca-

tion. This is an extension of the observation made in [37] that words tend to be used

only in one sense in a given discourse or document, i.e., the one sense per discourse

hypothesis.

160



This algorithm requires a small number of training examples to serve as a seed.

There are a variety of options discussed for automatically selecting seeds; one is to

identify collocations that uniquely distinguish between senses. For plant, the collo-

cations manufacturing plant and living plant make such a distinction. Based on 106

examples of manufacturing plant and 82 examples of living plant this algorithm is

able to distinguish between two senses of plant for 7,350 examples with 97 percent ac-

curacy. Experiments with 11 other words using collocation seeds result in an average

accuracy of 96 percent where each word had two possible senses.

There are relatively few approaches that attempt to perform disambiguation

only using information found in raw untagged text. One of the first such efforts is

described [84]. There words are represented in terms of the co-occurrence statistics

of four letter sequences. This representation uses 97 features to characterize a word,

where each feature is a linear combination of letter four-grams formulated by a sin-

gular value decomposition of a 5000 by 5000 matrix of letter four-gram co-occurrence

frequencies. The weight associated with each feature reflects all usages of the word in

the sample. A context vector is formed for each occurrence of an ambiguous word by

summing the vectors of the contextual words. The set of context vectors for the word

to be disambiguated are then clustered, and the clusters are manually sense-tagged.

A related method is described in [85]. However, here ambiguous words are

clustered into sense groups based on second–order co–occurrences; two instances of

an ambiguous word are assigned to the same sense if the words that they co–occur with

likewise co–occur with similar words in the training data. In the previous approach

the assignment to sense groups was based on first–order co–occurrences where an

ambiguous word was represented by the four–grams it directly occurs with. It is

reported that second–order co–occurrences reduce sparsity and allow for the use of

smaller matrices of co–occurrence frequencies. In this approach the evaluation is

performed relative to information retrieval tasks that utilize the sense group and do

not require sense–tags. This results in a fully automatic approach where no manual

intervention is required.
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While similar in spirit, the unsupervised work in this dissertation and that of

Schütze are somewhat distinct. The features employed in this dissertation occupy a

much smaller event space and rely mainly on collocations, part–of–speech and mor-

phological information. While he also employs agglomerative clustering to form sense

groups, the data is represented in terms of context vectors while the data here is

represented in terms of dissimilarity matrices.
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CHAPTER 9

CONCLUSIONS

This dissertation presents methods of learning probabilistic models of word sense

disambiguation that use both supervised and unsupervised techniques. This chapter

summarizes the contributions of this research and outlines directions for future work.

9.1. Supervised Learning

Supervised learning approaches to word sense disambiguation depend upon the

availability of sense–tagged text. While the amount of such text is still limited, there

has been a definite increase in quantity in recent years. The largest contribution to

this has been the release of the DSO corpus, discussed in the previous chapter. Given

the likelihood that even larger amounts of sense–tagged text will become available,

continuing to develop and improve supervised learning approaches for word sense

disambiguation is an important issue.

Indeed, while the cost of manually tagging text with senses is high, it is still a

less expensive enterprise than creating the resources utilized by knowledge–intensive

approaches to disambiguation. These more elaborate representations of knowledge

bring with them an additional problem; suitable inferencing mechanisms must also

be developed to reason from this data. When viewed against these alternatives, the

cost of manually annotating text is actually quite modest.

9.1.1. Contributions

This dissertation advances the state of supervised learning as applied to word

sense disambiguation in the following ways:
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The information criteria are introduced as evaluation criteria for sequential

model selection as applied to word sense disambiguation. These are alternatives to

significance tests that result in a fully automatic selection process. The information

criteria do not require manually tuned values to stop the model selection process;

such a mechanism is inherent in their formulation.

In particular, Akaike’s Information Criteria is shown to result in a model se-

lection process that automatically selects accurate models of disambiguation using

either backward or forward search.

Forward sequential search is introduced as a search strategy for sequential model

selection as applied to word sense disambiguation. This is an alternative to backward

search that is especially well suited for the sparse data typical in language process-

ing. Forward sequential search has the advantage that the search process starts with

models of very low complexity. This results in candidate models that have a small

number of parameters whose estimates are well supported even in relatively small

quantities of training data. This ensures that the selection process makes decisions

based upon the best available information at the time.

This dissertation also introduces the Naive Mix, a new supervised learning al-

gorithm for word sense disambiguation. The Naive Mix averages an entire sequence

of decomposable models generated during a sequential selection process to create a

probabilistic model. It is more typical that model selection methods only find a single

best model. However, this dissertation shows that there are usually several different

models that result in similar levels of accuracy; this suggests a degree of uncertainly

in model selection that is accommodated by the Naive Mix.

Empirically, the Naive Mix is shown to result in improved accuracy over single

best selected models and also proves to be competitive with leading machine learning

algorithms. It is also observed that the learning rate of the Naive Mix is very fast. It

often learns models of high accuracy using small amounts of training data, sometimes

with as few as 10 or 50 sense–tagged examples.
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Despite making rather broad assumptions about the dependencies among fea-

tures in models of disambiguation, Naive Bayes consistently results in accuracy that

is competitive with a host of other methods. This dissertation presents an analysis

of Naive Bayes that includes a study of the learning rate as well as a bias–variance

decomposition of classification error.

The learning rate reveals that Naive Bayes has poor accuracy when the training

sample sizes are small. Given its fixed parametric form it is easily mislead by spurious

patterns in very small amounts of sense–tagged text. However, as the amount of

training data is increased, it quickly achieves levels of accuracy comparable to methods

that build more representative models of the training data.

This behavior is analyzed via a bias variance decomposition and reveals that the

nature of the errors made by the Naive Bayes model are substantially different than

those made by a more representative model of the training data, here represented as

a decision tree. The bulk of classification errors made by Naive Bayes are due to the

assumptions conveyed in the parametric form of the model. However, it also tends

to be very robust to differences between the test and training data. By contrast,

the errors made by a decision tree learner are largely due to a failure to generalize

well enough to accommodate differences between test and training instances. How-

ever, despite these different sources of error, the total level of classification accuracy

achieved by both methods is comparable.

9.1.2. Future Work

The continued viability of supervised learning for word sense disambiguation is

largely dependent on the availability of sense–tagged text. Thus, the creation of such

text at relatively low cost must be a high priority; future improvments in supervised

learning methodologies will be of little interest if sufficient quantities of training data

are not readily available.

In general, supervised learning is a well developed area of research. However,

natural language poses peculiar problems that have not necessarily been accounted
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for in previous work. Continued refinement of supervised learning methodologies as

applied to natural language processing problems is an important area of future work.

Creation of Sense–Tagged Text: The manual annotation of text with sense tags

is the clearest route to expanding the current pool of sense–tagged text. Results from

this dissertation suggest that even relatively small amounts of sense–tagged text can

result in high levels of disambiguation accuracy. This is encouraging news, suggesting

that even small additions to the available quantity of sense–tagged text will prove to

be a valuable resource for word sense disambiguation.

Traditional manual annotation efforts will benefit greatly from the development

of tools that provide some degree automated assistance. As an example, the Alembic

workbench [27], provides support for discourse process tagging tasks. A similar tool

devoted to word sense disambiguation would considerably ease the burden of manual

annotation. If a human tagger noticed a particularly salient co–occurrence or col-

location, such a tool could allow for the rapid tagging of a large number of similar

instances. For example, suppose that a human tagger notes that any time interest

rate occurs, it is nearly certain that interest refers to the cost of borrowing money.

After the first such instance is manually sense–tagged, an annotation tool locates all

the sentences in a corpus where interest rate occurs and applies that same sense tag

automatically.

When a commitment is made to manual annotation, there are related questions

that arise. Which sense inventory should be used for a particular domain? Are

the sense distinctions in any dictionary clear enough so that only one sense can be

assigned to a particular word in a particular context? How can tagger uncertainty

be incorporated into sense tagging? How large a factor is human error in manual

annotation efforts? All of these questions open up new areas of future research.

As an alternative to manual sense–tagging, the large amount of text linked

together via the World Wide Web can be viewed as a source of alternative sources of

knowledge to apply to language processing problems. A hyperlink connecting a word

or a phrase to a related web page is not nearly as precise a source of information
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as is the link from a word to a sense inventory, i.e., a sense tag. However, this

diversity brings richness; hyperlinks from mallard could lead to photos, stories from

duck watching expeditions, or maps showing migratory patterns. Short summaries

generated from these various resources (or provided by the web page creator by way

of a title or introductory comment) can then serve as definitions or descriptions of

the word or phrase in the referring web page. This process ultimately results in an

abstracted and simplified version of the relevant portion of the Web that can then be

treated as a knowledge representation structure from which inferences about other

bodies of text can be made.

Varying Search Strategies: To date only backward and forward search strategies

have been utilized with sequential model selection for word sense disambiguation.

However, these are greedy approaches that conduct very focused searches that can

bypass models that are worthy of consideration. Developing approaches that combine

backward and forward search is a potential solution to this problem.

Given the success of Naive Bayes, an alternative strategy is to begin forward

searches at Naive Bayes rather than the model of independence. However, this strat-

egy presumes that all the features are relevant to disambiguation and disables the

ability to perform feature selection. In order to allow model selection to disregard

irrelevant features, the process could begin at Naive Bayes and perform a backward

search to determine if any dependencies can safely be removed. The model that results

from this backward search then serves as the starting point for a forward search. At

various intervals the strategy could be reversed from forward to backward, backward

to forward, and so on, before arriving at a selected model.

An alternative to starting the forward searches at Naive Bayes is to generate a

model of moderate complexity randomly and then search backward for some number

of steps, then forward, and so on until until a model is selected. This entire process

is repeated some number of times so that a variety of random starting models are

employed. The models that are ultimately selected presumably differ somewhat and

could be averaged together in a randomized variant of the Naive Mix.
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If a reversible search strategy is adopted then the information criteria present

certain advantages over the significance tests as evaluation criteria. The information

criteria perform at roughly the same levels of accuracy during backward and forward

search and do not require any adjustment when changing search direction. However,

the significance tests are somewhat sensitive and require that the pre–determined

cutoff value, α, be reset as the direction of the search changes.

Extending Feature Sets: The feature set employed for supervised learning in this

dissertation relies upon part–of–speech of the surrounding words, morphology of the

ambiguous word, and collocations that occur anywhere in the sentence. A potential

extension to this feature set is to incorporate co–occurrence features. Preliminary

experimental results with feature sets made up entirely of co–occurrences that occur

within 1 or 2 positions of an ambiguous word result in disambiguation accuracy that

is at least comparable to that of the supervised learning feature set. This result,

mentioned briefly in [71], largely inspired the use of co–occurrence features in the

unsupervised learning experiments.

The feature set could also be extended beyond the sentence boundary to include

features that occur in the same paragraph or even the same document as the am-

biguous word. This would allow for the inclusion of features that provide information

about earlier occurrences of a word and the sense it was determined to have in that

previous context. For example, if an instance of bill is being disambiguated and it is

known that two sentences earlier bill refers to a bird jaw then it seems unlikely that

the current occurrence is being used in the sense of pending legislation.

9.2. Unsupervised Learning

The development and improvement of unsupervised learning techniques is an

important issue in natural language processing given the difficulty in obtaining train-

ing data for supervised learning. The lack of sense–tagged text poses a considerable

bottleneck when porting supervised learning methods to new domains and unsuper-

vised methods offer a way to eliminate this need for sense–tagged text.
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9.2.1. Contributions

The contributions of this dissertation to unsupervised learning of word senses

are as follows:

Several feature sets appropriate for unsupervised learning of word senses from

raw text are developed. Feature sets designed for use with supervised approaches are

not directly applicable in an unsupervised setting since they often contain features

whose values are based on information only available in sense–tagged text.

The local context features developed for unsupervised learning are co–occurrences

that occur within a few positions of the ambiguous word. It is more common for un-

supervised approaches learning from raw text to rely upon a much wider window

of context. However, such approaches result in high dimensional event spaces that

can press the limits of computing resources. The use of local context features in

this dissertation has led to acceptable levels of disambiguation accuracy while still

maintaining a relatively modest event space.

This dissertation develops probabilistic models for word sense disambiguation

without utilizing sense–tagged text. The EM algorithm and Gibbs Sampling are used

to estimate the parameters of probabilistic models of disambiguation based strictly

upon information available in raw untagged text.

Empirical comparison shows that Gibbs Sampling results in limited improve-

ment over the accuracy of models learned via the EM algorithm. The similar results

are somewhat surprising given the tendency of the EM algorithm to find local max-

ima. However, the combination of local context features and the parametric form of

Naive Bayes results in relatively small event spaces where parameter estimation is

still fairly reliable.

Despite its widespread popularly in a wide range of other applications, Gibbs

Sampling has not previously been applied to word sense disambiguation. The intro-

duction of this technique is an important contribution since it is a general purpose

methodology that can be used in a variety of language processing problems.
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Finally, the comparable accuracy of the EM algorithm and Gibbs Sampling sug-

gests that rather than competing methodologies these should be treated as compli-

mentary. The EM algorithm appears to provide a reasonably good and very efficient

first pass through untagged data. It may be reasonable to approach unsupervised

learning using the EM algorithm first and then allowing Gibbs Sampling to continue

from there. A similar suggestion is made in [56].

McQuitty’s similarity analysis has not been applied to word sense disambigua-

tion previously. It is a simple agglomerative clustering algorithm that makes no

assumptions about the nature of the data it is processing and yet results in accurate

disambiguation in an unsupervised setting. This approach requires that the data to

be disambiguated be converted into a dissimilarity matrix representation that shows

the number of mismatched features between observations.

Despite the simplicity of both the algorithm and the data representation, Mc-

Quitty’s method is shown to consistently result in more accurate disambiguation than

a well–known agglomerative clustering algorithm, Ward’s minimum–variance method.

It also outperforms the EM algorithm and Gibbs Sampling when disambiguating

words with very skewed sense distributions such as the adjectives and verbs in these

experiments.

9.2.2. Future Work

Unsupervised approaches to word sense disambiguation are of interest because

they eliminate the need for sense–tagged text. Disambiguation can be performed

based solely on information found in raw untagged text. However, the lack of sense–

tagged text impacts much more than the learning algorithm itself. Both the feature

sets and the evaluation methodology must be formulated somewhat differently than

in the case of supervised learning.

Meaningful Labeling of Sense Groups: In the process of eliminating the need

for sense–tagged text to learn probabilistic models of disambiguation, unsupervised

approaches also remove the link between the text and a sense inventory established
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by a dictionary or some other lexical resource. Thus, the sense groups that are

created by an unsupervised learner do not have meaningful sense labels or definitions

automatically attached to them; the sense groups are tagged with meaningless names.

This poses a problem if the evaluation of the unsupervised learner is relative to

human sense judgments which are in turn based on knowledge of an established sense

inventory.

This dissertation addresses this problem by developing an evaluation method-

ology where a post–processing step is performed that maps sense groups to entries

in a sense inventory via sense–tagged text. While this allows for very exact measure-

ments of the agreement between the unsupervised learner and a human judge, it also

imposes a requirement for sense–tagged text on the evaluation methodology.

A more automatic alternative is to generate some form of sense descriptions

from the sense groups themselves. It is unlikely that definitions as precise as those

found in a dictionary could be created. However, some meaningful labeling of the

sense groups based on the content of the sentences assigned to the sense group is

possible and might provide enough additional information to make a link to a known

entry in a sense inventory.

This is perhaps best viewed as another manifestation of a text summarization

problem. Given the sentences that make up a sense group, generate a statement that

summarizes those sentences. Suppose the following usages of the ambiguous word

bank are found in a sense group:

I went to the bank to deposit the money.

The bank extended a loan to the Martinez family.

Chase Manhattan bought my bank.

The Federal Reserve Bank controls the money supply.

While it seems improbable that a formal dictionary definition could be generated

from these examples, it is possible to imagine the creation of a generalized description

such as An entity concerned with financial matters. This description can then be used
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to choose from the entries in a sense inventory for bank, resulting in the selection of

an entry that includes some mention of finances, for example.

There are several potential problems in this approach. First, creating these

generalized descriptions implies that some external knowledge source is available. It

is possible that this sort of external knowledge will be just as difficult to acquire as

sense–tagged text. Second, incorrectly grouped instances could cause a description

to become overly general, i.e., An entity concerned with objects.

Feature Selection: The frequency based features developed for unsupervised

learning of word senses result in reasonably accurate performance, however they do

not tend to provide much information about minority senses.

When using raw text features, values are usually selected based on frequency

of occurrence. This results in features that are often skewed towards the majority

sense, particularly if the majority sense is a large one. The development of feature

selection methods that pick out values indicative of minority senses is a key issue for

improving the performance of unsupervised approaches.

Part–of–Speech Ambiguity: Since the early work of Kelly and Stone, sense dis-

ambiguation has been detached from the problem of part–of–speech ambiguity. It

has generally been assumed that part–of–speech ambiguity is resolved before sense

disambiguation is performed. In supervised learning this is a reasonable assump-

tion since a human tagger must make a part–of–speech judgment before assigning a

sense–tag. However, in unsupervised learning where no such examples are employed,

the decoupling of sense and part–of–speech ambiguity may in fact gloss over the fact

that reliable part–of–speech information may not be available in a truly unsupervised

setting.

There are two alternatives. In this dissertation part–of–speech ambiguity is

resolved by a rule based part–of–speech tagger that is applied to the text before

unsupervised learning begins. However, the quality of this tagging is dubious, even

though the part–of–speech distinctions are rather coarse. The second option is to

simply assume that part–of–speech information will not be available for unsupervised
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learning problems. This requires disambiguation using a wider range of possible senses

that will cross over multiple parts–of–speech. This assumption would also suggest that

unsupervised disambiguation be based only on collocations, co–occurrences, and any

other immediately apparent lexical feature. In fact, one of the feature sets in this

dissertation (B) takes this approach and performs as well as those features sets that

rely more heavily on syntactic information.
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