The Present and Future Status of Peatlands

John Pastor

Dept. of Biology

University of Minnesota Duluth

Peatlands

- Ecosystems with about 1m or more of partly decomposed peat
- Usually found where cold temperatures and high water table restrict decay
- Most are in northern regions where they grade into tundra, but some can be found in North Carolina, Borneo, Andes
- Significant sinks for atmospheric carbon dioxide since deglaciation 10,000 yr BP
- Unique plants adapted to cold, wet, and infertile conditions

Bogs

Bog rosemary

Sphagnum mosses

Kalmia

Fens

Carex lasiocarpa

Standard 2006

Cottongrass

Pitcher plants

Rose pogonia orchid

Rhyncospora

Large scale peatland topography and hydrology

Moss hummock microtopography

Climate Change and the Future of Peatlands

What will happen to peatlands in a warmer and possibly drier climate?

- Warmer climate increases decay rate soil carbon stores decrease as peat carbon -> CO₂ and CH₄
- Increased decay increases nutrient availability
 -> increased productivity and CO₂ uptake by photosynthesis
- What is the balance?

Changes in Plant Species

Changes in Carbon Storage

