Chemistry 2541 Fall 2010; Midterm 2 Exam

This exam has 8 problems on 7 pages. Make sure your copy is complete and correct.

Drinted Morrow	(Logt First)	Key	
Printed Name	(Last, First)	 <u> </u>	
Scores:		-	
Problem 1	15		
Problem 2	15		
Problem 3	9		
Problem 4	16		
Problem 5	16		
Problem 6	8		
Problem 7	5		
Problem 8	16		

1. (15) Answer the questions on mechanism of the following reactions.

(a) Which one of the following four schemes (A-D) represents a step in the mechanism of the reaction in the box (circle the correct answer; 5 pts):

(b) Circle the structure of the reaction **intermediate** for the reaction in the box (circle the correct answer; 5 pts):

(c) Draw 4 curved **arrows** and one **formal charge** missing in the following mechanism (5 pts; 1 pt each missing fragment):

2. (15) Answer the following questions on the IUPAC nomenclature:

(a) Circle the correct name for each of the compounds shown in the boxes (3 pts each):

(E)-2,5-dibromo-3-ethyl-2-pentene
(<i>E</i>)-2,5-dibromo-3-ethyl-2-hexene
(Z)-1.4-dibromo-3-ethyl-3-pentene

(b) Finish drawing the **line-angle structure** of each of the following compounds in the provided box by placing missing fragments on the numbered carbons (1 pt each missing fragment):

3-vinylcyclohexene (2 pts)

5 Ipt + 1pt

Zpt

(E)-1-chloro-2,3-dimethyl-2-pentene (4 pts)

or Cl_

3. (9 pts) Answer questions (a)-(c) about the following Bronsted–Lowry acid-base reaction by placing the letters A-D on the answer lines.

5. (16) Finish drawing the structures of main **products** in these reactions by placing appropriate substituents (including H) in the boxes on the bonds (2 pt each missing part).

. (8, 2 pts each box) Place in each box the molecule of a **reagent** that is required to perform each of the following reactions:

7. (5 pts) Arrange the following compounds according to their acidity:

8. (16, 4 pts each) For each of the following questions (a)-(d) circle the item that is the correct answer.

(a) Which one of the following compounds has the highest acidity?

LiBr
$$CH_3CH_2CO_2H$$
 CH_3CH_2OH Na_2SO_4 $(CH_3)_3CLi$ $(CH_3)_3CNH_2$ CH_4
 $4\rho \uparrow \varsigma$

(b) Which one of the following carbocations is the most stable?

$$(C_{2}H_{5})_{2}CH \qquad CH_{3}CH_{2} \qquad CH_{3}CH_{2}CHCH_{3} \qquad (CH_{3})_{3}CCH_{2} \qquad ^{+}CH_{3} \qquad (C_{2}H_{5})_{2}CCH_{3}$$
(c) Which one of the following compounds is the **strongest base**?

$$CH_{3}OCH_{3} \xrightarrow{\begin{pmatrix} CH_{3} \\ H_{3}C-N: \\ Na^{+} \end{pmatrix}} \xrightarrow{H_{3}C-N-CH_{3}} CH_{4} \qquad NaI \qquad Na_{2}SO_{4} \qquad (\mu \rho + 3)$$

$$(most stable)$$

(d) Which of the following alkenes undergoes the *least* exothermic hydrogenation (has the lowest heat of hydrogenation)?

1-butene cis-2-butene trans-2-butene
$$2,3-\text{dimethyl-2-butene}$$
 2-methyl-2-butene $4\rho + 3$
 $CH_3 = C + CH_3$
 $CH_3 = C + CH_$