Chemistry 2521 Spring 2005; Sample Midterm 3 Exam (Chapters 7, 8, 9)

This exam has 5 problems on 5 pages. Make sure your copy is complete and correct.

	t Key	
Printed Name (Last, Firs	(t)	
Scores:	O	
1		
2		
330		
4. 25		
5. <u>20</u>		
Total:/0 0		

1. (18) Using provided boxes, answer the questions on mechanisms of the following reactions:

Using the "fishhook" arrows and showing the missing reagents, write the **initiation step** in the reaction mechanism (2 pts):

Using the "fishhook" arrows and showing the structure of the intermediates, write the two **chain propagation** steps in the reaction mechanism (6 pts):

(b) (10 pts)
$$CH_3$$
 + CH_3OH methanol OCH_3

Using curved arrows (2 pts) and showing the structure of the carbocationic intermediate (2 pts), write the **first step** in the reaction mechanism:

Using curved arrows, other essential reagents (2 pts), and showing the structure of the oxonium ion intermediate (2 pts), write the **second step** in the reaction mechanism:

$$\begin{array}{cccc}
CH_3 & & & & \\
\end{array}$$
carbocation oxonium ion

Using curved arrows and other essential reagents (2 pts), write the **final step** in the reaction mechanism:

2. (7) Using the provided six-membered ring, draw the structure of the <u>major product</u> expected from the following E2 reaction (3 pts). Use **curved arrows** to explain the mechanism of this reaction (4 pts).

3. (30; 5 pts each) Complete the following equations, showing the **stereochemistry** of the product(s) when appropriate.

+
$$\frac{1}{\text{NBr}}$$
 $\frac{\text{peroxide, heat}}{\text{CCl}_4}$

HC=CH + $\frac{1}{\text{H}_2\text{O}}$ $\frac{1}{\text{HgSO}_4}$ $\frac{1}{\text{HgSO}_4}$ $\frac{1}{\text{CH}_3}$ $\frac{1}{\text{CH}_3}$ $\frac{1}{\text{CH}_3}$ $\frac{1}{\text{CH}_3}$ $\frac{1}{\text{CH}_3}$

$$HC \equiv CNa$$
 + CH_2Br $CH_2C \equiv CH$

$$CH_3$$
 C_2H_5ONa
 C_2H_5OH

4. (25, 5 pts each) Give the **reagents on the arrow** that can be used to convert the reactant to the indicated product in high yield.

- 5. (20, 5 pts each) For each of the following questions (a)-(d) circle the item that is the correct answer.
- (a) Which of the following compounds is the most reactive in an S_{N} 2 reaction?

4-iodocyclohexene methane 2-iodohexane 3-iodohexane fluorocyclohexane 1-iodo-2-phenylhexane 1-iodo-4-methylcyclohexane methylcyclohexane methylcyclohexane

(b) Which one of the following compounds has the best leaving group?

cyclohexanol 3-methylcyclohexanol 1-methylcyclohexanol 1-phenylcyclohexyl chloride methyl tosylate chloroform fluorocyclohexane 2-iodocyclohexanol ethanol (c) Which of the following compounds is the strongest nucleophile in polar aprotic solvents?

CH₃OCH₃ KI CH₃OH NaCl NaF H₂O NaBr C₂H₅OH NH₃ CH₃NH₂

(d) Which one of the following reagents is the <u>best</u> choice for an **E2** reaction?