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1 Introduction and Main Result

It is a great pleasure for us to contribute this paper in honour of Professor Miklós

Csörgő’s work on the occasion of his 80th birthday.

Throughout, let .B; k � k/ be a real separable Banach space equipped with its

Borel �-algebra B (D the �-algebra generated by the class of open subsets of B

determined by k � k) and let fXnI n � 1g be a sequence of independent copies of

a B-valued random variable X defined on a probability space .˝;F ;P/. As usual,

let Sn D
Pn

kD1 Xk; n � 1 denote their partial sums. If 0 < p < 2 and if X is a

real-valued random variable (that is, if B D R), then

lim
n!1

Sn

n1=p
D 0 almost surely (a.s.)

if and only if

EjXjp < 1 where EX D 0 whenever p � 1:
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This is the celebrated Kolmogoroff-Marcinkiewicz-Zygmund strong law of large

numbers (SLLN); see Kolmogoroff [9] for p D 1 and Marcinkiewicz and Zygmund

[14] for p ¤ 1.

The classical Kolmogoroff SLLN in real separable Banach spaces was estab-

lished by Mourier [15]. The extension of the Kolmogoroff-Marcinkiewicz-Zygmund

SLLN to B-valued random variables is independently due to Azlarov and Volodin

[1] and de Acosta [4].

Theorem 1 (Azlarov and Volodin [1] and de Acosta [4]). Let 0 < p < 2 and let

fXnI n � 1g be a sequence of independent copies of a B-valued random variable X.

Then

lim
n!1

Sn

n1=p
D 0 a.s.

if and only if

EkXkp < 1 and
Sn

n1=p
!P 0:

Let 0 < p � 2 and let f�nI n � 1g be a sequence of i.i.d. stable random variables

each with characteristic function  .t/ D exp f�jtjpg ; � 1 < t < 1. Then B is

said to be of stable type p if
P1

nD1�nvn converges a.s. whenever fvn W n � 1g � B

with
P1

nD1 kvnkp < 1. Equivalent characterizations of a Banach space being

of stable type p and properties of stable type p Banach spaces may be found in

Ledoux and Talagrand [10]. Some of these properties are summarized in Li, Qi, and

Rosalsky [12].

At the origin of the current investigation is the following recent and striking result

by Hechner [6] for p D 1 and Hechner and Heinkel [7, Theorem 5] for 1 < p < 2

which are new even in the case where the Banach space B is the real line. The

earliest investigation that we are aware of concerning the convergence of the series
P1

nD1
1
n

�

EjSnj
n

�

was carried out by Hechner [5] for the case where fXnI n � 1g is a

sequence of i.i.d. mean zero real-valued random variables.

Theorem 2 (Hechner [6, Theorem 2.4.1] for p D 1 and Hechner and Heinkel [7,

Theorem 5] for 1 < p < 2). Suppose that B is of stable type p for some p 2 Œ1; 2/

and let fXnI n � 1g be a sequence of independent copies of a B-valued variable X

with EX D 0. Then

1
X

nD1

1

n

�

EkSnk

n1=p

�

< 1

if and only if

8

ˆ

ˆ

<

ˆ

ˆ

:

EkXk ln.1C kXk/ < 1 if p D 1,

Z 1

0

P
1=p .kXk > t/ dt < 1 if 1 < p < 2:
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Inspired by the above discovery by Hechner [6] and Hechner and Heinkel [7], Li,

Qi, and Rosalsky [12] obtained sets of necessary and sufficient conditions for

1
X

nD1

1

n

�

kSnk

n1=p

�

< 1 a.s.

for the three cases: 0 < p < 1, p D 1, 1 < p < 2 (see Theorem 2.4, Theorem 2.3,

and Corollary 2.1, respectively of Li, Qi, and Rosalsky [12]). Again, these results

are new when B D R; see Theorem 2.5 of Li, Qi, and Rosalsky [12]. Moreover for

1 � p < 2, Li, Qi, and Rosalsky [12, Theorems 2.1 and 2.2] obtained necessary and

sufficient conditions for

1
X

nD1

1

n

�

EkSnk

n1=p

�

< 1

for general separable Banach spaces.

This paper is devoted to an extension of Theorem 2 above and Theorems 2.1

and 2.2 of Li, Qi, and Rosalsky [12]. More specifically, the main result of this

paper is the following theorem. We note that no conditions are being imposed on

the Banach space B.

Theorem 3. Let 0 < p < 2 and 0 < q < 1. Let fXnI n � 1g be a sequence of

independent copies of a B-valued random variable X. Then

1
X

nD1

1

n
E

�

kSnk

n1=p

�q

< 1 (1)

if and only if

1
X

nD1

1

n

�

kSnk

n1=p

�q

< 1 a.s. (2)

and
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Z 1

0

P
q=p .kXkq > t/ dt < 1 if 0 < q < p,

EkXkp ln.1C kXk/ < 1 if q D p,

EkXkq < 1 if q > p.

(3)

Furthermore, each of (1) and (2) implies that

lim
n!1

Sn

n1=p
D 0 a:s: (4)

For 0 < q < p, (1) and (2) are equivalent so that each of them implies that (3)

and (4) hold.
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Remark 1. Let q D 1. Then one can easily see that Theorems 2.1 and 2.2 of Li, Qi,

and Rosalsky [12] follow from Theorem 3 above.

Remark 2. It follows from the conclusion (4) of Theorem 3 that, if (2) holds for

some q D q1 > 0 then (2) holds for all q > q1.

The proof of Theorem 3 will be given in Sect. 3. For proving Theorem 3, we

employ new versions of the classical Lévy [11], Ottaviani [3, p. 75], and Hoffmann-

Jørgensen [8] inequalities which have recently been obtained by Li and Rosalsky

[13] (stated in Sect. 2). As an application of the new versions of the classical

Lévy [11] and Hoffmann-Jørgensen [8] inequalities, in Theorem 7 some general

results concerning sums of the form
P1

nD1 ank
Pn

kD1 Vkk
q (where the an � 0 and

fVkI k � 1g is a sequence of independent symmetric B-valued random variables and

q > 0) are established; these results are key components in the proof of Theorem 3.

2 New Versions of Some Classical Stochastic Inequalities

Li and Rosalsky [13] have recently obtained new versions of the classical Lévy

[11], Ottaviani [3, p. 75], and Hoffmann-Jørgensen [8] inequalities. In this section

we state the results obtained by Li and Rosalsky [13] which we use for proving the

main result in this paper. Then, as an application of the new versions of the classical

Lévy and Hoffmann-Jørgensen [8] inequalities, we establish some general results

for sums of the form
P1

nD1 ank
Pn

kD1 Vkk
q, where the an are nonnegative and where

fVkI k � 1g is a sequence of independent symmetric B-valued random variables and

q > 0.
Let fVnI n � 1g be a sequence of independent B-valued random variables defined

on a probability space .˝;F ;P/. Let B1 D B � B � B � � � � and g W B1 ! RC D
Œ0;1� be a measurable function. Let

Tn D g .V1; : : : ;Vn; 0; : : :/ ; Yn D g .0; : : : ; 0;Vn; 0; : : :/ ; Mn D max
1�j�n

Tj; Nn D max
1�j�n

Yj

for n � 1, and

M D sup
n�1

Tn; N D sup
n�1

Yn:

The following result, which is a new general version of Lévy’s inequality, is

Theorem 2.1 of Li and Rosalsky [13].

Theorem 4 (Li and Rosalsky [13]). Let fVnI n � 1g be a sequence of independent

symmetric B-valued random variables. Let g W B1 ! RC D Œ0;1� be a

measurable function such that for all x; y 2 B1,

g

�

x C y

2

�

� ˛max .g.x/; g.y// ; (5)
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where 1 � ˛ < 1 is a constant, depending only on the function g. Then for all

t � 0, we have

P .Mn > t/ � 2P
�

Tn >
t

˛

�

and

P .Nn > t/ � 2P
�

Tn >
t

˛

�

:

Moreover if Tn ! T in law, then for all t � 0, we have

P.M > t/ � 2P
�

T >
t

˛

�

and

P.N > t/ � 2P
�

T >
t

˛

�

:

Remark 3. Theorem 4 includes the classical Lévy inequality [11] as a special case

if B D R and g .x1; x2; : : : ; xn; : : :/ D
ˇ

ˇ

Pn
iD1 xi

ˇ

ˇ ; .x1; x2; : : : ; xn; : : :/ 2 R
1.

Theorem 4 is due to Hoffmann-Jørgensen [8] for the special case of ˛ D 1.

The following result, which is Theorem 2.2 of Li and Rosalsky [13], is a new

general version of the classical Ottaviani [3, p. 75] inequality.

Theorem 5 (Li and Rosalsky [13]). Let fVnI n � 1g be a sequence of independent

B-valued random variables. Let g W B1 ! RC D Œ0;1� be a measurable function

such that for all x; y 2 B1,

g.x C y/ � ˇ .g.x/C g.y// ; (6)

where 1 � ˇ < 1 is a constant, depending only on the function g. Then for all

n � 1 and all nonnegative real numbers t and u, we have

P .Mn > t C u/ �
P

�

Tn >
t
ˇ

�

1 � max1�k�n�1 P

�

Dn;k >
u
ˇ

� ;

where

Dn;j D g
 

0; � � � ; 0;�VjC1; � � � ;�Vn; 0; � � �
�

; j D 1; 2; : : : ; n � 1:

In particular, if for some ı � 0,

max
1�k�n�1

P

�

Dn;k >
ı

ˇ

�

�
1

2
;
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then for every t � ı, we have

P .Mn > 2t/ � 2P

�

Tn >
t

ˇ

�

:

Remark 4. The classical Ottaviani inequality follows from Theorem 5 if B D R

and

g .x1; x2; : : : ; xn; : : :/ D

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

kD1

xi

ˇ

ˇ

ˇ

ˇ

ˇ

; .x1; x2; : : : ; xn; : : :/ 2 R
1:

The following result, which is Theorem 2.3 of Li and Rosalsky [13], is a new

general version of the classical Hoffmann-Jørgensen inequality [8].

Theorem 6 (Li and Rosalsky [13]). Let fVnI n � 1g be a sequence of independent

symmetric B-valued random variables. Let g W B1 ! RC D Œ0;1� be a

measurable function satisfying conditions (5) and (6) . Then for all nonnegative

real numbers s; t, and u, we have

P .Tn > s C t C u/ � P

�

Nn >
s

ˇ2

�

C 2P

�

Tn >
u

˛ˇ

�

P

�

Mn >
t

ˇ2

�

� P

�

Nn >
s

ˇ2

�

C 4P

�

Tn >
u

˛ˇ

�

P

�

Tn >
t

˛ˇ2

�

;

P .Mn > s C t C u/ � 2P

�

Nn >
s

˛ˇ2

�

C 8P

�

Tn >
u

˛2ˇ

�

P

�

Tn >
t

˛2ˇ2

�

;

and

P .M > s C t C u/ � 2P

�

N >
s

˛ˇ2

�

C 4P

�

M >
u

˛2ˇ

�

P

�

M >
t

˛ˇ2

�

:

Remark 5. The classical Hoffmann-Jørgensen inequality [8] follows from Theo-

rem 6 if ˛ D 1 and ˇ D 1.

For illustrating the new versions of the classical Lévy [11] and Hoffmann-

Jørgensen [8] inequalities, i.e., Theorems 4 and 6 above, we now establish the

following general result.

Theorem 7. Let q > 0 and let fanI n � 1g be a sequence of nonnegative real

numbers such that
P1

nD1 an < 1. Let fVkI k � 1g be a sequence of independent

symmetric B-valued random variables. Write

bn D

1
X

kDn

ak; n � 1
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and

˛ D

8

<

:

21�q; if 0 < q � 1

1; if q > 1:

and ˇ D

8

<

:

1; if 0 < q � 1

2q�1; if q > 1:

(7)

Then, for all nonnegative real numbers s, t, and u, we have that

P

 

sup
n�1

bn kVnkq > t

!

� 2P

 

1
X

nD1

an
















n
X

iD1

Vi
















q

>
t

˛

!

(8)

and

P

 

1
X

nD1

an
















n
X

iD1

Vi
















q

> s C t C u

!

� P

 

sup
n�1

bn kVnkq >
s

ˇ2

!

C 4P
�

P1
nD1 an







Pn
iD1 Vi







q
> u

˛ˇ

�

P

�

P1
nD1 an







Pn
iD1 Vi







q
> t

˛ˇ2

�

:

(9)

Furthermore, we have that

E

 

sup
n�1

bn kVnkq

!

� 2˛E

 

1
X

nD1

an
















n
X

iD1

Vi
















q!

(10)

and

E

 

1
X

nD1

an
















n
X

iD1

Vi
















q!

� 6.˛ C ˇ/3E

 

sup
n�1

bn kVnkq

!

C 6.˛ C ˇ/3t0; (11)

where

t0 D inf

(

t > 0I P

 

1
X

nD1

an
















n
X

iD1

Vi
















q

> t

!

� 24�1.˛ C ˇ/�3

)

:

Proof. For m � 1 and .x1; x2; : : : ; xm/ 2 Bm, write

gm .x1; x2; : : : ; xm/ D

m
X

nD1

an
















m
X

iD1

xi
















q

:

One can easily check that, for each m � 1, the function gm satisfies conditions (5)

and (6) with ˛ and ˇ given by (7) . Let

Tm;n D gm .V1; : : : ;Vn; 0; : : : ; 0/ ; Ym;n D gm .0; : : : ; 0;Vn; 0; : : : ; 0/ ; 1 � n � m:
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Clearly,

Tm;m D

m
X

nD1

an
















n
X

iD1

Vi
















q

and

max
1�n�m

Ym;n D max
1�n�m

 

m
X

iDn

ai

!

kVnkq D max
1�n�m

.bn � bmC1/ kVnkq :

Then by Theorem 4 we have for all nonnegative real numbers t,

P

�

max
1�n�m

.bn � bmC1/ kVnkq > t

�

D P

�

max
1�n�m

Ym;n > t

�

� 2P
�

Tm;m >
t

˛

�

D 2P

 

m
X

nD1

an
















n
X

iD1

Vi
















q

>
t

˛

!

,

(12)

and by Theorem 6 we have for all nonnegative real numbers s, t, and u,

P .Tm;m > s C t C u/ � P

�

max
1�n�m

.bn � bmC1/ kVnk
q >

s

ˇ2

�

C4P

�

Tm;m >
u

˛ˇ

�

P

�

Tm;m >
t

˛ˇ2

�

.

(13)

Note that with probability 1,

Tm;m D

m
X

nD1

an
















n
X

iD1

Vi
















q

%

1
X

nD1

an
















n
X

iD1

Vi
















q

and

max
1�n�m

.bn � bmC1/ kVnkq % sup
n�1

bn kVnkq
as m ! 1:

Thus, letting m ! 1, (8) and (9) follow from (12) and (13) respectively.

We only need to verify (11) since (10) follows from (8). Set


 D ˛ C ˇ and T D

1
X

nD1

an
















n
X

iD1

Vi
















q

:
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Let c > t0. Noting 
 > 1, 
=˛ > 1, and 
=ˇ > 1, by (9) with s D t D u D 
3x, we

have that

E.T/ D 3
3
Z 1

0

P
 

T > 3
3x
�

dx

D 3
3
�Z c

0

C

Z 1

c

�

P
 

T > 3
3x
�

dx

� 3
3

 

c C

Z 1

c

P

 

sup
n�1

bn kVnkq > x

!

dx C 4

Z 1

c

P
2.T > x/dx

!

� 3
3

 

c C E

 

sup
n�1

bn kVnkq

!

C 4P.T > c/

Z 1

0

P.T > x/dx

!

� 3
3c C 3
3E

 

sup
n�1

bn kVnkq

!

C
1

2
E.T/

since 12
3P.T > c/ � 1=2 by the choice of c. We thus conclude that

E.T/ � 6.˛ C ˇ/3E

 

sup
n�1

bn kVnkq

!

C 6.˛ C ˇ/3c 8 c > t0

and hence (11) is established. �

3 Proof of Theorem 3

For the proof of Theorem 3, we need the following five preliminary lemmas.

Lemma 1. Let fckI k � 1g be a sequence of real numbers such that

1
X

kD1

jckj < 1

and let fan;kI k � 1; n � 1g be an array of real numbers such that

sup
n�1;k�1

jan;kj < 1 and lim
n!1

an;k D 0 8 k � 1:

Then

lim
n!1

1
X

kD1

an;kck D 0:
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Proof. This follows immediately from the Lebesgue dominated convergence theo-

rem with counting measure on the positive integers. �

The proofs of Lemmas 2 and 3 and Theorem 3 involve a symmetrization

argument. For the sequence fXnI n � 1g of independent copies of the B-valued

random variable X with partial sums Sn D
Pn

kD1 Xk, n � 1, let fX0;X0
nI n � 1g

be an independent copy of fX;XnI n � 1g. The symmetrized random variables are

defined by OX D X � X0, OXn D Xn � X0
n, n � 1. Set S0

n D
Pn

kD1 X0
k, OSn D

Pn
kD1

OXk,

n � 1.

Lemma 2. Let 0 < p < 2 and let fXnI n � 1g be a sequence of independent copies

of a B-valued random variable X. Then

lim
n!1

Sn

n1=p
D 0 a.s. (14)

if and only if

EkXkp < 1 and
S2n

2n=p
!P 0: (15)

Proof. By Theorem 1, we see that (15) immediately follows from (14) . We now

show that (15) implies (14) . For 0 < p < 1, (14) follows from (15) since

lim
n!1

Pn
kD1 kXkk

n1=p
D 0 a.s. if and only if EkXkp < 1:

Clearly, for 1 � p < 2, (15) implies that EkXk < 1 and hence by the SLLN of

Mourier [15]

Sn

n
! EX a.s.

Then

S2n

2n
!P EX

and so EX D 0 in view of the second half of (15) . We thus conclude that when

1 � p < 2, (15) entails EX D 0.

Next, it follows from the second half of (15) that

OS2n

2n=p
!P 0:

Hence for any given � > 0, there exists a positive integer n� such that

P

�









OS2n









> 2n=p�

�

� 1=24; 8 n � n�:
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Note that f OXnI n � 1g is a sequence of i.i.d. B-valued random variables. Thus, by

the second part of Proposition 6.8 of Ledoux and Talagrand [10, p. 156], we have

E










OS2n









� 6E max

1�i�2n










OXi









C 6 � 2n=p� � 12E max

1�i�2n
kXik C 6 � 2n=p�; 8 n � n�

and hence

E










OS2n










2n=p
� 12

�

Emax1�i�2n kXik

2n=p

�

C 6�; 8 n � n�:

It is easy to show that, for 1 � p < 2, the first half of (15) implies that

lim
n!1

Emax1�i�2n kXik

2n=p
D 0:

We thus have that

lim
n!1

E










OS2n










2n=p
D 0: (16)

Since EX D 0, applying (2.5) of Ledoux and Talagrand [10, p. 46], we have that

max
2n�1�m<2n

E kSmk

m1=p
� 21=p max

2n�1�m<2n

E kSmk

2n=p
� 21=p �

E kS2nk

2n=p
� 21=p �

E










OS2n










2n=p

for n � 1. It now follows from (16) that

lim
n!1

E kSnk

n1=p
D 0

and hence that

Sn

n1=p
!P 0:

By Theorem 1 again, we see that (14) follows. �

Lemma 3. Let 0 < p < 2 and 0 < q < 1. Let fXnI n � 1g be a sequence of

independent copies of a B-valued random variable X. If (2) holds, i.e., if

1
X

nD1

1

n

�

kSnk

n1=p

�q

< 1 a.s.,

then (14) holds, i.e.,

lim
n!1

Sn

n1=p
D 0 a.s.
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Proof. We first show that (2) implies that

S2n

2n=p
!P 0: (17)

To see this, for n � 1 and x D .x1; x2; : : : ; x2n/ 2 B2
n

write

gn.x/ D gn .x1; x2; : : : ; x2n/ D

2nC1�1
X

kD2n

1

k

0

@










PkC1�2n

iD1 xi










k1=p

1

A

q

:

Clearly, gn W B2
n

! Œ0;1� is a measurable function satisfying condition (6) with ˇ

given by (7) . Set

V1 D S2n ; Vj D X2nCj�1; 2 � j � 2n;

Mn;j D gn

 

V1; : : : ;Vj; 0; : : : ; 0
�

; Dn;j D gn

 

0; : : : ; 0;�Vj; : : : ;�V2n

�

; 1 � j � 2n:

By Theorem 5 (i.e., Theorem 2.2 of of Li and Rosalsky [13]), we have that

P

�

max
1�j�2n

Mn;j > t C u

�

�
P .Mn;2n > t=ˇ/

1 � max2�j�2n P
 

Dn;j > u=ˇ
� ; 8 s � 0; u � 0:

(18)

It is easy to see that

Mn;1 D gn .S2n ; 0; : : : ; 0/ D

0

@

2nC1�1
X

kD2n

1

k1Cq=p

1

A .kS2nk/q � 2�1�q=p

�

kS2nk

2n=p

�q

(19)

and it follows from (2) that

Mn;2n D gn .S2n ;X2nC1; : : : ;X2nC1�1/ D

2nC1�1
X

kD2n

1

k

�

kSkk

k1=p

�q

! 0 a.s. (20)

Since fXnI n � 1g is a sequence of independent copies of X, we have that for all

u � 0,

P
 

Dn;j > u
�

D P
 

gn

 

0; : : : ; 0;X1; : : : ;X2n�jC1

�

> u
�

; 2 � j � 2n:

Note that

gn

 

0; : : : ; 0;X1;X2; : : : ;X2n�jC1

�

� gn

 

0; : : : ; 0;X1;X2; : : : ;X2n�jC2

�

; 2 � j � 2n:

We thus conclude that for all u � 0,

max
2�j�2n

P
 

Dn;j > u=ˇ
�

� P .gn .X1;X2; : : : ;X2n/ > u=ˇ/ : (21)
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Set

an;k D

8

ˆ

ˆ

<

ˆ

ˆ

:

�

k

2n

�1Cq=p

if 1 � k � 2n

0 if k > 2n:

Then clearly fan;kI k � 1; n � 1g is an array of nonnegative real numbers such that

sup
n�1;k�1

an;k � 1 < 1 and lim
n!1

an;k D 0 8 k � 1:

Note that, for n � 1,

gn .X1;X2; : : : ;X2n/ D

2nC1�1
X

kD2n

1

k

0

@










PkC1�2n

iD1 Xi










k1=p

1

A

q

�

2n
X

jD1

1

2n

 




Sj







2n=p

!q

D

2n
X

jD1

�

j

2n

�1Cq=p
 

1

j

 




Sj







j1=p

!q!

D

1
X

kD1

an;k

�

1

k

�

kSkk

k1=p

�q�

:

Then, by Lemma 1, (2) implies that

lim
n!1

gn .X1;X2; : : : ;X2n/ D 0 a.s. (22)

It now follows from (18) and (20)–(22) that

lim
n!1

P .Mn;1 > �/ � lim
n!1

P

�

Mn;2n > �
2ˇ

�

1 � P

�

gn .X1;X2; : : : ;X2n/ > �
2ˇ

� D 0 8 � > 0I

that is,

Mn;1 !P 0

and hence (17) follows from (19).
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We now show that (2) implies that

EkXkp < 1: (23)

To see this, (2) clearly ensures that

1
X

nD1

an










OSn










q
D

1
X

nD1

1

n

 

kOSnk

n1=p

!q

� ˇ

 

1
X

nD1

1

n

�

kSnk

n1=p

�q

C

1
X

nD1

1

n

�

kS0
nk

n1=p

�q
!

< 1 a.s.,

(24)

where an D n�1�q=p; n � 1. Since f OXnI n � 1g is a sequence of independent copies

of the B-valued random variable OX, it follows from (8) of Theorem 7 that

P

 

sup
n�1

bn










OXn










q

> t

!

� 2P

 

1
X

nD1

1

n

 

kOSnk

n1=p

!q

>
t

˛

!

8 t � 0;

where

bn D

1
X

kDn

n�1�q=p; n � 1

which, together with (24), ensures that

sup
n�1

bn










OXn










q

< 1 a.s. (25)

It is easy to check that

lim
n!1

bn

n�q=p
D

p

q
;

and so we have by (25) that

0

@sup
n�1










OXn










n1=p

1

A

q

D sup
n�1

n�q=p









OXn










q

< 1 a.s.

Since the OXn; n � 1 are i.i.d., it follows from the Borel-Cantelli lemma that for some

finite � > 0,

1
X

nD1

P

�

k OXk > �n1=p
�

< 1
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and hence

EkX � X0kp < 1

which is equivalent to (23) . By Lemma 2, (14) now follows from (17) and (23) .

The proof of Lemma 3 is complete. �

Lemma 4. Let .E;G / be a measurable linear space and g W E ! Œ0;1� be a

measurable even function such that for all x; y 2 E,

g.x C y/ � ˇ .g.x/C g.y// ;

where 1 � ˇ < 1 is a constant, depending only on the function g. If V is an

E-valued random variable and OV is a symmetrized version of V (i.e., OV D V � V0

where V0 is an independent copy of V), then for all t � 0, we have that

P.g.V/ � t/Eg.V/ � ˇEg. OV/C ˇt (26)

and

Eg. OV/ � 2ˇEg.V/: (27)

Moreover, if

g.V/ < 1 a.s.; (28)

then

Eg.V/ < 1 if and only if Eg. OV/ < 1: (29)

Proof. We only give the proof of the second part of this lemma since the first part

of this lemma is a special case of Lemma 3.2 of Li and Rosalsky [13]. Note that,

by (28), there exists a finite positive number � such that

P.g.V/ � �/ � 1=2:

It thus follows from (26) and (27) that

1

2ˇ
Eg. OV/ � Eg.V/ � 2ˇEg. OV/C 2ˇ�

which ensures that (29) holds. �

The following nice result is Proposition 3 of Hechner and Heinkel [7].
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Lemma 5 (Hechner and Heinkel [7]). Let p > 1 and let fXnI n � 1g be a

sequence of independent copies of a B-valued random variable X. Write

un D inf

�

t W P.kXk > t/ <
1

n

�

; n � 1:

Then the following three statements are equivalent:

(i)

Z 1

0

P
1=p.kXk > t/dt < 1I

(ii)

1
X

nD1

un

n1C1=p
< 1I

(iii)

1
X

nD1

1

n1C1=p
E

�

max
1�k�n

kXkk

�

< 1:

Proof of Theorem 3. Firstly, we see that (1) immediately implies that (2) holds.

Thus, by Lemma 3, for 0 < q < 1, each of (1) and (2) implies that (4) holds.

Secondly, we show that (1) follows from (2) and (3). To see this, by Lemma 4,

we conclude that (1) is equivalent to

1
X

nD1

1

n
E

 

kOSnk

n1=p

!q

< 1: (30)

Since (2) ensures that (24) holds, by (10) and (11) of Theorem 7, we see that (30)

holds if and only if

E

 

sup
n�1

bn










OXn










q

!

< 1; (31)

where bn D
P1

kDn n�1�q=p; n � 1. Since limn!1 bn=n�q=p D p=q, we conclude

that (31) is equivalent to

E

0

@sup
n�1










OXn










p

n

1

A

q=p

D E

0

@sup
n�1










OXn










q

nq=p

1

A < 1: (32)

Note that we have from (3) that

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

EkXkp < 1 if 0 < q < p,

EkXkp ln.1C kXk/ < 1 if q D p,

EkXkq < 1 if q > p
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which is equivalent to

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Ek OXkp < 1 if 0 < q < p,

Ek OXkp log.1C k OXk/ < 1 if q D p,

Ek OXkq < 1 if q > p.

(33)

Burkholder [2] proved that (33) and (32) are equivalent. We thus conclude that (1)

follows from (2) and (3) .

Since (1) and (30) are equivalent, (30) implies that (32) holds, and (32) and (33)

are equivalent, we conclude that (3) follows from (1) if q � p.

We now show that (1) implies that (3) holds if 0 < q < p. By the Lévy inequality,

we have that, for every n � 1 and all t � 0,

P

�

max
1�k�n










OXk










q

> t

�

D P

�

max
1�k�n










OXk









> t1=q

�

� 2P
�








OSn









> t1=q

�

D 2P
�








OSn










q

> t
�

;

which ensures that, for every n � 1,

E

�

max
1�k�n










OXk










q
�

� 2E









OSn










q

: (34)

Since (1) and (30) are equivalent, it now follows from (1) and (34) that

1
X

nD1

1

n1C1=p1
E

�

max
1�k�n

Yk

�

D

1
X

nD1

1

n1Cq=p
E

�

max
1�k�n










OXk










q
�

< 1; (35)

where p1 D p=q > 1 (since 0 < q < p) and Y D k OXkq; Yn D









OXn










q

; n � 1. By

Lemma 5, (35) is equivalent to

Z 1

0

P
1=p1.Y > t/dt < 1;

i.e.,

Z 1

0

P
q=p
 

kX � X0kq > t
�

dt < 1: (36)

Let m.kXk/ denote a median of kXk. Since, by the weak symmetrization inequality,

we have that
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P.jkXk � m.kXk/j > t/ � 2P
 
ˇ

ˇkXk � kX0k
ˇ

ˇ > t
�

� 2P
 

kX � X0k > t
�

� 4P
�

kXk >
t

2

�

8 t � 0;

we conclude that (36) is equivalent to

Z 1

0

P
q=p .kXkq > t/ dt < 1;

i.e., (3) holds if 0 < q < p.

Finally, by Lemma 3, (2) implies that EkXkp < 1. Then (32) holds and

hence (30) holds if 0 < q < p. Since, under (2) , (1) and (30) are equivalent,

we see that (1) follows from (2) if 0 < q < p. �
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