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Abstract
The structure of complex networks is an important aspect in the study of the real
network data. Quite often, it is desirable to know the division of the network into
communities. A large number of community detection algorithms have been proposed
to probe the community structure of complex networks. For a specific partition of a
given network, we show that the distribution of modularity under a null hypothesis of
free labeling is asymptotically normal when the size of the network gets large. The
significance of the partition is defined based on this asymptotic distribution, which can
help assess its goodness. Two different partitions can also be compared statistically.
Simulation studies and real data analyses are performed for illustration.

Keywords Modularity · Asymptotic distribution · Network · Complex systems

1 Introduction

The analysis and exploration of network data have been performed within the mod-
ern science of complex systems for a long time (Jackson 2010; Albert and Barabási
2002; Newman 2003, 2010). The community structure, or clustering, plays an impor-
tant role in the dynamics of the network. A community is a group of vertices in the
network which is more tightly connected among themselves than with other vertices
from outside of the group. Vertices in the same community in general share some com-
mon characteristics and interact more strongly than with vertices from other groups.
Various methods already exist in finding the community structure within a complex
network (Fortunato 2010). After the detection of communities, it is an important issue
to assess their statistical significance. However, the literature on this crucial topic is
not extensive. Rosvall and Bergstrom (2010) bootstrapped the original network to get
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new samples. For each cluster in the original partition, they used the bootstrap samples
to find the largest subset of vertices that are most likely to be classified in the same
cluster. Lancichinetti et al. (2010) estimated the significance of single communities by
comparing the original network with a random graph with similar properties. Zhang
and Chen (2016) proposed a framework in which the consistency of modularity can
be shown under a degree-corrected stochastic block model.

We propose a way of evaluating the significance of any given partition by con-
sidering whether this particular partition can arise simply from randomness under
the assumption that there is no underlying community structure in the network. We
first derive the asymptotic distribution of the modularity under that assumption when
the network size gets large and further define its significance using the z-score. For
small networks, a more robust approach which does not depend on the asymptotic
approximation is the randomization test.

The paper is organized as follows. In Sect. 2, we introduce some basic concepts in
the network alongwith the definition ofmodularity.We further describe the global null
hypothesis called free labeling. Under this null hypothesis, we derive the asymptotic
distribution of modularity. In Sect. 3 we perform a simulation study to validate the
asymptotic behavior and further use some well-known real network data for illustra-
tion.

2 Main results

Consider an undirected graph G consisting of n vertices {v1, v2, . . . , vn} and m edges
{e1, e2, . . . , em}. The degree of vertex vi , denoted by ki , is the number of edges con-
nected to it. It is easy to see that

∑n
i=1 ki = 2m. Let A be the symmetric adjacency

matrix of the network in which Ai j denotes the number of edges between vertices
i and j . For a simple graph which is the case discussed in this paper, Ai j is 0 or 1,
and Aii = 0 since no self-loops are allowed. We have ki = ∑n

j=1 Ai j = ∑n
j=1 A ji

for 1 ≤ i ≤ n. Suppose that we already have a partition of the network G, denoted
by C , using one of the existing community detection methods (Fortunato 2010). In
other words, each vertex vi (1 ≤ i ≤ n) is associated with a group label or color
ci ∈ {1, 2, . . . , K } where K is the total number of communities by the partition, and
we write C = (c1, c2, . . . , cn).

Themodularity of the partitionC is defined as (Newman andGirvan 2004;Newman
2006)

Qn(C) = 1

2m

∑

i, j

(

Ai j − ki k j
2m

)

δci ,c j = 1

2m

∑

i, j

Bi jδci ,c j , (1)

where δci ,c j is the Kronecker delta function which takes value 1 if vertices i and j are
in the same group (i.e., ci = c j ), and zero otherwise; Bi j = Ai j − ki k j/(2m) is the
modularity matrix, and Qn(C) is the weighted sum of Bi j over all pairs of vertices i , j
that fall in the same groups. It measures the extent to which vertices of the same type
are connected to each other in a network (Newman 2010). Here we explicitly use a
subscript n in Qn(C) to emphasize its dependence on the size of the network. Values
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Asymptotic distribution of modularity in networks 469

of Qn(C) are strictly less than 1. Large values indicate that there are more edges
between vertices of the same type than we would expect by chance only, while small
values indicate that vertices from different groups are more likely to be connected. In
general, modularity-based algorithms to divide the network try to maximize Qn(C)

either directly or indirectly (Fortunato 2010).
For a given partition C of the network, we are interested in whether this parti-

tion could be obtained by randomly assigning colors to the vertices. The global null
hypothesis H0 is that the colors are assigned to vertices randomly, regardless of the
structure of the network. Under this hypothesis, each vertex can be grouped into one
and only one of the possible K groups. The probability that a vertex is labeled by
color k is equal to the proportion of color k in the partition C . In other works, the
probability that a given vertex is labeled as group 1 is p1 = |Col(1)|/n where |Col(1)|
is the cardinality of the set of vertices with color 1; the probability is p2 = |Col(2)|/n
for group 2, and so on. Of course, pk ≥ 0 and p1 + p2 + · · · + pK = 1. The labeling
of different vertices is assumed to be independent so H0 is also called free labeling.
The numbers of vertices labeled with K different colors, n = (n1, n2, . . . , nK ), fol-
low a multinomial distribution, n ∼ Multinomial(n, p1, p2, . . . , pK ). In doing this,
the group sizes in C are treated as correct either they are specified a priori or they
are chosen for the sake of convenience, e.g., dividing a network into two with equal
size. This approach is similar to the statistical tests for spatial autocorrelation for areal
data in spatial statistics (Cliff and Ord 1981), where the statistical significance of
the observed Moran’s (1950) I and Geary’s (1954) C can be assessed through their
asymptotic sampling distributions.

To test the null hypothesis of free labeling for a given or observed partition C , we
need to randomize the modularity Qn(C) given in (1) by assuming that the partition
C = (c1, c2, . . . , cn) is a random vector, and c1, c2, . . . , cn are independent and
identically distributed (iid) random variables with distribution P(ci = j) = p j for
1 ≤ j ≤ K . In this case, we denote Qn(C) by Qn to avoid confusion. We need to
investigate the distribution of Qn for testing the hypothesis of free labeling.

To get the asymptotic normality of Qn , we will impose the following conditions on
the degree sequence k1, . . . , kn :

lim
n→∞

1

m3

(
n∑

i=1

k2i

)2

= 0, (2)

lim
n→∞

1

m2

∑

1≤i, j≤n

(
n∑

�=1

Ai�A j�

)2

= 0. (3)

Note that the probabilities p1, . . . , pK depend on n implicitly. We assume

p(2) + p2(2) − 2p(3) ≥ δ > 0 where δ doesn’t depend on n, and p(m) =
K∑

k=1

pmk .

(4)
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470 Y. Li, Y. Qi

Condition (4) controls the asymptotic variance of Qn so that Qn is not asymptotically
degenerate.

Remark 1 A sufficient condition for (3) is

lim
n→∞

max1≤ j≤n k j
∑n

i=1 k
2
i

m2 = 0.

See Lemma 4. Since

max1≤ j≤n k j
∑n

i=1 k
2
i

m2 ≤ (max1≤ j≤n k j )2
∑n

i=1 ki
m2 = 2(max1≤ j≤n k j )2

m
,

if

lim
n→∞

(max1≤ j≤n k j )2

m
= 0, (5)

then (3) holds. In fact, (5) is also sufficient for (2) since

1

m3

(
n∑

i=1

k2i

)2

≤ 1

m3

(

max
1≤ j≤n

k j

n∑

i=1

ki

)2

= 4(max1≤ j≤n k j )2

m
→ 0

under (5). An example for (5) to hold is to assume that there exists a sequence �n such
that d1�n ≤ ki ≤ d2�n for all 1 ≤ i ≤ n, where d1 > 0 and d2 > 0 are two constants.
Then (5) holds if and only if �n/n → 0 as n → ∞. In this case, both (2) and (3) are
satisfied. For instance, for a Poisson random network with a finite average degree λ,
1
m3

(∑n
i=1 k

2
i

)2 ∼ λ/n → 0 and
(max1≤ j≤n k j )2

m = O((log n)2/n) → 0; see Riordan
and Selby (2000).

Remark 2 Define pmax = max1≤k≤K pk . Assume K ≤ K0, where K0 is an integer
that does not depend on n. Then pmax ≥ 1/K0, and p(2) ≥ pmax

∑K
k=1 pk = pmax ≥

1/K0. We have

p(2) + p2(2) − 2p(3) ≥ p(2)
(
1 + p(2) − 2pmax

) ≥ p(2)

(
1 + p2max − 2pmax

)

= p(2)(1 − pmax)
2 ≥ (1 − pmax)

2/K0,

which implies (4) if pmax ≤ δ1 for some δ1 < 1. In other words, the distribution of
the colors in the partition should be more or less homogeneous.

Theorem 1 Under conditions (2), (3) and (4) we have

Qn − μn

σn

d→ N (0, 1), (6)

where μn and σ 2
n are given by
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Asymptotic distribution of modularity in networks 471

μn := E[Qn] = −1 − p(2)

4m2

n∑

i=1

k2i , (7)

σ 2
n := Var(Qn) = p(2) + p2(2) − 2p(3)

2m2

∑

1≤i �= j≤n

B2
i j + p(3) − p2(2)

m2

n∑

i=1

B2
i i . (8)

Remark 3 The significance of a given partition C of a graph G can be defined from
the z-score

z(C) = Qn(C) − μn

σn
, (9)

which requires a large size n. If z(C) > z1−α where z1−α is the percentile of the
standard normal distribution, the partition C is statistically significant at the level of
1 − α. In other words, H0 should be rejected. On the other hand, if z(C) < z1−α , we
cannot reject H0 and the partition C is not statistically significant. It is also possible to
use the p value, 1 − �(z(C)), to evaluate the significance of partition C , where �(·)
is the cumulative distribution function of a standard normal random variable.

For small graphs, a more appropriate approach would be the randomization test
where realizations of simulated graphs are generated from the null hypothesis of free
labeling. The modularity of the real graph then can be compared to the modularities
of the simulated graphs and a p value can be obtained from its rank which then could
be utilized to evaluate the significance of the partition. An example can be found in
the next section.

Remark 4 In this paper, we consider the simple graph with Ai j ∈ {0, 1}. In fact, if we
allow Ai j = A ji ∈ {0, 1, . . . , r −1} for some integer r ≥ 2 when i �= j , Aii = 0, and
set ki = ∑n

j=1 Ai j = ∑n
j=1 A ji for 1 ≤ i ≤ n, then the conclusion in Theorem 1 is

also true, and the proof is essentially the same as the proof for Theorem 1. Theorem 1
is the special case with r = 2. When r > 2, A2

i j = Ai j is no longer true in general.
But we have the following estimation

m ≤
∑

1≤i< j≤n

Ai j ≤
∑

1≤i< j≤n

A2
i j ≤ (r − 1)

∑

1≤i< j≤n

Ai j ≤ (r − 1)m.

The only difference for the proof of this general case is in Lemmas 6 and 5. Lemma 6 is
valid if we redefine τ 2n by letting τ 2n = (p(2) + p2(2) −2p(3))

∑
1≤i< j≤n A2

i j . Lemma 5

is true if m in (14) is replaced by m2/
∑

1≤i< j≤n A2
i j , i.e. we can show that

σ 2
n = p(2) + p2(2) − 2p(3)

m2

∑

1≤i< j≤n

A2
i j (1 + o(1)) = τ 2n

m2 (1 + o(1)).

Besides, all discussions in Remarks 1–3 are still valid.
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Our proof of Theorem 1 relies on construction of an array of martingale differ-
ences and application of a martingale central limit theorem. We will first prove some
preliminary lemmas.

Lemma 2 Let X1, . . . , Xm be iid random variables with E(X1) = 0 and E(X4
1) < ∞

and {a1, . . . , am} be constants. Then

E

⎛

⎝
m∑

j=1

a j X j

⎞

⎠

4

≤ 3

⎛

⎝
∑

1≤i≤m

a2i

⎞

⎠

2

E(X4
1). (10)

Proof For any 1 ≤ i, j, k, � ≤ m, we have E(Xi X j Xk X�) �= 0 if and only if i = j =
k = � or {i, j, k, �} form two distinct pairs of integers. Therefore, we get

E

⎛

⎝
m∑

j=1

a j X j

⎞

⎠

4

= E

⎛

⎝
∑

1≤i, j,k,�≤m

aia jaka�Xi X j Xk X�

⎞

⎠

=
∑

1≤i, j,k,�≤m

aia jaka�E(Xi X j Xk X�)

=
∑

1≤i≤m

a4i E(X4
1) + 3

∑

1≤i �=k≤m

a2i a
2
k (E(X2

1))
2

≤
⎛

⎝
∑

1≤i≤m

a4i + 3
∑

1≤i �=k≤m

a2i a
2
k

⎞

⎠ E(X4
1)

≤ 3

⎛

⎝
∑

1≤i≤m

a2i

⎞

⎠

2

E(X4
1),

proving (10). 	

We will first define the errors of the Hájek-type projections for U -statistics in the

following Lemma 3, and then we establish a martingale central limit theorem for the
weighted projection errors in Lemma 6.

Lemma 3 Let X1, . . . , Xm be iid random variables, and h(x, y) and g(x) be two mea-
surable functions defined inR2 and R such that h(x, y) = h(y, x), E(h2(X1, X2)) <

∞ and E(g2(X1)) < ∞. Define h1(x) = E(h(x, X1)), μh = E(h(X1, X2)),
μg = E(g(X1)), and set h̄(x, y) = h(x, y)− h1(x)− h1(y)+μh. Then {h̄(Xi , X j ) :
1 ≤ i < j ≤ n} ∪ {g(X�) − μg : 1 ≤ � ≤ n} are orthogonal, i.e., the covariance for
any two distinct random variables in the set is zero.

Proof Note that all the random variables in {h̄(Xi , X j ) : 1 ≤ i < j ≤ n} ∪ {g(X�) −
μg : 1 ≤ � ≤ n} have a mean zero. It suffices to show the following equations:

E(h̄(Xi , X j )h̄(Xi ′ , X j ′)) = 0, if (i, j) �= (i ′, j ′), (11)
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E(h̄(Xi , X j )(g(X�) − μg)) = 0, (12)

E((g(X�) − μg)(g(X�′) − μg)) = 0, if � �= �′. (13)

In Eqs. (11) and (12), i < j and i ′ < j ′.
One can easily verify that E(h̄(Xi , X j )|Xi ) = E(h̄(Xi , X j )|X j ) = 0. If {i, j} ∩

{i ′, j ′} = ∅, an empty set, then (11) follows from the independence of h̄(Xi , X j ) and
h̄(Xi ′ , X j ′). If {i, j}∩{i ′, j ′} = {i}, then conditional on Xi , h̄(Xi , X j ) and h̄(Xi ′ , X j ′)
are independent with mean zero, and thus (11) follows. If {i, j} ∩ {i ′, j ′} = { j}, (11)
can be verified similarly. (12) can be verified by using conditional independence or
independence according to whether � ∈ {i, j} or not. (13) is trivial. 	


The following lemma is needed for the first statement in Remark 1.

Lemma 4 Define oi j = ∑n
�=1 Ai�A j� for 1 ≤ i, j ≤ n. Then

∑

1≤i, j≤n

o2i j ≤ max
1≤ j≤n

k j

n∑

i=1

k2i

Proof First, note that oi j ≤ min(ki , k j ) for 1 ≤ i, j ≤ n. Then

∑

1≤i, j≤n

o2i j ≤
∑

1≤i, j≤n

ki oi j

=
∑

1≤i≤n

∑

1≤ j≤n

ki
∑

1≤�≤n

Ai�A j�

=
∑

1≤i≤n

∑

1≤�≤n

ki Ai�

∑

1≤ j≤n

A j�

≤ max
1≤ j≤n

k j
∑

1≤i≤n

ki
∑

1≤�≤n

Ai�

= max
1≤ j≤n

k j

n∑

i=1

k2i ,

proving the lemma. 	

Lemma 5 The mean and variance of Qn are given by (7) and (8). Furthermore, if (2)
holds, then

σ 2
n = p(2) + p2(2) − 2p(3)

m
(1 + o(1)) as n → ∞. (14)

Proof Under free labeling, c1, . . . , cn are iid random variables with P(c1 = k) = pk
for 1 ≤ k ≤ K .

Define h(x, y) = δx,y in Lemma 3. Then h1(x) = E(δx,c1) = px for 1 ≤ x ≤ K ,
and μh = ∑K

k=1 p
2
k = p(2). Now we have

h̄(ci , c j ) = δci ,c j − pci − pc j + p(2), 1 ≤ i �= j ≤ n.
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Then we have

2mQn =
n∑

i=1

Bii +
∑

1≤i �= j≤n

Bi j h̄(ci , c j )

+
∑

1≤i �= j≤n

Bi j (pci + pc j ) − p(2)

∑

1≤i �= j≤n

Bi j

= (1 + p(2))

n∑

i=1

Bii + 2
∑

1≤i< j≤n

Bi j h̄(ci , c j ) − 2
n∑

i=1

Bii pci

= (1 − p(2))

n∑

i=1

Bii + 2
∑

1≤i< j≤n

Bi j h̄(ci , c j )

− 2
n∑

i=1

Bii (pci − p(2)). (15)

Here we use the identity
∑n

i=1 Bi j = ∑n
j=1 Bi j = 0 and

∑
1≤i �= j≤n Bi j =

∑
1≤i, j≤n Bi j − ∑n

i=1 Bii = −∑n
i=1 Bii . One can also verify that

Var(pc1 − p(2)) = p(3) − p2(2)

and

Var(h̄(c1, c2)) = p(2) + p2(2) − 2p(3). (16)

It follows fromLemma3 that {h̄(ci , c j ) : 1 ≤ i < j ≤ n}∪{pc�−p(2) : 1 ≤ � ≤ n}
are orthogonal with mean zero. Therefore, we have from (15) that

2mE(Qn) = (1 − p(2))

n∑

i=1

Bii = −1 − p(2)

2m

n∑

i=1

k2i

and

(2m)2Var(Qn) = 4Var(h̄(c1, c2))
∑

1≤i< j≤n

B2
i j + 4Var(pc1 − p(2))

n∑

i=1

B2
i i

= 2(p(2) + p2(2) − 2p(3))
∑

1≤i �= j≤n

B2
i j + 4(p(3) − p2(2))

n∑

i=1

B2
i i ,

(17)

which yield (7) and (8), respectively.
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Note that

∑

1≤i �= j≤n

B2
i j =

∑

1≤i �= j≤n

(

A2
i j + k2i k

2
j

4m2 − 2Ai j
ki k j
2m

)

=
∑

1≤i �= j≤n

Ai j +
∑

1≤i �= j≤n

k2i k
2
j

4m2 −
∑

1≤i �= j≤n

Ai j
ki k j
m

= 2m +
∑

1≤i �= j≤n

k2i k
2
j

4m2 −
∑

1≤i �= j≤n

Ai j
ki k j
m

.

Then by using the Cauchy-Schwarz inequality we get

1

m

∣
∣
∣
∣
∣
∣

∑

1≤i �= j≤n

B2
i j − 2m

∣
∣
∣
∣
∣
∣
≤ 1

m

∑

1≤i �= j≤n

k2i k
2
j

4m2 + 1

m2

∑

1≤i �= j≤n

Ai j ki k j

≤
(∑n

i=1 k
2
i

)2

4m3 + 1

m2

√ ∑

1≤i �= j≤n

A2
i j

√ ∑

1≤i �= j≤n

k2i k
2
j

≤
(∑n

i=1 k
2
i

)2

4m3 +
√

2
(∑n

i=1 k
2
i

)2

m3

→ 0 as n → ∞

by virtue of (2), and

1

m

n∑

i=1

B2
i i ≤ 1

m

∑

1≤i≤n

k4i
4m2 ≤

(∑n
i=1 k

2
i

)2

4m3 → 0.

(14) follows directly from (17) and the above estimation. 	

Lemma 6 If (2) and (4) hold, then

Tn := 1

τn

∑

1≤i< j≤n

Ai j h̄(ci , c j )
d→ N (0, 1), (18)

where τ 2n = m(p(2) + p2(2) − 2p(3)).

Proof Write Tn on the left-hand side of (18) as

Tn = 1

τn

n∑

j=1

j−1∑

i=1

Ai j h̄(ci , c j ) = 1

τn

n∑

j=1

znj ,

where znj = ∑ j−1
i=1 Ai j h̄(ci , c j ) for 2 ≤ j ≤ n.
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Let F j = σ(c1, c2, . . . , c j ) denote the σ -algebra generated by {c1, c2, . . . , c j } for
1 ≤ j ≤ n. Since E(h̄(ci , c j )|F j−1) = E(h̄(ci , c j )|ci ) = 0 for any 1 ≤ i < j ≤ n
we have

E(znj |F j−1) = 0 for 2 ≤ j ≤ n.

Therefore, for each n ≥ 2, {znj , j = 2, . . . , n} forms a martingale difference with
respect to {F j }.

Let 2 ≤ j ≤ n. Note that for any 1 ≤ i1, i2 ≤ j − 1

E(h̄(ci1 , c j )h̄(ci2 , c j )|F j−1)

=
K∑

k=1

h̄(ci1 , k)h̄(ci2 , k)pk

= δci1 ,ci2

pci1 + pci2
2

− p2ci1
− p2ci2

+ p(3) − (pci1 − p(2))(pci2 − p(2))

= f (ci1 , ci2),

where f (x, y) = δx,y
px+py

2 −p2x−p2y+p(3)−(px−p(2))(py−p(2)) for 1 ≤ x, y ≤ K .

By using the orthogonality of {h̄(ci , c j ) : 1 ≤ i < j ≤ n}∪{pc�−p(2) : 1 ≤ � ≤ n}
we have from (16) that

E( f (c1, c2)) = E(E(h̄(c1, c3)h̄(c2, c3)|F2)) = E(h̄(c1, c3)h̄(c2, c3)) = 0 (19)

and

E( f (c1, c1)) = E(E(h̄(c1, c3)
2|F2)) = E(h̄(c1, c3)

2) = p(2) + p2(2) − 2p(3).(20)

Define

s2n =
n∑

j=2

E(z2nj |F j−1).

We have

s2n =
n∑

j=2

E

⎛

⎜
⎝

⎛

⎝
j−1∑

i=1

Ai j h̄(ci , c j )

⎞

⎠

2
∣
∣
∣
∣
∣
∣
∣

F j−1

⎞

⎟
⎠

=
n∑

j=2

E

⎛

⎝
j−1∑

i1=1

Ai1 j h̄(ci1 , c j )
j−1∑

i2=1

Ai2 j h̄(ci2 , c j ))

∣
∣
∣
∣
∣
∣
F j−1

⎞

⎠

=
n∑

j=2

E

⎛

⎝
j−1∑

i1=1

j−1∑

i2=1

Ai1 j Ai2 j h̄(ci1 , c j )h̄(ci2 , c j )

∣
∣
∣
∣
∣
∣
F j−1

⎞

⎠
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=
n∑

j=2

j−1∑

i1=1

j−1∑

i2=1

Ai1 j Ai2 j E(h̄(ci1 , c j )h̄(ci2 , c j )|F j−1)

=
n∑

j=2

j−1∑

i1=1

j−1∑

i2=1

Ai1 j Ai2 j f (ci1 , ci2)

= 2
n∑

j=3

∑

1≤i1<i2≤ j−1

Ai1 j Ai2 j f (ci1 , ci2) +
n∑

j=2

j−1∑

i=1

Ai j f (ci , ci )

= 2
∑

1≤i1<i2≤n−1

⎛

⎝
n∑

j=i2+1

Ai1 j Ai2 j

⎞

⎠ f (ci1 , ci2) +
n−1∑

i=1

⎛

⎝
n∑

j=i+1

Ai j

⎞

⎠ f (ci , ci ).

(21)

Then it follows from (19) and (20) that

E(s2n ) =
n−1∑

i=1

⎛

⎝
n∑

j=i+1

Ai j

⎞

⎠ E( f (ci , ci ))

= (p(2) + p2(2) − 2p(3))

n−1∑

i=1

n∑

j=i+1

Ai j

= 1

2
(p(2) + p2(2) − 2p(3))

n∑

1≤i< j≤n

Ai j

= m(p(2) + p2(2) − 2p(3))

= τ 2n .

To prove (18), i.e.,

1

τn

n∑

j=1

znj
d→ N (0, 1) (22)

we will employ a martingale central limit theorem. In view of Corollary 3.1 in Hall
and Heyde (1980), the martingale central limit theorem (22) holds if the following
two conditions hold:

1

τ 2n

n∑

j=2

E
(
z2nj I (|znj | ≥ ετn)|F j−1

)
→ 0 in probability (23)

for every ε > 0, and
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1

τ 2n

n∑

j=2

E
(
z2nj |F j−1

)
→ 1 in probability. (24)

In fact, it is easy to show (23) and (24) if we can verify the following conditions

n∑

j=2

E
(
z4nj

)
= o

(
τ 4n

)
as n → ∞ (25)

and

E
(
s2n − τ 2n

)2 = o(τ 4n ) as n → ∞. (26)

Note that |h̄(ci , c j )| ≤ 2. Conditional on c j , {h̄(ci , c j ), 1 ≤ i ≤ j −1} are iid with
conditional mean zero for 2 ≤ j ≤ n. By using Lemma 2, we have

E(z4nj ) = E
(
E(z4nj |c j )

)
≤ E

⎛

⎜
⎝3

⎛

⎝
j−1∑

i=1

A2
i j

⎞

⎠

2

E(h̄(c1, c j )
4|c j )

⎞

⎟
⎠

≤ 48

⎛

⎝
j−1∑

i=1

Ai j

⎞

⎠

2

≤ 48k2j ,

which together with conditions (4) and (2) yields that

n∑

j=2

E
(
z4nj

)
≤ 48

n∑

j=2

k2j = o
(
m3/2

)
= o

(
τ 4n

)
,

proving (25).
To show (24), wewill use Lemma 3. On can verify that E( f (x, c1)) = 0, f (x, y) =

f (y, x) for 1 ≤ x, y ≤ K , and E( f (c1, c2)) = 0. Thus, by Lemma 3, { f (ci , c j ) :
1 ≤ i < j ≤ n, f (c�, c�) : 1 ≤ � ≤ n} are orthogonal. Also notice that | f (x, y)| ≤ 3
so that Var( f (ci , c j )) ≤ 9 for 1 ≤ i, j ≤ n. Therefore, from (21) we have

E
(
s2n − τ 2n

)2 = 4
∑

1≤i1<i2≤n−1

⎛

⎝
n∑

j=i2+1

Ai1 j Ai2 j

⎞

⎠

2

Var( f (ci1 , ci2))

+
n−1∑

i=1

⎛

⎝
n∑

j=i+1

Ai j

⎞

⎠

2

Var( f (ci , ci ))

≤ 36

⎛

⎜
⎝

∑

1≤i1<i2≤n−1

⎛

⎝
n∑

j=i2+1

Ai1 j Ai2 j

⎞

⎠

2

+
n−1∑

i=1

⎛

⎝
n∑

j=i+1

Ai j

⎞

⎠

2
⎞

⎟
⎠
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≤ 36
∑

1≤i1,i2≤n

⎛

⎝
n∑

j=1

Ai1 j Ai2 j

⎞

⎠

2

= o(m2)

= o(τ 4n )

from (2) and (14), proving (26). 	


Proof of Theorem 1 We continue to use the notation in the proof of Lemma 5. For τ 2n =
m(p(2)+ p2(2)−2p(3)) defined in Lemma 6, we get from (14) thatmσn = τn(1+o(1)).
It follows from (15) that

Qn − μn

σn
= 1

mσn

∑

1≤i< j≤n

Bi j h̄(ci , c j ) − 1

mσn

n∑

i=1

Bii (pci − p(2))

= 1 + o(1)

τn

∑

1≤i< j≤n

Bi j h̄(ci , c j ) − 1 + o(1)

τn

n∑

i=1

Bii (pci − p(2))

= 1 + o(1)

τn

∑

1≤i< j≤n

Ai j h̄(ci , c j ) − 1 + o(1)

2τn

∑

1≤i< j≤n

ki k j
m

h̄(ci , c j )

+ 1 + o(1)

2τn

n∑

i=1

k2i
m

(pci − p(2)).

Then (6) follows immediately from Lemma 6 if

1

τn

∑

1≤i< j≤n

ki k j
m

h̄(ci , c j )
p→ 0 (27)

and

1

τn

n∑

i=1

k2i
m

(pci − p(2))
p→ 0. (28)

As a matter of fact, by using the orthogonality obtained in the proof of Lemma 5 we
have from (2) that

E

⎛

⎝ 1

τn

∑

1≤i< j≤n

ki k j
m

h̄(ci , c j )

⎞

⎠

2

= 1

τ 2n

∑

1≤i< j≤n

k2i k
2
j

m2 Var(h̄(ci , c j ))

= O

((∑n
i=1 k

2
i

)2

m3

)

→ 0
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Fig. 1 Three different partitions for the same network. From left to right, the significance of the partition
increases

and

E

⎛

⎝ 1

τn

n∑

i=1

k2i
m

(pci − p(2))

⎞

⎠

2

= 1

τ2n

n∑

i=1

k4i
m2 Var(pci − p(2)) = O

⎛

⎜
⎝

(∑n
i=1 k

2
i

)2

m3

⎞

⎟
⎠ → 0

which yield (27) and (28), respectively by Chebyshev’s inequality. 	


3 Numerical studies

In this section, we show some results from simulation studies and real data analysis.
Computationally, we find that it is very convenient to use the R package igraph
where many useful functions are implemented in generating, computing, and plotting
complex networks (Csárdi and Nepusz 2006).

Figure 1 shows three different partitions for the same network. The network is
generated by concatenating two dense subnetworks {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}
with a couple of interconnected edges. Two colors and shapes represent two partitioned
subgroups. Some related quantities are listed inTable 1. Themodularities are− 0.0238,
0.1667, and 0.4036, respectively. The theoretical mean and variance from (7) and (8)
are − 0.0510 and 0.00616 for all three partitions since they all partition the network
into two equal-sized subgroups. The simulated mean and variance are close to the
theoretical values. The z-scores are 0.347, 2.774, and 5.794, showing an increasing
significance from three partitions. The p values also confirm that (c) is the most
significant partition among these three.

To explicate the asymptotic normality when n gets large, we show three histograms
of the simulated modularities from free labeling for three different network sizes
(n = 6, 12, 24) in Fig. 2. These networks are generated by stochastic block model
(SBM) with two blocks of equal sizes (Faust and Wasserman 1992). For small size
(n = 6), the distribution is far from normal. However, when the network size is
moderately large (around 24 in the current configuration), the sampling distribution
is very close to normal. Their p values of Shapiro-Wilk normality test are nearly 0,
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Table 1 Quantities from the three figures in Fig. 1

Qn μn σ 2
n μ̃n σ̃ 2

n z-score p value

(a) − 0.0238 − 0.0510 0.00616 − 0.0558 0.00533 0.347 0.364

(b) 0.167 − 0.0510 0.00616 − 0.0565 0.00568 2.774 2.77 × 10−3

(c) 0.404 − 0.0510 0.00616 − 0.0506 0.00656 5.794 3.44 × 10−9

Qn is the modularity.μn and σ 2
n are the expected mean and variance calculated using (7) and (8). Simulated

mean μ̃n and variance σ̃ 2
n are based on 1000 random assignments of colors
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Fig. 2 Histograms for three different graph sizes (6, 12, and 24) from left to right. As the network size
increases, the sampling distribution becomesmore normal. The solid lines are the theoretical normal density
lines with mean and variance from (7) and (8). The p values of Shapiro-Wilk normality test are nearly 0,
nearly 0, and 0.07, respectively

nearly 0, and 0.07, respectively, confirming the better normality when the network
size increases.

Finally, an illustration is given by using the well-known Zachary’s karate club
data set which has been regularly used as a benchmark to test different community
detection algorithms (Zachary 1977). It contains 34 members of a karate club and an
edge connecting two members represents they have interactions outside the activities
of the club as shown in Fig. 3. At some point, there was a conflict between two central
members, “A” and “H”, who are the administrator and the instructor of the club. The
club was then split into two smaller club as shown by different shapes and colors. This
partition of the network has a modularity of 0.372. The theoretical sampling mean and
variance are − 0.0248 and 0.00235, respectively. The simulated mean and variance
are − 0.0253 and 0.00229, respectively. They are close since the sample size n = 34
is moderately large. This partition has a z-score of 8.175 with a p value of nearly 0,
showing that it is indeed a very significant partition of the network.Thehistogramof the
simulatedmodularities is shown in Fig. 4which is approximately normally distributed.

An empirical power analysis is carried out to show the capability of detecting the
departure from the null hypothesis.We construct a network using SBM containing 100
communities, eachwith 5 vertices. The edge probabilities are 0.3 and 0.1 forwithin and
between communities, respectively. The original partition is the true community struc-
ture of the network. In the alternative Ha , we hold a certain number d of communities
untouched while freely labeling the remaining vertices. Figure 5 shows the empirical
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Fig. 3 Zachary’s karate club
network. The colors correspond
to the split of the club into two
separate groups. Vertices “A”
and “H” are the administrator
and the instructor of the club
whose conflict causes the fission
of the club (color figure online)
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Fig. 4 Histogram of simulated
modularities for Zachary’s
karate club network. The
modularity of the actual fission
of the club is 0.372, indicating a
very significant partition of the
network
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power as a function of d. When d is small, the alternative is not very different from
the null, giving a low power. As d increase, the community structure in Ha becomes
stronger and the proposed method is more likely to detect it with higher power.

4 Conclusion and discussion

In this paper, we consider the asymptotic distribution of the modularity in a network
under the null hypothesis of free labeling. Under free labeling, each vertex is inde-
pendently assigned to different groups with probabilities equal to the proportions of
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Fig. 5 Power as a function of d,
the number of communities
excluded from free labeling
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vertices of different colors in the original network. Under some regularity conditions,
the distribution is asymptotically normal when the size of the network goes to infinity.
Some simulation work is performed to illustrate that the asymptotics kicks in reason-
ably fast and hence the asymptotic result may be used also for finite-sample situations.
We also define the significance of a partition based on the z-score.

Even if a network is generated by ER model, it could have some spurious commu-
nity structure (some regions are denser than other parts simply due to randomness.)
A good modularity-maximization algorithm tends to find out those communities. If
the obtained modularity is already the largest (or close to the largest) one, the test
will almost always reject the null hypothesis and conclude the given partition (by
maximizing modularity) captures some community structure of the network.

If two community detecting algorithms give the same number of communities,
then we can compare their modularity directly which is equivalent to comparing the
z-score in (9) since the asymptotic mean and variance in (7) and (8) are the same. On
the other hand, if two algorithms result in different number of communities, then it
makes more sense to compare two z-scores which take into consideration different μn

and σn . Specifically, suppose that the asymptotic mean and variance of partition 1 are
μ(1) and σ 2

(1) and partition 2 has μ(2) and σ 2
(2). Here we omit subscript n for brevity.

Then we can use a t test type procedure and calculate

μ(1) − μ(2)
√

σ 2
(1) + σ 2

(2)

. (29)

Two partitions will be claimed to be significantly different if this value is greater
than zα/2 in magnitude. For example, Donetti and Muñoz used spectral properties of
the graph Laplacian matrix and hierarchical clustering techniques to get a different
partition from the one in Fig. 3 for Zachary’s karate club network (Donetti and Muñoz
2004). See Figure 4 of Donetti and Muñoz (2004) for details. Its modularity is 0.4198
and μ(1) = −0.03575 and σ 2

(1) = 0.001792. The partition in Fig. 3 has modularity

0.3715 and μ(2) = −0.02481 and σ 2
(2) = 0.002350. The quantity in (29) is − 0.17,

indicating that these two partitions are not statistically different.
A related but different null hypothesis is also possiblewhere the numbers of vertices

with different colors are fixed and equal to the numbers of vertices with different colors
in the original network. For example, if a community detection algorithm was applied
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to a network with size n = 10 and it finds out there are two communities with sizes
4 and 6, respectively. The null hypothesis is that each vertice is randomly assigned
to one of the two colors under the constraints that four vertices will have color 1 and
six vertices will have color 2. We call this case non-free labeling where the color
assignments for different vertices are not independent. It turns out that the mean and
variance of the distribution of modularity under non-free labeling are not difficult
to obtain by following a similar argument in calculating (7) and (8). However, the
theoretical derivation of the asymptotic distribution is much more complicated than
free labeling. This is an on-going work and will be addressed in a separate paper.
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