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1 Introduction

Analyzing data with large dimensionality of the population and large sample size is one

of very active areas in mathematical sciences. This is particularly true in Statistics. If n

points from a population with dimension p are sampled and they are put together, we then

see an n×p matrix naturally. When the population is the multivariate normal distribution,

the methodology of studying such data is elaborated in the field of Multivariate Analysis.

In the last decade, with the development and improvement of modern technologies such

as the speed of computers, biology, Wall Street trading and weather forecast, the collected

data have a common feature that both n and p are very large. Thus, renovating the

old statistical methods and creating new methods are necessary. There are some recent

literatures about these development. For example, in the field of multivariate analysis,

Schott (2001, 2005, 2007), Ledoit and Wolf (2002), Bai et al. (2009), Chen et al. (2010),

Jiang et al. (2012), and Jiang and Yang (2013) study the classical likelihood ratio tests

when p is large. For literatures on large n and large p with other interests, see, for example,

two book-length treatments by Serdobolskii (2000) and Fujikoshi et al. (2010).

In this paper we will investigate a problem asked by Jiang and Yang (2013). Our

solutions become very applicable in practice. To make the problem clear to understand, let

us take one example to illustrate. For a multivariate normal distribution Np(µ,Σ), where

µ ∈ Rp is mean vector and Σ is p× p covariance matrix, consider the spherical test

H0 : Σ = λIp vs Ha : Σ ̸= λIp (1.1)

with λ unspecified. Let x1, · · · ,xn be i.i.d. Rp-valued random vectors with normal distri-

bution Np(µ,Σ). Let Vn be the likelihood ratio test (LRT) statistic (given in (2.2)). The

traditional theory of the multivariate analysis says that −n log Vn goes to a chi-square dis-

tribution as n tends to infinity while p is fixed. Jiang and Yang (2013) prove that it is no

longer true as p→ ∞. In fact, one of their results show that the central limit theorem (CLT)

holds, that is, (log Vn − µn)/σn actually converges to the standard normal distribution as

n → ∞ and p/n → y ∈ (0, 1], where µn and σn are explicit constants of n and p. Similar

results on other five classical likelihood ratio tests are also obtained in their paper. By a

comparison between the histograms of (log Vn − µn)/σn and the standard normal curve,

they observe that the above central limit theorem also holds even when p is large but not

necessarily proportional to n, that is, the assumption p/n → y ∈ (0, 1] does not have to

hold. See the comment in Problem 3 in Section 4 from their paper. Of course, if this is true

the CLT will be very useful in practice since it is hard to judge whether p/n has a limit in

(0, 1] for real data.

We prove in this paper that the above CLT holds when p, which has to be less than n in

the LRT, is large but not necessarily at the same scale of n. Other five classical likelihood

ratio tests are also shown to have similar behaviors. Therefore, in the corresponding LRTs,
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the sizes of data are allowed to be more flexible. One does not need to concern if the value

of p is large enough to be comparable of the sample size.

One of the key reasons to assume p/n → (0, 1] in the previous studies relies on the

fact that it is a very typical assumption in the field of Random Matrix Theory. In their

enlightening work, Bai et al. (2009) study a test similar to (1.1) by using the central limit

theorem of the eigenvalues of the Wishart matrices. Their work is based on the assumption

p/n → y ∈ (0, 1]. The subsequent work aforementioned naturally use this condition. In

this paper, we develop a machinery (Proposition 5.1) to deal with the case when p is much

smaller than n. It is an expansion of the generalized Gamma function Γp(z) (defined by

(5.1)) which enables us to obtain the CLT as long as p→ ∞ regardless of the relative speed

to n. Our starting step is the method of moment generating functions. When changing the

point from the Random Matrix Theory to the method of the moment generating function,

it is very interesting to see that the CLT actually holds for such a big range of n and p.

The difference between this work and Jiang and Yang (2013) is as follows. Jiang and

Yang study six classical LRTs under the assumption p/n→ y ∈ (0, 1] or similar conditions.

In this paper, we study the same six tests under the condition n − c > p → ∞ for some

1 ≤ c ≤ 4. So the earlier work is a special case of the current one. In fact, the assumption

that “n − c > p → ∞” is almost necessary: when p is finite the test statistic converges to

a chi-square distribution by a classical LRT theorem; when n − 1 < p the LRT does not

exists (see Jiang and Yang (2013) for further details). Second, the new results are more

applicable. Lastly, the derivation of our new tool of Proposition 5.1 is more challenging

than Lemma 5.4 in Jiang and Yang (2013). Both are the core steps in the proofs appearing

in the two papers. Readers are referred to their paper for more descriptions and narrations

about the six tests.

The outline of the rest of this paper is given as follows. We present the six likelihood

ratio tests in Sections 2.1 - 2.6. They are: (1) Testing covariance matrices of normal

distributions proportional to identity matrix; (2) Testing independence of components of

normal distributions; (3) Testing multiple normal distributions being identical; (4) Testing

equality of several covariance matrices; (5) Testing specified values for mean vector and

covariance matrix; (6) Testing complete independence of a normal distribution. The central

limit theorems are presented in those sections. In Sections 3.1, we make pictures to compare

the classical chi-square approximations and our CLTs. In 3.2, we give tables on sizes and

powers of the tests. In Section 4, we provide a summary and lead some discussions. All of

the theorems are proved in Section 5.

2 Main Results

Throughout the paper, Np(µ,Σ) stands for the p-dimensional normal distribution with

mean vector µ and covariance matrix Σ, and Ip denotes the p× p identity matrix. For any
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given α ∈ (0, 1), χ2
f,α denotes the α level critical value of χ2

f , the chi-square random variable

or the chi-square distribution with f degrees of freedom, and zα denotes the α level critical

value of the standard normal distribution N(0, 1). The notation |A| or det(A) stands for

the determinant of the square matrix A.

In this section we present the central limit theorems of six classical LRT statistics. The

six theorems are stated in six subsections.

2.1 Testing Covariance Matrices of Normal Distributions Proportional

to Identity Matrix

Consider a normal distribution Np(µ,Σ). The spherical test is given by

H0 : Σ = λIp vs Ha : Σ ̸= λIp (2.1)

with λ unspecified. Suppose x1, · · · ,xn are i.i.d. Rp-valued random vectors with normal

distribution Np(µ,Σ). As usual, set

x̄ =
1

n

n∑
i=1

xi and S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′.

Mauchly (1940) shows that the likelihood ratio test statistic of (2.1) is as follows:

Vn = |S| ·
(tr(S)

p

)−p
. (2.2)

In this paper, we have the following result about Vn.

THEOREM 1 Let p = pn such that n > p+1 for all n ≥ 3 and Vn be as in (2.2). Assume

limn→∞ pn = ∞, then, under H0 in (2.1), (log Vn − µn)/σn converges in distribution to

N(0, 1) as n→ ∞, where

µn = −p−
(
n− p− 3

2

)
log(1− p

n− 1
) and

σ2n = −2
[ p

n− 1
+ log(1− p

n− 1
)
]
.

Jiang and Yang (2013) prove the above theorem for the special case p/n → y ∈ (0, 1].

Theorem 1 says that p/n does not need to have a limit. Further, if lim p/n = y exists, the

theorem holds for y = 0. Theorem 1 holds as long as p→ ∞ and p < n− 1. It is explained

in Jiang and Yang (2013) that the LRT statistic does not exist if p > n− 1.

If p is fixed, the classical chi-square approximation says that

−(n− 1)ρ log Vn converges to χ2
f (2.3)

in distribution as n→ ∞, where

ρ = 1− 2p2 + p+ 2

6(n− 1)p
and f =

1

2
(p− 1)(p+ 2).
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See, e.g., Muirhead (1982) or the summary in Jiang and Yang (2013).

Let α ∈ (0, 1) be any given number. Recall that a likelihood ratio test of size-α rejects

the null hypotheses if the likelihood ratio (or any of its monotone increasing functions) is

smaller than a constant cα which is chosen in such a way that the size or type I error is

(approximately) equal to the given α. Therefore, the rejection region of likelihood ratio

test of (2.1) is Vn ≤ cα. Based on the chi-square approximation in (2.3), an approximate

size-α rejection region is −(n − 1)ρ log Vn ≥ χ2
f,α. Based on the normal approximation in

Theorem 1, the rejection region is (log Vn − µn)/σn ≤ −zα.

2.2 Testing Independence of Components of Normal Distributions

For k ≥ 2, let p1, · · · , pk be k positive integers. Denote p = p1 + · · ·+ pk and let

Σ = (Σij)1≤i,j≤k

be a positive definite matrix, where Σij is a pi × pj sub-matrix for all 1 ≤ i, j ≤ k.

Assume ξi is a pi-variate normal random vector for each 1 ≤ i ≤ k, and (ξ′1, · · · , ξ′k)′ has
the distribution Np(µ,Σ). We are interested in testing the independence of ξ1, · · · , ξk, or
equivalently testing

H0 : Σij = 0 for all 1 ≤ i < j ≤ k vs Ha : H0 is not true. (2.4)

Assume that x1, · · · ,xN are i.i.d. from distribution Np(µ,Σ). Set n = N − 1. Define

A =

n+1∑
i=1

(xi − x̄)(xi − x̄)′ with x̄ =
1

n+ 1

n+1∑
i=1

xi,

and partition it as follows

A =


A11 A12 · · · A1k

A21 A22 · · · A2k

... · · · · · ·
...

Ak1 Ak2 · · · Akk


where Aij is a pi × pj matrix. The likelihood ratio statistic for testing (2.4) is given by

Λn =
|A|(n+1)/2∏k

i=1 |Aii|(n+1)/2
:= (Wn)

(n+1)/2, (2.5)

see Wilks (1935) or Theorem 11.2.1 from Muirhead (1982).

Since log Λn = n+1
2 logWn from (2.5), it suffices to deal with the limiting distribution

of logWn. Assume pi := pi,n for all 1 ≤ i ≤ k. We have the following result for logWn.
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THEOREM 2 Suppose that n > p for all large n and there exists δ ∈ (0, 1) satisfying

δ ≤ pi/pj ≤ δ−1 for all 1 ≤ i, j ≤ k and all large n. Recall Wn as defined in (2.5). If

min1≤i≤k pi → ∞ as n → ∞, then, under H0 in (2.4), (logWn − µn)/σn converges in

distribution to N(0, 1) where

µn = −r2n
(
p− n+

1

2

)
+

k∑
i=1

r2n,i

(
pi − n+

1

2

)
and σ2n = 2r2n − 2

k∑
i=1

r2n,i

and rx = (− log(1− p
x))

1/2 for x > p and rx,i = (− log(1− pi
x ))

1/2 for x > pi and 1 ≤ i ≤ k.

The assumption “δ ≤ pi/pj ≤ δ−1 for all 1 ≤ i, j ≤ n and all n” requires that the sizes

of the components pi’s are comparable. This rules out the unusual situation that some of

the pi’s are much larger than the others. As is pointed out by Jiang and Yang (2013), the

LRT fails if p > N = n+ 1 since the matrix A is not of full rank. Jiang and Yang (2013)

prove the above theorem under condition that limn→∞ pi/n = yi ∈ (0, 1] for 1 ≤ i ≤ k.

When p1, p2, · · · , pk are fixed as n goes to infinity, the classical LRT statistic of (2.4) has a

chi-square limit:

−2ρ log Λn converges to χ2
f (2.6)

in distribution, where

f =
1

2

(
p2 −

k∑
i=1

p2i

)
and ρ = 1−

2
(
p3 −

∑k
i=1 p

3
i

)
+ 9

(
p2 −

∑k
i=1 p

2
i

)
6(n+ 1)

(
p2 −

∑k
i=1 p

2
i

) ;

see, e.g., Theorem 11.2.5 in Muirhead (1982).

Let α ∈ (0, 1) be any given number. Based on the chi-square approximation in (2.6),

the LRT rejects the null hypothesis in (2.4) if −2ρ log Λn ≥ χ2
f,α. Based on the normal

approximation in Theorem 2, the rejection region is (logWn − µn)/σn ≤ −zα.

2.3 Testing that Multiple Normal Distributions Are Identical

Consider normal distributions Np(µi,Σi), i = 1, 2, · · · , k, where k ≥ 2. We are interested

in testing whether the k distributions are identical, that is,

H0 : µ1 = · · · = µk, Σ1 = · · · = Σk vs Ha : H0 is not true. (2.7)

Assume {yij ; 1 ≤ i ≤ k, 1 ≤ j ≤ ni} are independent p-dimensional random vectors,

and for each i = 1, 2, · · · , k, {yij ; 1 ≤ j ≤ ni} are i.i.d. from N(µi,Σi). Define

A =

k∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)′, Bi =

ni∑
j=1

(yij − ȳi)(yij − ȳi)
′ and

B =
k∑

i=1

Bi =
k∑

i=1

ni∑
j=1

(yij − ȳi)(yij − ȳi)
′
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where

ȳi =
1

ni

ni∑
j=1

yij , ȳ =
1

n

k∑
i=1

niȳi, n =
k∑

i=1

ni.

The likelihood ratio test statistic for (2.7) is first derived by Wilks (1932) as follows

Λn =

∏k
i=1 |Bi|ni/2

|A+B|n/2
· npn/2∏k

i=1 n
pni/2
i

. (2.8)

See also Theorem 10.8.1 from Muirhead (1982). It is noted in Jiang and Yang (2013) that

when p ≥ ni for any i = 1, · · · , k, the determinant of the matrix Bi is zero since Bi is not

of full rank, and consequently, the likelihood ratio statistic Λn is zero. Thus, the condition

p < min{ni; 1 ≤ i ≤ k} is required to ensure that the LRT statistic for the test (2.7) is

nondegenerate.

We have the following result for the limiting distribution of Λn defined in (2.8).

THEOREM 3 Let ni = ni(p) > p + 1 for all p and there exists δ ∈ (0, 1) such that

δ < ni/nj < δ−1 for all 1 ≤ i, j ≤ k. Let Λn be as in (2.8). Then, under H0 in (2.7),

log Λn − µn
nσn

converges to N(0, 1)

in distribution as p→ ∞, where

µn =
1

4

[
− 2kp−

k∑
i=1

p

ni
+ nr2n(2p− 2n+ 3)−

k∑
i=1

nir
2
n′
i
(2p− 2ni + 3)

]
,

σ2n =
1

2

( k∑
i=1

n2i
n2
r2n′

i
− r2n

)
> 0

and n′i = ni − 1 and rx =
(
− log

(
1− p

x

))1/2
for x > p.

If the dimension p is fixed and the null hypothesis in (2.7) is true, it follows from

Theorem 10.8.4 in Muirhead (1982) that

−2ρ log Λn converges to χ2
f (2.9)

in distribution as min1≤i≤k ni → ∞, where

f =
1

2
p(k − 1)(p+ 3) and ρ = 1− 2p2 + 9p+ 11

6(k − 1)(p+ 3)n

( k∑
i=1

n

ni
− 1

)
.

When p grows with the same rate of ni, namely, limp→∞ p/ni = yi ∈ (0, 1] for 1 ≤ i ≤ k, the

above theorem is proved by Jiang and Yang (2013). We should mention that µn in Theorem
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3 of Jiang and Yang (2013) is defined slightly differently: the counterpart of
∑k

i=1 yi in their

result is
∑k

i=1
p
ni

in the above theorem. Note that in our Theorem 3 we do not assume the

limits of p
ni

exist. This substitution does not change the limiting distribution since both∑k
i=1

p
ni

and
∑k

i=1 yi are bounded by k, and therefore they are negligible compared with

nσn, which converges to infinity as shown in the proof of Theorem 3.

Let α ∈ (0, 1) be any given number. Based on the chi-square approximation in (2.9),

the LRT rejects the null hypothesis in (2.7) if −2ρ log Λn ≥ χ2
f,α. Based on our normal

approximation, the rejection region is (log Λn − µn)/(nσn) ≤ −zα.

2.4 Testing Equality of Several Covariance Matrices

Let k ≥ 2 be an integer. Consider p-dimensional normal distributions Np(µi,Σi), 1 ≤ i ≤ k,

where µi and Σi are unknown. We are interested in testing

H0 : Σ1 = · · · = Σk vs Ha : H0 is not true. (2.10)

For 1 ≤ i ≤ k, let xi1, · · · ,xini be i.i.d. Np(µi,Σi)-distributed random vectors. Define

xi =
1

ni

ni∑
j=1

xij and Ai =

ni∑
j=1

(xij − xi)(xij − xi)
′, 1 ≤ i ≤ k,

and

A = A1 + · · ·+Ak and n = n1 + · · ·+ nk.

The likelihood ratio test statistic for (2.10), derived in Wilks (1932), is given by

Λn =

∏k
i=1 (|Ai|)ni/2

(|A|)n/2
· nnp/2∏k

i=1 n
nip/2
i

.

The test rejects the null hypothesis H0 when Λn ≤ cα, where cα is selected such that

the test has the significance level of α. The test statistic Λn is non-degenerate only if all

determinants of Ai are nonzero, and hence the condition that p < ni for all i = 1, . . . , k

is required. We are interested in the following modified likelihood ratio test statistic Λ∗
n,

suggested by Bartlett (1937):

Λ∗
n =

∏k
i=1 (|Ai|)(ni−1)/2

(|A|)(n−k)/2
· (n− k)(n−k)p/2∏k

i=1(ni − 1)(ni−1)p/2
. (2.11)

This modified likelihood ratio test has been proved to be unbiased; see, e.g., Sugiura and

Nagao (1968) and Perlman (1980). In this paper, we will prove the following CLT for

log Λ∗
n.
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THEOREM 4 Assume ni = ni(p) for all 1 ≤ i ≤ k such that min1≤i≤k ni > p + 1 and

there exists δ ∈ (0, 1) such that δ < ni/nj < δ−1 for all i, j. Let Λ∗
n be as in (2.11). Then,

under H0 in (2.10), (log Λ∗
n−µn)/((n−k)σn) converges weakly to N(0, 1) as p→ ∞, where

µn =
1

4

[
(n− k)(2n− 2p− 2k − 1) log(1− p

n− k
)

−
k∑

i=1

(ni − 1)(2ni − 2p− 3) log(1− p

ni − 1
)
]
,

σ2n =
1

2

[
log(1− p

n− k
)−

k∑
i=1

(ni − 1

n− k

)2
log(1− p

ni − 1
)
]
> 0.

The CLT for log Λ∗
n has also been studied by Bai et al. (2009), Jiang et al. (2012), and

Jiang and Yang (2013). Jiang and Yang (2013) prove Theorem 4 under more restrictive

condition that p/ni → yi ∈ (0, 1] for i = 1, · · · , k. When p is fixed, the classical chi-square

approximation is obtained by Box (1949). Under the null hypothesis of (2.10), Box (1949)

shows that

−2ρ log Λ∗
n converges to χ2

f (2.12)

in distribution as min1≤i≤k ni → ∞, where

f =
1

2
p(p+ 1)(k − 1) and ρ = 1− 2p2 + 3p− 1

6(p+ 1)(k − 1)(n− k)

( k∑
i=1

n− k

ni − 1
− 1

)
.

Let α ∈ (0, 1) be any given number. Based on the chi-square approximation, the

LRT rejects the null hypothesis in (2.10) if −2ρ log Λ∗
n ≥ χ2

f,α. Based on the normal

approximation in Theorem 4, the rejection region is (log Λ∗
n − µn)/((n− k)σn) ≤ −zα.

2.5 Testing Specified Values for Mean Vector and Covariance Matrix

Consider a normal distribution Np(µ,Σ), where µ ∈ Rp is the mean vector and Σ is the

p × p covariance matrix. Based on n i.i.d. random vectors x1, · · · ,xn from the normal

distribution Np(µ,Σ), we test

H0 : µ = µ0 and Σ = Σ0 vs Ha : H0 is not true,

where µ0 is a given vector in Rp and Σ0 is a given p× p non-singular matrix. Through the

data transformation x̃i = Σ
−1/2
0 (xi − µ0), the above hypothesis test is equivalent to the

test

H0 : µ = 0 and Σ = Ip vs Ha : H0 is not true. (2.13)
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Set

x̄ =
1

n

n∑
i=1

xi, A =
n∑

i=1

(xi − x̄)(xi − x̄)′. (2.14)

The likelihood ratio test statistic of (2.13) is given by

Λn =
( e
n

)np/2
|A|n/2e−tr(A)/2e−nx̄′x̄/2; (2.15)

see, for example, Theorem 8.5.1 from Muirhead (1982). The condition that p < n is required

to ensure that Λn is non-degenerate. We have the following CLT for log Λn.

THEOREM 5 Assume that p := pn such that n > 1 + p for all n ≥ 3 and p → ∞ as n

goes to infinity. Let Λn be defined as in (2.15). Then under the null hypothesis of (2.13),

(log Λn − µn)/(nσn) converges in distribution to N(0, 1) as n→ ∞, where

µn = −1

4

[
n(2n− 2p− 3) log(1− p

n− 1
) + 2(n+ 1)p

]
and

σ2n = −1

2

( p

n− 1
+ log(1− p

n− 1
)
)
> 0.

Jiang and Yang (2013) show Theorem 5 under a stronger condition, p/n → y ∈ (0, 1].

When p is fixed, it follows from Theorem 8.5.5 in Muirhead (1982) that as n→ ∞

−2ρ log Λn converges to χ2
f (2.16)

under the null hypothesis of (2.13), where

ρ = 1− 2p2 + 9p+ 11

6n(p+ 3)
and f =

1

2
p(p+ 3).

Let α ∈ (0, 1) be any given number. Based on the chi-square approximation in (2.16),

the LRT rejects the null hypothesis in (2.13) if −2ρ log Λn ≥ χ2
f,α. Based on the normal

approximation in Theorem 5, the rejection region is (log Λn − µn)/σn ≤ −zα.

2.6 Testing Complete Independence

Assume that a p-dimensional random vector x = (x1, · · · , xp)′ has a distribution Np(µ,Σ).

We are interested in testing that the p components x1, x2, · · · , xp are independent or equiva-
lently testing that the covariance matrix Σ is diagonal. Let R = (rij)p×p be the correlation

matrix generated from Np(µ,Σ). Then the test can be written as

H0 : R = Ip vs Ha : R ̸= Ip. (2.17)

To obtain the asymptotic distribution for the test statistic of the LRT for (2.17), we

will consider a larger class of distributions namely, spherical distributions. Recall that a
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random vector y ∈ Rn has a spherical distribution if Oy and y have the same probability

distribution for all n×n orthogonal matrixO. Obviously, any n-dimensional normal random

vector with distribution Nn(0, σ
2In) has a spherical distribution for any σ > 0.

Let X = (xij)n×p = (x1, · · · ,xn)
′ = (y1, · · · ,yp) be an n×p matrix such that y1, · · · ,yp

are independent random vectors with n-variate spherical distributions and P (yi = 0) = 0

for all 1 ≤ i ≤ p (these distributions may be different). For 1 ≤ i, j ≤ p, let r̂ij denote the

Pearson correlation coefficient between (x1i, · · · , xni) and (x1j , · · · , xnj), given by

r̂ij =

∑n
k=1(xki − x̄i)(xkj − x̄j)√∑n

k=1(xki − x̄i)2 ·
∑n

k=1(xkj − x̄j)2
(2.18)

where x̄i =
1
n

∑n
k=1 xki and x̄j =

1
n

∑n
k=1 xkj . Then

R̂n := (r̂ij)p×p (2.19)

is the sample correlation matrix based on the p-dimensional random vectors x1, · · · ,xn. A

natural requirement for non-singularity of R̂n is n > p. From Theorem 5.1.3 in Muirhead

(1982), the density of |R̂n| is given by

Constant · |Rn|(n−p−2)/2dRn. (2.20)

We first present the limiting distribution concerning the determinant of R̂n.

THEOREM 6 Let p = pn satisfy that n > p+ 4 and p → ∞. Let X = (y1, · · · ,yp) be an

n× p matrix such that y1, · · · ,yp are independent random vectors with n-variate spherical

distribution and P (yi = 0) = 0 for all 1 ≤ i ≤ p (these distributions may be different).

Then (log |R̂n| − µn)/σn converges in distribution to N(0, 1) as n→ ∞, where

µn = (p− n+
3

2
) log(1− p

n− 1
)− n− 2

n− 1
p ,

σ2n = −2
[ p

n− 1
+ log

(
1− p

n− 1

)]
.

The theorem is proved by Jiang and Yang (2013) under the condition that n > p + 4

and p/n→ y ∈ (0, 1].

Now we return to the LRT of (2.17). Assume random vectors x1, . . . ,xn are i.i.d.

from a p-variate normal distribution Np(µ,Σ) with a correlation matrix R. Write xi =

(xi1, · · · , xip)′ for 1 ≤ i ≤ n, and define the sample correlation matrix R̂n = (r̂ij)p×p as in

(2.18). From Morrison (2004), page 40, the rejection region of the likelihood ratio test for

(2.17) is

|R̂n|n/2 ≤ cα

where cα is determined so that the test has significance level of α. To derive the asymptotic

distribution of log |R̂n|, write X = (x1, · · · ,xn)
′ = (xij)n×p = (y1, · · · ,yp). Then, under
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the null hypothesis of (2.17), y1, · · · ,yp are independent random vectors from n-variate

normal distributions (these normal distributions may differ by their covariance matrices),

and P (yi = 0) = 0 for all 1 ≤ i ≤ p. Therefore, we have the following corollary to

Theorem 6.

COROLLARY 1 Assume that p := pn satisfy that n > p + 4 and p → ∞. Let x1, · · · ,xn

be i.i.d. from Np(µ,Σ) with the Pearson sample correlation matrix R̂n as defined in (2.19).

Then, under H0 in (2.17), (log |R̂n|−µn)/σn converges in distribution to N(0, 1) as n→ ∞,

where

µn =
(
p− n+

3

2

)
log

(
1− p

n− 1

)
− n− 2

n− 1
p ;

σ2n = −2

[
p

n− 1
+ log

(
1− p

n− 1

)]
> 0.

When p is fixed, the following chi-square approximation holds under the null hypothesis

of test (2.17): as n→ ∞,

−
(
n− 1− 2p+ 5

6

)
log |R̂n| converges to χ2

p(p−1)/2 (2.21)

in distribution. See, e.g., Bartlett (1954) or p. 40 from Morrison (2005) for this.

Based on the chi-square approximation in (2.21), the LRT rejects the null hypothesis

in (2.17) if −
(
n− 1− 2p+5

6

)
log |R̂n| ≥ χ2

p(p−1)/2,α. According to Corollary 1, the rejection

region based on the normal approximation is (log |R̂n| − µn)/σn ≤ −zα.

3 Simulation Study

In this section, we compare the performance of the chi-square approximation and the normal

approximation for all six likelihood ratio tests in Sections 2.1-2.6 through a finite sample

simulation study. We plot the histograms for the six chi-square statistics which are used

for the chi-square approximations specified in (2.3), (2.6), (2.9), (2.12), (2.16), and (2.21),

and compare with their corresponding limiting chi-square curves. Similarly, we plot the

histograms of the six statistics which are used for the normal approximations given in

Theorems 1-6, and compare with the standard normal curve. We also report estimated

sizes and powers for the six LRTs based on their chi-square approximations and the normal

approximations. All simulations have been done by using software R, and the histograms,

estimates of the sizes and powers are based on 10, 000 replicates.

3.1 Comparison of Histograms

Six figures, Figures 1 to 6, are reported, and each of them corresponds to the two approxi-

mation methods stated in one of Sections 2.1-2.6. These figures are self-evident: when the

12



sample sizes are small, the classical chi-square approximations are good; Our central limit

theorems outperform the chi-square approximations when the sample sizes are large. Even

the data dimensions are large but are small relative to the sample sizes, the fits are still

quite well. These simulations are consistent with Theorems 1-6.

3.2 Simulation Study: Sizes and Powers

In this part, for each of the six LRTs treated earlier, we simulate the sizes and the powers

for the normal approximation and for the classical chi-square approximation, and the sim-

ulation results are listed in six tables, Tables 1–6, which are self-explained. The notation

Jp stands for the p×p matrix whose entries are all equal to 1 and ⌊x⌋ stands for the integer
part of x > 0.

From the six tables, we can see that when p is small, the chi-square approximation

works better. A common feature is that for very small values of p, the LRTs based on the

normal approximation have a slightly larger sizes than the nominal level 0.05. With the

increase of p, the sizes of the LRTs based on the normal approximation method are very

close to 0.05 while the sizes of the chi-square approximations are significantly higher than

0.05. We see that the sizes for the normal approximation are quite stable over the different

choices of p.

For comparison of the powers reported in the six tables, we note that the larger the

estimated sizes, the larger the corresponding estimated powers. When p is relatively large,

the powers for the chi-square approximation are larger than those for the normal approx-

imation, however, the sizes from the chi-square approximation are seriously higher than

the nominal level 0.05. To understand this phenomenon, one should be aware of the fact

that the two approximation methods use the same test statistics but they result in different

cutoff values for rejection regions. For illustrating purpose, we can look at the spherical

test in Section 2.1 with the LRT statistic Vn defined in (2.2). From the last paragraph in

Section 2.1, the rejection region is Vn ≤ cα, where α ∈ (0, 1) is the type I error. Since cα is

unknown, the actual cutoffs used to approximate cα are cα,1 = exp(−χ2
f,α/(n − 1)ρ) from

the chi-square approximation and cα,2 = exp(µn − zασn) from the normal approximation,

which result in two different rejection regions {Vn ≤ cα,1} and {Vn ≤ cα,2}, respectively.
The two rejection regions are nested, that is, one is a subset of the other. Therefore, the

larger rejection region has a larger size and a larger power. In other words, the larger

powers for the chi-square approximation come from the sacrifice of the accuracy in type I

errors or sizes of the test. The same relation holds true for other five LRTs. This explains

what we have observed in the six tables for the powers.

In what follows, we provide more explanations on the simulation results for the sizes in

the six tables.

(1) Table 1. We consider the spherical test H0 : Σ = λIp with λ unspecified, as given

13



in (2.1). With a fixed sample size n = 100, we choose p = 5, 20, 40 and 60 for the

values of the dimension p. When p is small (5 and 20), the chi-square and the normal

approximation methods are comparable but the chi-square approximation is slightly

better than the normal approximation in terms of the accuracy in the size of the test.

When p = 60, the size for the chi-square approximation is 0.3342, much larger than

the nominal level 0.05, while the size for the normal approximation is 0.0570.

(2) Table 2. This table reports the comparison results for the sizes and powers of the two

tests for the hypotheses given in (2.4). We choose k = 3 for the simulation study, that

is, a normal random vector is divided into three sub-vectors with dimensions p1, p2

and p3, where p1, p2 and p3 are specified in the table, and we test the independence

of the three sub-vectors. For small pi’s the chi-square approximation performs better

than the normal approximation, but the normal approximation seems not too bad

with size 0.0659 compared with the nominal level 0.05 even when pi’s are as small as

p1 = 2, p2 = 2 and p3 = 1. The normal approximation improves as pi’s grow, and

eventually the chi-square approximation yields a much larger size than the nominal

level.

(3) Table 3. This table is concerning the simulation on testing the equality of k p-

dimensional normal distributions as given in (2.7). We consider k = 3 normal pop-

ulations, and sample sizes are fixed as n1 = n2 = n3 = 100. Then four cases when

p = 5, 20, 40 and 60 are investigated in the simulation, and the distribution under null

hypothesis used in the simulation is Np(0, Ip). Although the size at p = 5 is 0.0567,

a little bit larger than the nominal level, the size for the normal approximation is

quite stable in general. The size of the test based the chi-square approximation is

reasonably close to the nominal level only for very small p.

(4) Table 4. For hypotheses in (2.10), i.e., testing the equality of k covariance matrices of

normal random vectors, we report the sizes and powers of the two tests. We choose

k = 3, and fix the sizes of the samples for the three populations as n1 = n2 = n3 = 100

with 4 different dimension choices p = 5, 20, 40, 60. The table shows that the sizes

for the normal approximation are very close to the nominal level 0.05 except the

case when p = 5. The chi-square approximation works well only for p = 5, and its

size grows drastically fast as p increases. For example, the size for the chi-square

approximation at p = 60 is as high as 0.9126, that is, about 91% of time, the test

rejects the true null hypotheses.

(5) Table 5. Considering the test of hypothesis that the underlying distribution is a specific

multivariate normal distribution or equivalently the test described in (2.13), the table

compares the performance of the two different approximation methods. We fix the

sample size n = 100 and consider four different values for the dimension, p = 5, 20, 40
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and 60. For small p, the chi-square approximation works pretty well in terms of

accuracy in the size but it becomes worse as p gets larger. The normal approximation

works very well for all reasonably large p.

(6) Table 6. This table is about the test of independence of all components from a normal

random vector, see (2.17) or equivalently, the covariance matrix is diagonal. In the

simulation, the sample size is chosen as n = 100, and the dimension p has four choices,

p = 5, 20, 40 and 60. From the table, all four sizes from the normal approximation

are close to 0.05, while the chi-square approximation results in a reasonable size only

for p = 5 or 20.
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Figure 1: Comparison between Theorem 1 and (2.3). We choose n = 100 with p =

5, 20, 40, 60. The pictures in the top row show that the χ2 curves stay away farther gradu-

ally from the histogram of −(n− 1)ρ log Vn when p grows. The bottom row shows that the

N(0, 1)-curve fits the histogram of (log Vn − µn)/σn better as p becomes larger.

Figure 2: Comparison between Theorem 2 and (2.6). We choose k = 3, n = 100 and

p = 5, 20, 40, 60 with p1 : p2 : p3 = 2 : 2 : 1. The pictures in the top row show that the

histogram of −2ρ log Λn move away gradually from χ2 curve when p grows. The pictures

in the bottom row indicate that (logWn − µn)/σn and N(0, 1)-curve match better as p

becomes larger.
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Figure 3: Comparison between Theorem 3 and (2.9). We choose n1 = n2 = n3 = 100 with

p = 5, 20, 40, 60. The pictures in the top row show that the χ2 curves stay away farther

gradually from the histogram of −2ρ log Λn when p grows. The pictures in the bottom row

show that the N(0, 1)-curve fits the histogram of (log Λn −µn)/(nσn) very well as p grows.

Figure 4: Comparison between Theorem 4 and (2.12). We chose n1 = n2 = n3 = 100 with

p = 5, 20, 40, 60. The pictures in the top row show that the χ2 curves goes away quickly

from the histogram of −2ρ log Λ∗
n as p grows. The pictures in the second row show that the

N(0, 1)-curve fits the histogram of (log Λ∗
n − µn)/[(n− k)σn] better as p grows.
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Figure 5: Comparison between Theorem 5 and (2.16). We choose n = 100 with p =

5, 20, 40, 60. The pictures in the first row show that, as p is large, the χ2-curve fits the

histogram of −2ρ log Λn poorly. Those in the second row indicate that the N(0,1)-curve fits

the histogram of (log Λn − µn)/(nσn) very well as p is large.

Figure 6: Comparison between Corollary 1 and (2.21). We choose n = 100 with p =

5, 20, 40, 60. The pictures in the first row show that, as p is large, the χ2-curve fits the

histogram of −(n − 1 − 2p+5
6 ) log |R̂n| poorly. Those in the second row indicate that the

N(0,1)-curve fits the histogram of (log |R̂n| − µn)/σn very well as p is large.
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Table 1: Size and Power of LRT for Sphericity in Section 2.1

Size under H0 Power under Ha

CLT χ2 approx. CLT χ2 approx.

n = 100, p = 5 0.0629 0.0548 0.7519 0.7340

n = 100, p = 20 0.0557 0.0546 0.8757 0.8735

n = 100, p = 40 0.0529 0.0868 0.8529 0.9022

n = 100, p = 60 0.0570 0.3342 0.7887 0.9750

The sizes (alpha errors) are estimated based on 10, 000 simulations from Np(0, Ip). The powers are estimated

under the alternative hypothesis that Σ = diag(1.69, · · · , 1.69, 1, · · · , 1), where the number of 1.69 appearing

in the diagonal is equal to ⌊p/2⌋.

Table 2: Size and Power of LRT for Independence of Three Components in Section 2.2

Size under H0 Power under Ha

CLT χ2 approx. CLT χ2 approx.

n = 100, p1 = p2 = 2, p3 = 1 0.0659 0.0510 0.7611 0.7199

n = 100, p1 = p2 = 8, p3 = 4 0.0570 0.0516 0.9787 0.9767

n = 100, p1 = p2 = 16, p3 = 8 0.0508 0.0699 0.9590 0.9730

n = 100, p1 = p2 = 24, p3 = 12 0.0539 0.2204 0.8593 0.9714

The sizes (alpha errors) are estimated based on 10, 000 simulations from Np(0, Ip). The powers are estimated

under the alternative hypothesis that Σ = 0.15Jp + 0.85Ip.

Table 3: Size and Power of LRT for Equality of Three Distributions in Section 2.3

Size under H0 Power under Ha

CLT χ2 approx. CLT χ2 approx.

n1 = n2 = n3 = 100, p = 5 0.0567 0.0476 0.5857 0.5499

n1 = n2 = n3 = 100, p = 20 0.0493 0.0494 0.7448 0.7455

n1 = n2 = n3 = 100, p = 40 0.0519 0.0997 0.6645 0.7751

n1 = n2 = n3 = 100, p = 60 0.0495 0.4491 0.5134 0.9400

The sizes (alpha errors) are estimated based on 10, 000 simulations from three normal distributions of

Np(0, Ip). The powers were estimated under the alternative hypothesis that µ1 = (0, . . . , 0)′, Σ1 = 0.5Jp +

0.5Ip; µ2 = (0.1, . . . , 0.1)′, Σ2 = 0.6Jp + 0.4Ip; µ3 = (0.1, . . . , 0.1)′, Σ3 = 0.5Jp + 0.31Ip.
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Table 4: Size and Power of LRT for Equality of Three Covariance Matrices in Section 2.4

Size under H0 Power under Ha

CLT χ2 approx. CLT χ2 approx.

n1 = n2 = n3 = 100, p = 5 0.0814 0.0540 0.7239 0.6551

n1 = n2 = n3 = 100, p = 20 0.0565 0.0531 0.7247 0.7808

n1 = n2 = n3 = 100, p = 40 0.0554 0.0984 0.6111 0.7161

n1 = n2 = n3 = 100, p = 60 0.0526 0.4366 0.4649 0.9126

The sizes (alpha errors) are estimated based on 10, 000 simulations from Np(0, Ip). The powers are estimated

under the alternative hypothesis that Σ1 = Ip, Σ2 = 1.21Ip, and Σ3 = 0.81Ip.

Table 5: Size and Power of LRT for Specified Normal Distribution in Section 2.5

Size under H0 Power under Ha

CLT χ2 approx. CLT χ2 approx.

n = 100, p = 5 0.1086 0.0525 0.5318 0.3872

n = 100, p = 20 0.0664 0.0542 0.7684 0.7375

n = 100, p = 40 0.0593 0.0905 0.7737 0.8297

n = 100, p = 60 0.0610 0.3478 0.7112 0.9552

Sizes (alpha errors) are estimated based on 10, 000 simulations from Np(0, Ip). The powers are estimated

under the alternative hypothesis that µ = (0.1, . . . , 0.1, 0, . . . , 0)′ where the number of 0.1 is equal to ⌊p/2⌋
and Σ = (σij)p×p where σij = 1 for i = j, σij = 0.1 for 0 < |i− j| ≤ 3, and σij = 0 for |i− j| > 3.

Table 6: Size and Power of LRT for Complete Independence in Section 2.6

Size under H0 Power under Ha

CLT χ2 approx. CLT χ2 approx.

n = 100, p = 5 0.0581 0.0550 0.5318 0.3872

n = 100, p = 20 0.0552 0.0558 0.7684 0.7375

n = 100, p = 40 0.0512 0.0870 0.7737 0.8297

n = 100, p = 60 0.0555 0.3163 0.7112 0.9552

Sizes (alpha errors) are estimated based on 10, 000 simulations from Np(0, Ip). The powers are estimated

under the alternative hypothesis that the correlation matrix R = (rij)p×p where rij = 1 for i = j, rij = 0.1

for 0 < |i− j| ≤ 3, and rij = 0 for |i− j| > 3.
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4 Conclusions and Discussions

We study six likelihood ratio tests in this paper. The central limit theorems of the six

statistics are derived under the assumption that the population dimension p → ∞ and

p < n− c for some constant c with 1 ≤ c ≤ 4. Jiang and Yang (2013) show that the CLTs

hold only at p/n → y ∈ (0, 1]. In this paper we get the same CLTs under almost most

relaxed conditions. Precisely, if p is finite the LRT statistics converge weakly to chi-square

distributions; if p > n − 1 the LRT statistics do no exist. The only “sacrifice” is that p

is not allowed to be too close to n such as p = n − 1 in some cases. Ignoring these small

technical losses, we get the sufficient and necessary conditions for the CLTs. These give us

almost the maximum flexibilities to use them in practice.

The strategies of our proofs are based on the moment generating functions of targeted

LRT statistics. We develop a new tool in Proposition 5.1 which is the key part in the

proofs. This very technically involved tool is different from those used in Bai et al. (2009),

Jiang et al. (2012) and Jiang and Yang (2013).

Finally, we make some comments as follows.

(1) Let X1, · · · ,Xn be i.i.d. random vectors with a probability density function or prob-

ability mass function p(x|θ) where θ ∈ Θ. Consider the hypothesis test H0 : θ ∈ Θ0

vs Ha : θ ∈ Θ\Θ0. Let Λn be the likelihood ratio test statistic. The Wilks theo-

rem (Wilks (1938) or van der Vaart (1998)) says that −2 log Λn → χ2
d as n → ∞

under H0, where d, the difference between the dimensions of Θ and Θ0, is fixed. If

d = dn depends on n and goes to infinity but at a very slow rate, we can see that

the distributions of −2 log Λn and χ2
d are very close. Meanwhile, by the standard

central limit theorem, (χ2
d − d)/

√
2d → N(0, 1) whenever d → ∞. So, heuristically,

(2 log Λn + d)/
√
2d → N(0, 1) when d = dn goes to infinity very slowly as n → ∞,

it may not be true when d goes to infinity too fast. This process is similar to the

exchange of the limits in the Real and Complex Analysis, which is usually non-trivial.

The six theorems we present in the paper can help clarify the situation when d goes

to infinity, that is, even though the central limit theorems hold for −2 log Λn, the

asymptotic mean and variance may not be d and 2d anymore. The proofs of our

Theorems 1-6 are based on the analysis of the moments of Λn which are available

thanks to the normal assumptions. In general, without the the normal assumption

on Xi’s, we expect the above heuristic to work also under some technical conditions

but details can be very complicated.

(2) In Theorems 2, 3 and 4, the assumption “δ < pi/pj < δ−1” or “δ < ni/nj < δ−1”

says that the population distribution dimensions or the sample sizes are comparable.

We impose these assumptions in the theorems only for the purpose to simplify the

proofs. It is possible that the conditions can be relaxed. And it will be interesting to

see how less constrained among the pi’s or ni’s to make the three theorems hold.
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(3) Recently some authors study similar problems under the nonparametric setting, see,

e.g., Cai et al. (2013), Cai and Ma (2012), Chen et al. (2010), Li and Chen (2012),

Qiu and Chen (2012) and Xiao and Wu (2013).

(4) If the normality assumptions are slightly altered, how much the corresponding central

limit theorems are affected is the problem of robustness. See a detailed discussion at

Comment 4 at Section 4 from Jiang and Yang (2013).

(5) The central limit theorems in this paper are derived under null hypothesis. The

analogues under alternative hypotheses are related to the zonal polynomials. See a

further discussion at Comment 1 in Section 4 from Jiang and Yang (2013). Here we

consider the scenarios when p is smaller than n such that either p is at the same scale

of n or p is much smaller than n. These are the necessary situations to study the

likelihood ratio tests because the tests do not exist otherwise. In a bigger picture,

experts consider tests with the dimensionality of data p being larger or much larger

than the sample size n. Readers are referred to the papers, for example, by Ledoit and

Wolf (2002) and Chen et al. (2010) for the sphericity test, and Schott (2001, 2007) for

testing the equality of multiple covariance matrices and Srivastava (2005) for testing

the covariance matrix of a normal distribution. Onatski et al. study the powers for

the sphericity test. A projection method is used to investigate the two-sample test

by Lopes et al.

5 Proofs

This section is divided into seven subsections. We first develop some tools, and then in

each of the subsequent subsections, we prove one theorem introduced in Section 2. The

following are some standard notation.

For two sequences of numbers {an; n ≥ 1} and {bn; n ≥ 1}, the notation an = O(bn)

as n→ ∞ means that lim supn→∞ |an/bn| <∞. The notation an = o(bn) as n→ ∞ means

that limn→∞ an/bn = 0, and the symbol an ∼ bn stands for limn→∞ an/bn = 1. For two

functions f(x) and g(x), the notation f(x) = O(g(x)), f(x) = o(g(x)) and f(x) ∼ g(x) as

x→ x0 ∈ [−∞,∞] are similarly interpreted.

5.1 A Preparation

Throughout the paper Γ(z) stands for the Gamma function defined on the complex plane

C. Define

Γp(z) := πp(p−1)/4
p∏

i=1

Γ
(
z − 1

2
(i− 1)

)
(5.1)
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for complex number z with Re(z) > 1
2(p − 1). See p. 62 from Muirhead (1982). The key

tool to prove the main theorems is the following analysis of Γp(z).

PROPOSITION 5.1 Let {p = pn ∈ N; n ≥ 1}, {m = mn ∈ N; n ≥ 1} and {tn ∈ R; n ≥ 1}
satisfy that (i) pn → ∞ and pn = o(n); (ii) there exists ϵ ∈ (0, 1) such that ϵ ≤ mn/n ≤ ϵ−1

for large n; (iii) t = tn = O(n/p). Then, as n→ ∞,

log
Γp(

m−1
2 + t)

Γp(
m−1
2 )

= αnt+ βnt
2 + γn(t) + o(1)

where

αn = −
[
2p+ (m− p− 3

2
) log(1− p

m− 1
)
]
; βn = −

[ p

m− 1
+ log

(
1− p

m− 1

)]
;

γn(t) = p
[(m− 1

2
+ t

)
log

(m− 1

2
+ t

)
− m− 1

2
log

m− 1

2

]
.

In addition, in the proofs of the main theorems, we will repeatedly use the so-called

subsequence argument, that is, to prove that a sequence of random variables converges in

distribution to N(0, 1), it suffices to show that every subsequence has a further subsequence

that converges in distribution to the standard normal. This further subsequence is selected

in a way that the subsequential limits of some bounded quantities exist. Therefore, we only

need to verify the theorems by assuming that the limits for these bounded quantities (to

be specified in each proof below) exist.

Proposition 5.1 will be proved by using a series of lemmas given below.

LEMMA 5.1 As x→ +∞,

log
Γ(x+ b)

Γ(x)
= (x+ b) log(x+ b)− x log x− b− b

2x
+O

(b2 + 1

x2
)

(5.2)

holds uniformly on b ∈ [−δx, δx] for any given δ ∈ (0, 1).

Proof. Recall the Stirling formula (see, e.g., p. 368 from Gamelin (2001) or (37) on p. 204

from Ahlfors (1979)):

log Γ(x) =
(
x− 1

2

)
log x− x+ log

√
2π +

1

12x
+O

(
1

x3

)
(5.3)

as x→ +∞. For any fixed δ ∈ (0, 1), we have that

log Γ(x+ b)− log Γ(x)

= (x+ b) log(x+ b)− x log x− b− 1

2
(log(x+ b)− log x) +

1

12
(

1

x+ b
− 1

x
) +O(

1

x3
)

uniformly on b ∈ (−δx, δx) as x→ ∞. Then (5.2) follows from the facts that

log(1 +
b

x
) =

b

x
+O(

b2

x2
) and

b

x(x+ b)
= O(

|b|
x2

) = O(
b2 + 1

x2
)

uniformly on b ∈ (−δx, δx) as x→ ∞. �
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LEMMA 5.2 Let p = pn be such that 1 ≤ p < n, p→ ∞ and p/n→ 0. Then,

p∑
i=1

( 1

n− i
− 1

n− 1

)
=
σ2n
2

(
1 +O(

1

p
+
p

n
)
)
; (5.4)

p∑
i=1

(log(n− 1)− log(n− i)) = −µn +O(σ2n) (5.5)

as n→ ∞, where σ2n = −2
[ p
n−1 + log

(
1− p

n−1

)]
and

µn = (p− n+
3

2
) log(1− p

n− 1
)− n− 1

n
p.

Proof. First, note that σ2n = ( p
n−1)

2(1 +O( p
n−1)), which implies

1

2
(

p

n− 1
)2 =

σ2n
2
(1 +O(

p

n
)) (5.6)

as n → ∞. Observe that | i−1
n−i −

i−1
n−1 | =

(i−1)2

(n−1)(n−i) ≤ 2 (i−1)2

(n−1)2
for all 1 ≤ i ≤ p as n is

sufficiently large. Then,

p∑
i=1

(
1

n− i
− 1

n− 1
) =

1

n− 1

p∑
i=1

i− 1

n− i
=

1

n− 1

p∑
i=1

i− 1

n− 1
+ ϵn

=
p(p− 1)

2(n− 1)2
+ ϵn

where |ϵn| ≤ 2(n− 1)−3
∑p

i=1(i− 1)2 ≤ 3(p/n)3 as n → ∞. Evidently, p(p−1)
2(n−1)2

= p2

2(n−1)2
+

O(pn−2). Then

p∑
i=1

(
1

n− i
− 1

n− 1
) =

p2

2(n− 1)2
+O

(( p
n

)3
+

p

n2
)

=
p2

2(n− 1)2

(
1 +O

( p
n
+

1

p

))
=
σ2n
2

(
1 +O

( p
n
+

1

p

))
by (5.6). This concludes (5.4).

Now we show (5.5). Apply the Stirling formula (5.3) to x = n − 1 and x = n − p − 1

and take difference to get

log Γ(n− 1)− log Γ(n− p− 1)

= (n− 3

2
) log(n− 1)− (n− p− 3

2
) log(n− p− 1)− p

+
1

12
(

1

n− 1
− 1

n− p− 1
) +O(

1

n3
)

= (n− 3

2
) log(n− 1)− (n− p− 3

2
) log(n− p− 1)− p+O(

p

n2
)
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as n→ ∞. Note that for any integer k ≥ 1, Γ(k) = (k − 1)! =
∏k−1

i=1 i. Then we have

p∑
i=1

(log(n− 1)− log(n− i))

= p log(n− 1)− (log Γ(n− 1)− log Γ(n− p− 1)) + log(1− p

n− 1
)

= −(p− n+
3

2
) log(1− p

n− 1
) + p+ log(1− p

n− 1
) +O(

p

n2
)

= −(p− n+
3

2
) log(1− p

n− 1
) + p− p

n− 1
+O((

p

n
)2)

= −(p− n+
3

2
) log(1− p

n− 1
) +

n− 2

n− 1
p+O((

p

n
)2)

as n→ ∞. Then (5.5) follows by noticing n−2
n−1p =

n−1
n p+O(pn−2). �

LEMMA 5.3 Let p = pm be such that 1 ≤ p < m, p → ∞ and p/m → 0 as m → ∞.

Define

gi(x) =
(m− i

2
+ x

)
log

(m− i

2
+ x

)
−

(m− 1

2
+ x

)
log

(m− 1

2
+ x

)
for 1 ≤ i ≤ p and x > −(m − p)/2. Let µm and σm > 0 be as in Lemma 5.2. Given

t = tm = O(m/p), we have that, as m→ ∞,

p∑
i=1

(
gi(t)− gi(0)

)
= µmt+

σ2m
2
t2 + o(1).

Proof. Evidently,

g′i(x) = log
(m− i

2
+ x

)
− log

(m− 1

2
+ x

)
,

g′′i (x) =
1

m−i
2 + x

− 1
m−1
2 + x

=
i−1
2

(m−i
2 + x)(m−1

2 + x)
,

g
(3)
i (x) = − 1

(m−i
2 + x)2

+
1

(m−1
2 + x)2

= −
i−1
2 · 2m−i−1

2 + (i− 1)x

(m−i
2 + x)2(m−1

2 + x)2

for all 1 ≤ i ≤ p. Easily, σm ∼ p
m . Then

sup
|x|≤|t|, 1≤i≤p

|g(3)i (x)| ≤ C
p

m3

where C is a constant not depending on t, p or m. By Taylor’s expansion,

gi(t)− gi(0) = g′i(0)t+
t2

2
g′′i (0) +

t3

6
g
(3)
i (ξi)

=
(
log(m− i)− log(m− 1)

)
t+

i− 1

(m− 1)(m− i)
t2 + ϵi
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where ξi is between 0 and t for all 1 ≤ i ≤ p, and sup1≤i≤p |ϵi| = O(p−2). Also, σ2mt =

O(p/m). By (5.5) and then (5.4), we obtain

p∑
i=1

(
gi(t)− gi(0)

)
= µmt+

t2

m− 1

p∑
i=1

i− 1

m− i
+O

(1
p
+
p

m

)
= µmt+ t2

p∑
i=1

( 1

m− i
− 1

m− 1

)
+ o(1)

= µmt+
σ2m
2
t2 + o(1)

as m→ ∞, proving the lemma. �

Now we are ready to prove the key result in this subsection.

Proof of Proposition 5.1. From (5.1), we have

log
Γp(

m−1
2 + t)

Γp(
m−1
2 )

=

p∑
i=1

log
Γ(m−i

2 + t)

Γ(m−i
2 )

.

By the given condition, t2+|t|+1
m2 = O(p−2) as n→ ∞. Then, we have from (5.2) that

log
Γ(m−i

2 + t)

Γ(m−i
2 )

=
(m− i

2
+ t

)
log

(m− i

2
+ t

)
− m− i

2
log

m− i

2

−t− t

m− i
+O

( 1

p2
)

as n → ∞ uniformly for all 1 ≤ i ≤ p. Write t
m−i = t

m + t
m · i

m−i . Easily,
∑p

i=1
t

m−i =
pt
m +O( pn) since t = O(n/p). Then

p∑
i=1

(
− t− t

m− i
+O

( 1

p2
))

= −pt− pt

m
+O

(1
p
+
p

n

)
as n→ ∞. Therefore,

log
Γp(

m−1
2 + t)

Γp(
m−1
2 )

= −(m+ 1)pt

m
+

p∑
i=1

[(m− i

2
+ t

)
log

(m− i

2
+ t

)
− m− i

2
log

m− i

2

]
+ o(1) (5.7)

as n→ ∞. Set

gi(x) =
(m− i

2
+ x

)
log

(m− i

2
+ x

)
−

(m− 1

2
+ x

)
log

(m− 1

2
+ x

)
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for 1 ≤ i ≤ p and x > −(m − p)/2. Then, it is trivial to verify that the term of “
∑

” in

(5.7) is equal to

p
[(m− 1

2
+ t

)
log

(m− 1

2
+ t

)
− m− 1

2
log

m− 1

2

]
+

p∑
i=1

(
gi(t)− gi(0)

)
= p

[(m− 1

2
+ t

)
log

(m− 1

2
+ t

)
− m− 1

2
log

m− 1

2

]
+ µmt+

1

2
σ2mt

2 + o(1)

by Lemma 5.3, where

µm = (p−m+
3

2
) log(1− p

m− 1
)− m− 1

m
p and σ2m = −2

[ p

m− 1
+ log

(
1− p

m− 1

)]
This joint with (5.7) proves the proposition by simply noticing

αn = −(m+ 1)p

m
+ µm, βn =

1

2
σ2m,

γn(t) = p
[(m− 1

2
+ t

)
log

(m− 1

2
+ t

)
− m− 1

2
log

m− 1

2

]
. �

5.2 Proof of Theorem 1

LEMMA 5.4 (Corollary 8.3.6 from Muirhead (1982)) Assume n > p. Let Vn be as in

(2.2). Then, under H0 in (2.1), we have

E(V h
n ) = pph

Γ(mp
2 )

Γ(mp
2 + ph)

·
Γp(

m
2 + h)

Γp(
m
2 )

for all h > −n−p
2 where m = n− 1.

The restriction “h > −n−p
2 ” in the lemma comes from the definition of Γp(z) as in (5.1).

Proof of Theorem 1. We need to prove

Hn :=
log Vn − µn

σn
converges to N(0, 1) (5.8)

in distribution as n → ∞. Equivalently, it suffices to show that for any subsequence {nk},
there is a further subsequence {nkj} such that Hnkj

converges to N(0, 1) in distribution

as j → ∞. Now, noticing pn/n ∈ [0, 1] for all n, for any subsequence nk, take a further

subsequence nkj such that pnkj
/nkj → y ∈ [0, 1]. So, without loss of generality, we only

need to show (5.8) under the condition that limn→∞ pn/n = y ∈ [0, 1].

By Theorem 1 from Jiang and Yang (2013), we know that the theorem is true for

the case lim p/n = y ∈ (0, 1]. Thus, to prove (5.8), we only need to prove it for the case

lim pn/n = 0. From now on, we assume p = pn → ∞ and p = o(n). It is enough to show

that

E exp
{ log Vn − µn

σn
s
}
→ es

2/2
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as n→ ∞ for all |s| ≤ 1, or equivalently,

logE(V t
n) = µnt+

1

2
s2 + o(1) (5.9)

as n→ ∞ for all |s| ≤ 1, where t = tn = s
σn
.

Set m = n − 1. Obviously, σn ∼ p
m as n → ∞. Thus, t ∼ m

p s ≥ −m
p > −n−p

2 as n is

sufficiently large. By Lemma 5.4,

E(V t
n) = ppt

Γ(mp
2 )

Γ(mp
2 + pt)

·
Γp(

m
2 + t)

Γp(
m
2 )

(5.10)

for all large n. Easily, pt/(12mp) = 2s/(mσn) = O(1/p) and hence (p2t2+p|t|+1)/(m2p2) =

O(1/p2). By (5.2),

log
Γ(mp

2 )

Γ(mp
2 + pt)

= −
(mp

2
+ pt

)
log

(mp
2

+ pt
)
+
mp

2
log

mp

2
+ pt+O

(1
p

)
= −γn(t) + p(1− log p)t+O

(1
p

)
(5.11)

as n→ ∞, where

γn(t) = p
[(m

2
+ t

)
log

(m
2

+ t
)
− m

2
log

m

2

]
and the formula log(uv) = log u + log v is used in the last equality. Since t ∼ m

p s, by

Proposition 5.1,

log
Γp(

m
2 + t)

Γp(
m
2 )

= αnt+ βnt
2 + γn(t) + o(1) (5.12)

as n is sufficiently large, where

αn = −
[
2p+ (n− p− 3

2
) log(1− p

n− 1
)
]
and βn = −

[ p

n− 1
+ log

(
1− p

n− 1

)]
.

Combining (5.10)-(5.12), we get

logE(V t
n) = pt log p+ log

Γ(mp
2 )

Γ(mp
2 + pt)

+ log
Γp(

m
2 + t)

Γp(
m
2 )

= (αn + p)t+ βnt
2 + o(1) = µnt+

s2

2
+ o(1)

as n→ ∞. Hence, we get (5.9) and complete the proof of the theorem. �

5.3 Proof of Theorem 2

LEMMA 5.5 (Theorem 11.2.3 from Muirhead (1982)) Let p and Wn be as in Section 2.2.

Then, under H0 in (2.4),

EW t
n =

Γp(
n
2 + t)

Γp(
n
2 )

·
k∏

i=1

Γpi(
n
2 )

Γpi(
n
2 + t)

for any t > (p− n− 1)/2, where Γp(z) is as in (5.1).
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Proof of Theorem 2. We need to prove

Hn :=
logWn − µn

σn
converges to N(0, 1) (5.13)

in distribution as n→ ∞, where

µn = −r2n
(
p− n+

1

2

)
+

k∑
i=1

r2n,i

(
pi − n+

1

2

)
and σ2n = 2r2n − 2

k∑
i=1

r2n,i

(the fact σ2n > 0 is shown in Theorem 2 from Jiang and Yang (2013)). By an argument

similar to the first paragraph of the proof of Theorem 1, it suffices to show (5.13) under

the condition limn→∞ pi/n = yi ∈ [0, 1] for each 1 ≤ i ≤ k. From now on, we assume that

this is true.

From the assumption n > p = p1+ · · ·+pk and that δ ≤ pi/pj ≤ δ−1 for all 1 ≤ i, j ≤ n

and all n, we know that either yi ∈ (0, 1) for all 1 ≤ i ≤ k or y1 = · · · = yk = 0. The first

case is proved in Theorem 2 from Jiang and Yang (2013). Now we study the second case,

that is, y1 = · · · = yk = 0.

Since limn→∞ pi/n = 0 for each 1 ≤ i ≤ k, it follows from the Taylor expansion that

σ2n ∼ 1

n2
(
p2 −

k∑
i=1

p2i
)

(5.14)

as n→ ∞. To complete the proof, it suffices to show that

E exp
{ logWn − µn

σn
s
}
= exp(−µns

σn
)E[W

s
σn
n ] → es

2/2

as n→ ∞ for all s such that |s| ≤ 1, or equivalently,

logE[W t
n] = µnt+

s2

2
+ o(1) (5.15)

as n→ ∞ for all |s| ≤ 1, where t := s/σn.

Now fix s with |s| ≤ 1. By (5.14), σ2n ≥ p1p2/n
2 for all large n since p = p1+ · · ·+ pk. It

follows that |t| ≤ n/
√
p1p2, and hence t ≥ −n/√p1p2 > (p− n− 1)/2 as n is large enough.

By Lemma 5.5,

logE[W t
n] = log

Γp(
n
2 + t)

Γp(
n
2 )

−
k∑

i=1

log
Γpi(

n
2 + t)

Γpi(
n
2 )

.

Now, from (5.14) we see that

( t

(n/p)

)2
∼ p2

p2 −
∑k

i=1 p
2
i

s2 ≤
(
1−

∑k
i=1 p

2
i

p2

)−1
.
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Without loss of generality, assume p1 ≥ · · · ≥ pk. By assumption, pi ≥ δ p1 for all 1 ≤ i ≤ k.

Thus, ∑k
i=1 p

2
i

p2
≤ p1∑k

i=1 pi
≤ 1

1 + (k − 1)δ
< 1

which says t = O(n/p) and hence t = O(n/pi). By Proposition 5.1, logE[W t
n] is equal to

−
[
2p+ (n− p− 1

2
) log(1− p

n
)
]
t+

k∑
i=1

[
2pi + (n− pi −

1

2
) log(1− pi

n
)
]
t

−
[ p
n
+ log

(
1− p

n

)]
t2 +

k∑
i=1

[pi
n

+ log
(
1− pi

n

)]
t2

+(p−
k∑

i=1

pi)
[(n

2
+ t

)
log

(n
2
+ t

)
− n

2
log

n

2

]
+ o(1).

Use the fact that p =
∑k

i=1 pi to see that the “2p” and the “2pi’s” in the first line above

are canceled; the terms “ p
n” and “pi

n ’s” in the second line are canceled; the whole third line

is 0 + o(1) = o(1). Review the notation µn and σn in the theorem. These lead to

logE[W t
n] = µnt+

σ2n
2
t2 + o(1) = µnt+

s2

2
+ o(1)

as n→ ∞, which is exactly (5.15). �

5.4 Proof of Theorem 3

Review the notation in (2.8). Let

λn =

∏k
i=1 |Bi|ni/2

|A+B|n/2
. (5.16)

LEMMA 5.6 (Corollary 10.8.3 from Muirhead (1982)) Let ni > p for i = 1, 2 · · · , k. Let
λn be as in (5.16). Then, under H0 in (2.7),

E(λtn) =
Γp(

1
2(n− 1))

Γp(
1
2n(1 + t)− 1

2)
·

k∏
i=1

Γp(
1
2ni(1 + t)− 1

2)

Γp(
1
2(ni − 1))

for all t > max1≤i≤k{ p
ni
} − 1, where Γp(z) is as in (5.1).

The restriction t > max1≤i≤k{ p
ni
} − 1 comes from the restriction in (5.1).

LEMMA 5.7 Suppose the conditions in Theorem 3 hold. Let t = tp ∼ C/p as p → ∞ for

some constant C. Define

ρl(t) = p
[( l − 1

2
+
lt

2

)
log

( l − 1

2
+
lt

2

)
− l − 1

2
log

l − 1

2

]
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for l ≥ (1 + t)−1. Then, as p→ ∞,

−ρn(t) +
k∑

i=1

ρni(t) =
1

2
p
[
(1− k)− n log n+

k∑
i=1

ni log ni

]
t+O(

1

p
+
p

n
).

Proof. Set ψ(x) = x log x for x > 0. Then, ψ′(x) = 1 + log x and ψ′′(x) = x−1. By the

Taylor expansion at x = ni
2 + nit

2 ,(ni − 1

2
+
nit

2

)
log

(ni − 1

2
+
nit

2

)
=

(ni
2

+
nit

2

)
log

(ni
2

+
nit

2

)
− 1

2

(
1 + log

ni(1 + t)

2

)
+O

( 1
n

)
=

1

2
(1 + t)ni log

ni
2

+
1

2
ni(1 + t) log(1 + t)− 1

2

(
1 + log

ni(1 + t)

2

)
+O

( 1
n

)
as p→ ∞. Use log ni−1

2 = log ni
2 − 1

ni
+O( 1

n2
i
) as p→ ∞ to have

ni − 1

2
log

ni − 1

2
=
ni
2
log

ni
2

− 1

2

(
1 + log

ni
2

)
+O

( 1
n

)
as p→ ∞. By subtracting the second identity from the first one, we have

1

p
ρni(t) =

t

2

(
ni log

ni
2

)
+ ni

(1 + t

2
log(1 + t)

)
− 1

2
log(1 + t) +O

( 1
n

)
=

t

2
(−1 + ni log

ni
2
) + ni

(1 + t

2
log(1 + t)

)
+O

( 1

p2
+

1

n

)
as p→ ∞. By the same argument,

1

p
ρn(t) =

t

2

(
− 1 + n log

n

2

)
+ n

(1 + t

2
log(1 + t)

)
+O

( 1

p2
+

1

n

)
as p→ ∞. Use the fact n = n1 + · · ·+ nk to have that

−ρn(t) +
k∑

i=1

ρni(t) =
1

2
p
[
(1− k)− n log n+

k∑
i=1

ni log ni

]
t+O(

1

p
+
p

n
)

as p→ ∞, proving the lemma. �

Proof of Theorem 3. Since 0 ≤ p/ni < 1 for each i, by the subsequence principle as

in the first paragraph of the proof of Theorem 1, it suffices to prove the theorem provided

lim p/ni = yi ∈ [0, 1] for 1 ≤ i ≤ k. The theorem is proved by Jiang and Yang (2013) when

yi ∈ (0, 1]. Note that if one of yi is zero, then all yi’s are zero. Now we prove it by assuming

y1 = · · · = yk = 0 through several steps.

Step 1. It is shown in Theorem 3 from Jiang and Yang (2013) that σ2n > 0 for all

min1≤i≤k ni > p+ 1 and p ≥ 1. Note that

log
(
1− p

ni − 1

)
− log

(
1− p

ni

)
= − log

ni − 1

ni
+ log

ni − p− 1

ni − p
.
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By the formula log(1− x) = −x− x2

2 +O(x3) as x→ 0, we have that

log
(
1− p

ni − 1

)
− log

(
1− p

ni

)
=

1

ni
+

1

2n2i
− 1

ni − p
− 1

2(ni − p)2
+O

( 1

n3i

)
= − p

ni(ni − p)
+O(

p

n3
) (5.17)

as p → ∞ for all 1 ≤ i ≤ k by using the assumption δ < ni/nj ≤ δ−1 for all i, j and

n =
∑k

i=1 ni. Thus,

σ2n =
1

2

[
log

(
1− p

n

)
−

k∑
i=1

n2i
n2

log
(
1− p

ni

)]
+O

( p
n2

)
as p → ∞. By the Taylor expansion, log(1 − p

ni
) = − p

ni
− p2

2n2
i
+ O( p

3

n3 ) for 1 ≤ i ≤ k, and

log(1− p
n) = − p

n − p2

2n2 +O( p
3

n3 ). Then, we use the fact n =
∑k

i=1 ni to see

k∑
i=1

n2i
n2

log
(
1− p

ni

)
= − p

n
− kp2

2n2
+O(

p3

n3
).

Thus,

σ2n ∼ (k − 1)p2

4n2
(5.18)

as p→ ∞.

Step 2. In this step we collect some “little” facts for the main proof in step 3. Fix s

such that |s| ≤ 1. Set t = tn = s
nσn

. Then

t ∼ 2s√
k − 1

· 1
p

(5.19)

as p→ ∞. We claim

n2t2 log
(
1− p

n− 1

)
= n2t2 log

(
1− p

n

)
+ o(1) (5.20)[

(2n− 2p− 3)n log(1− p

n− 1
)
]
t =

[
(2n− 2p− 3)n log(1− p

n
)
]
t− 2pt+ o(1) (5.21)

as p→ ∞. Similar to (5.17) we have that

log
(
1− p

n− 1

)
− log

(
1− p

n

)
= − p

n(n− p)
+O(

p

n3
)

which joint with (5.19) gives (5.20). Further, the difference between the two sides of (5.21)

is equal to

(2n− 2p− 3)nt
(
− p

n(n− p)
+O(

p

n3
)
)
+ 2pt+ o(1)

= −2pt+
3pt

n− p
+ 2pt+O(

1

n
) + o(1) = o(1)

32



as p→ ∞. This concludes (5.21).

Step 3. To prove the theorem, it is enough to prove

E exp
{ log Λn − µn

nσn
s
}
→ es

2/2

as p→ ∞ for all |s| ≤ 1. Review (2.8) and (5.16). We have

log Λn = log λn + zn

where

zn =
1

2
pn log n− 1

2

k∑
i=1

pni log ni. (5.22)

Therefore, recalling the notation t = s
nσn

, we only need to show

logE(λtn) = (µn − zn)t+
s2

2
+ o(1) (5.23)

as p → ∞. From (5.19) we know t > max1≤i≤k{ p
ni
} − 1 as p is sufficiently large. Thus, by

Lemma 5.6,

E(λtn) =
Γp(

1
2(n− 1))

Γp(
1
2n(1 + t)− 1

2)
·

k∏
i=1

Γp(
1
2ni(1 + t)− 1

2)

Γp(
1
2(ni − 1))

(5.24)

as p is large. Write 1
2ni(1+ t)− 1

2 = ni−1
2 + nit

2 . We obtain from (5.19) and Proposition 5.1

that

log
Γp(

1
2ni(1 + t)− 1

2)

Γp(
1
2(ni − 1))

= −1

4

[
4pni + (2ni − 2p− 3)ni log(1−

p

ni − 1
)
]
t

−1

4
n2i

[ p

ni − 1
+ log

(
1− p

ni − 1

)]
t2 + ρni(t) + o(1)

where ρl(t) is defined as in Lemma 5.7. Similarly,

log
Γp(

1
2n(1 + t)− 1

2)

Γp(
1
2(n− 1))

= −1

4

[
4pn+ (2n− 2p− 3)n log(1− p

n− 1
)
]
t

−1

4
n2

[ p

n− 1
+ log

(
1− p

n− 1

)]
t2 + ρn(t) + o(1)

= −1

4

[
4pn− 2p+ (2n− 2p− 3)n log(1− p

n
)
]
t

−1

4
n2

[ p

n− 1
+ log

(
1− p

n

)]
t2 + ρn(t) + o(1),

where the second identity is obtained by (5.20) and (5.21). Note that n2i ·
p

ni−1 = (ni +

1)p + O(n−1p) for all 1 ≤ i ≤ k and the same holds when replacing ni with n. We have

from the fact n = n1 + · · ·+ nk that[1
4
n2 · p

n− 1
−

k∑
i=1

1

4
n2i ·

p

ni − 1

]
t2 =

1

4
((1− k) +O(

1

n
))pt2 = o(1)
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as p→ ∞. Join (5.24), the above assertions and Lemma 5.7 to have

logE(λtn)

= −1

4

[
2p− (2n− 2p− 3)n log(1− p

n
) +

k∑
i=1

(2ni − 2p− 3)ni log(1−
p

ni − 1
)
]
t

+
1

4

[ k∑
i=1

n2i r
2
n′
i
− n2r2n

]
t2 +

1

2
p
[
(1− k)− n log n+

k∑
i=1

ni log ni

]
t+ o(1).

Reviewing the notation zn in (5.22), the definitions of µn and σ2n, we finally see that

logE(λtn)

=
1

4

[
− 2kp− (2n− 2p− 3)nr2n +

k∑
i=1

(2ni − 2p− 3)nir
2
n′
i

]
t− znt

+
n2σ2n
2

t2 + o(1) = (µn − zn)t+
1

2
s2 + o(1)

as p→ ∞, where we use the fact that (
∑k

i=1
p
ni
)/(nσn) = O(

∑k
i=1

1
ni
) = O( 1n) by (5.18) in

the last step. This leads to (5.23). �

5.5 Proof of Theorem 4

Let Λ∗
n be as in (2.11). Set

Wn =

∏k
i=1 |Ai|(ni−1)/2

|A|(n−k)/2
= Λ∗

n ·
∏k

i=1(ni − 1)(ni−1)p/2

(n− k)(n−k)p/2
. (5.25)

We have the following result.

LEMMA 5.8 (p. 302 from Muirhead (1982)) Assume ni > p for 1 ≤ i ≤ k. Under H0 in

(2.10),

E(W t
n) =

Γp

(
1
2(n− k)

)
Γp

(
1
2(n− k)(1 + t)

) ·
k∏

i=1

Γp

(
1
2(ni − 1)(1 + t)

)
Γp

(
1
2(ni − 1)

)
for all t > max1≤i≤k

p−1
ni−1 − 1, where Γp(x) is defined as in (5.1).

Proof of Theorem 4. Since 0 ≤ p/ni < 1 for each i, by using an argument on subsequence

principle similar to that in the first paragraph of the proof of Theorem 1, it suffices to prove

the theorem provided lim p/ni = yi ∈ [0, 1]. The theorem is the same as Theorem 4 from

Jiang and Yang (2013) when yi ∈ (0, 1]. So we only need to prove the theorem for the case

y1 = · · · = yk = 0.

First, according to (5.25), write

log Λ∗
n = logWn +

(n− k)p

2
log(n− k)−

k∑
i=1

(ni − 1)p

2
log(ni − 1).
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It has been shown that σn > 0 in Theorem 4 from Jiang and Yang (2013). To prove the

theorem, it is enough to show

logWn − µ′n
(n− k)σn

converges to N(0, 1) (5.26)

in distribution as p→ ∞, where

µ′n = µn +
k∑

i=1

(ni − 1)p

2
log(ni − 1)− (n− k)p

2
log(n− k). (5.27)

Assertion (5.26) is proved through the following steps.

Step 1. In this step we collect some useful facts for the main proof in Step 2. First,

from the relation n = n1 + · · ·+ nk we see that

k∑
i=1

(ni − 1

n− k

)2( p

ni − 1
+

p2

2(ni − 1)2

)
=

p

(n− k)2

k∑
i=1

(ni − 1) +
kp2

2(n− k)2
=

p

n− k
+

kp2

2(n− k)2
.

Therefore, by using the fact log(1− x) = −x− x2

2 +O(x3) as x→ 0, we have

2σ2n = − p

n− k
− p2

2(n− k)2
+

k∑
i=1

(ni − 1

n− k

)2( p

ni − 1
+

p2

2(ni − 1)2

)
+O

( p3
n3

)
=

(k − 1)p2

2(n− k)2
+O

( p3
n3

)
.

Since k is fixed,

σn ∼
√
k − 1

2
· p
n

as p→ ∞. Second, fix s such that |s| ≤ 1. Set t = tn = s
(n−k)σn

. Then

t ∼ 2√
k − 1

· s
p

as p→ ∞.

Step 2. To prove (5.26), it suffices to prove

E exp
{ logWn − µ′n

(n− k)σn
s
}
→ es

2/2

as p→ ∞ for all |s| ≤ 1. Recall t = s
(n−k)σn

. It is equivalent to showing that

logE(W t
n) = µ′nt+

s2

2
+ o(1) (5.28)
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as p→ ∞. By Lemma 5.8,

logE(W t
n) = − log

Γp

(
1
2(n− k)(1 + t)

)
Γp

(
1
2(n− k)

) +

k∑
i=1

log
Γp

(
1
2(ni − 1)(1 + t)

)
Γp

(
1
2(ni − 1)

)
as p is sufficiently large. Write 1

2(ni − 1)(1 + t) = 1
2(ni − 1) + 1

2(ni − 1)t. By Proposition

5.1,

log
Γp

(
1
2(ni − 1)(1 + t)

)
Γp

(
1
2(ni − 1)

) = −1

2

[
2p+ (ni − p− 3

2
) log(1− p

ni − 1
)
]
(ni − 1)t

−1

4

[ p

ni − 1
+ log

(
1− p

ni − 1

)]
(ni − 1)2t2

+p
[(ni − 1)(1 + t)

2
log

(ni − 1)(1 + t)

2
− ni − 1

2
log

ni − 1

2

]
+ o(1).

By reorganizing the right hand side, we obtain

log
Γp

(
1
2(ni − 1)(1 + t)

)
Γp

(
1
2(ni − 1)

)
= −t(ni − 1)p− t

4
(ni − 1)(2ni − 2p− 3) log(1− p

ni − 1
)

− t
2

4
(ni − 1)p− t2

4
(ni − 1)2 log

(
1− p

ni − 1

)
+(pt)

ni − 1

2
log

ni − 1

2
+

(ni − 1)p

2
· (1 + t) log(1 + t) + o(1).

Replace ni with n− k + 1 to get

log
Γp

(
1
2(n− k)(1 + t)

)
Γp

(
1
2(n− k)

)
= −t(n− k)p− t

4
(n− k)(2(n− k)− 2p− 1) log(1− p

n− k
)

− t
2

4
(n− k)p− t2

4
(n− k)2 log

(
1− p

n− k

)
+(pt)

n− k

2
log

n− k

2
+

(n− k)p

2
· (1 + t) log(1 + t) + o(1).

Combining the above two identities, we have from the fact n = n1 + · · ·+ nk that

logE(W t
n) = µnt+

t2(n− k)2σ2n
2

− pt
[n− k

2
log

n− k

2
−

k∑
i=1

ni − 1

2
log

ni − 1

2

]
+ o(1)

=
[
µn − 1

2
(n− k)p log(n− k) +

k∑
i=1

1

2
(ni − 1)p log(ni − 1)

]
t+

s2

2
+ o(1)

= µ′nt+
s2

2
+ o(1)

as p→ ∞ by (5.27). This leads to (5.28). �
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5.6 Proof of Theorem 5

LEMMA 5.9 (Theorems 8.5.1 and 8.5.2 and Corollary 8.5.4 from Muirhead (1982)) As-

sume n > p. Then the LRT statistic for testing H0 in (2.13), given by

Λn =
( e
n

)np/2
|A|n/2 · exp

{
− 1

2
tr(A)− 1

2
nx′x)

}
,

is unbiased, where x and A are as in (2.14). Further, assuming H0 in (2.13), we have

E(Λt
n) =

(2e
n

)npt/2
(1 + t)−np(1+t)/2Γp(

n(1+t)−1
2 )

Γp(
n−1
2 )

for any t > p
n − 1.

The range “t > p
n − 1” follows from the definition of Γp(z) in (5.1).

LEMMA 5.10 Let p = pn → ∞ and p = o(n). For s ∈ R, let t = tn = O(1/p). Then

ηn(t) : =
(n− 1

2
+
nt

2

)
p log

(n− 1

2
+
nt

2

)
− (n− 1)p

2
log

n− 1

2

=
npt

2
log

n

2
+
np(1 + t)

2
log(1 + t)− pt

2
+ o(1)

as n→ ∞.

Proof. First,

log
(n− 1

2
+
nt

2

)
= log

n

2
+ log(1 + t) + log

(
1− 1

n(1 + t)

)
= log

n

2
+ log(1 + t)− 1

n(1 + t)
+O

( 1

n2
)

as n→ ∞. And log n−1
2 = log n

2 − 1
n +O(n−2). Write

(
n−1
2 + nt

2

)
p = np(1+t)

2 − p
2 . Then,

ηn(t) =
(np(1 + t)

2
− p

2

)(
log

n

2
+ log(1 + t)− 1

n(1 + t)

)
− (n− 1)p

2
log

n

2
+
p

2
+O

( p
n

)
=

npt

2
log

n

2
+
np(1 + t)

2
log(1 + t)− p

2
log(1 + t) +O

( p
n

)
=

npt

2
log

n

2
+
np(1 + t)

2
log(1 + t)− pt

2
+O

(1
p
+
p

n

)
as n→ ∞ by the definition of t. �

Proof of Theorem 5. By Theorem 5 from Jiang and Yang (2013), we know that the

theorem is true if lim p/n = y ∈ (0, 1]. By the subsequence argument as in the first para-

graph of the proof of Theorem 1, to prove the theorem, it suffices to prove it for the case

lim p/n = 0. From now on, we assume p→ ∞ and p = o(n).
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In order to get the desired conclusion, it is enough to show that

E exp
{ log Λn − µn

nσn
s
}
→ es

2/2

as n→ ∞ for all |s| ≤ 1, or equivalently,

logE(Λt
n) = µnt+

1

2
s2 + o(1) (5.29)

as n → ∞ for all |s| ≤ 1, where t = tn = s
nσn

. Evidently, σn ∼ p
2(n−1) , and hence

t ∼ 2s
p > p

n − 1 as n is large enough. It follows from Lemma 5.9 that

logE(Λt
n) =

npt

2

(
1 + log

2

n

)
− np(1 + t)

2
log(1 + t) + log

Γp(
n(1+t)−1

2 )

Γp(
n−1
2 )

for large n. Now, write n(1+t)−1
2 = n−1

2 + nt
2 . Then, by Proposition 5.1,

log
Γp(

n(1+t)−1
2 )

Γp(
n−1
2 )

=
1

2
nαnt+

1

4
(n2βn)t

2 + ηn(t) + o(1)

where

αn = −
[
2p+ (n− p− 3

2
) log(1− p

n− 1
)
]
, βn = −

[ p

n− 1
+ log

(
1− p

n− 1

)]
,

ηn(t) = p
[(n− 1

2
+
nt

2

)
log

(n− 1

2
+
nt

2

)
− n− 1

2
log

n− 1

2

]
.

Further, by Lemma 5.10,

ηn(t) =
npt

2
log

n

2
+
np(1 + t)

2
log(1 + t)− pt

2
+ o(1)

as n→ ∞. Joining all of the above equalities, we finally see that

logE(Λt
n) = −1

4

(
− 2nαn − 2p(n− 1)

)
t+

1

4
n2βnt

2 + o(1) = µnt+
s2

2
+ o(1)

as n→ ∞, which yields (5.29). �

5.7 Proof of Theorem 6

LEMMA 5.11 Let R̂n be the sample correlation matrix with the density function as in

(2.20). Assume n− 4 > p ≥ 2. Then,

E[|R̂n|t] =
[ Γ(n−1

2 )

Γ(n−1
2 + t)

]p
·
Γp(

n−1
2 + t)

Γp(
n−1
2 )

(5.30)

for all t ≥ −max
{
1, ⌊n−p

2 ⌋ − 2
}
.
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This lemma is a refinement of Lemma 2.10 from Jiang and Yang (2013) who show that

(5.30) holds for all t ≥ −1.

Proof. By Lemma 2.10 from Jiang and Yang (2013), (5.30) is true for t ≥ −1. Thus, we

only need to prove that (5.30) holds for t ≥ m := −⌊n−p
2 ⌋+ 2. It is a key observation that

m ≤ 0 by the assumption n− 4 > p.

Recall (2.19), R̂n is a p × p non-negative definite matrix and each of its entries takes

value in [−1, 1], thus the determinant |R̂n| ≤ p!. Second, from (2.20) we see that the density

function of |R̂n| exists, hence, P (|R̂n| = 0) = 0. By (9) on p. 150 from Muirhead (1982) or

(48) on p. 492 from Wilks (1932),

E
[
|R̂n|k

]
=

[ Γ(n−1
2 )

Γ(n−1
2 + k)

]p
·
Γp(

1
2(n− 1) + k)

Γp(
1
2(n− 1))

(5.31)

for any integer k such that n−1
2 + k > p−1

2 by (5.1), which is equivalent to that k >

−(n− p)/2. Thus, (5.31) holds for all k ≥ m− 1. In particular, E
[
|R̂n|m−1

]
<∞. Now set

U = − log(|R̂n|/p!). Then U ≥ 0 a.s. and Ee(1−m)U <∞. Since |e−(z+m)U | = e−(Re(z)+m)U

and |Ue−(z+m)U | = Ue−(Re(z)+m)U , they imply that

Ee−(z+m)U and E
(
Ue−(z+m)U

)
are both finite

for all Re(z) ≥ 0, where we use the inequalities e−mu ≤ e(1−m)u and ue−mu ≤ e(1−m)u for

all u ≥ 0 to get the second assertion. Define

h1(z) := (p!)−(z+m) · E
[
|R̂n|z+m

]
= Ee−(z+m)U

for all z with Re(z) ≥ 0. It is not difficult to check that d
dz (Ee

−(z+m)U ) = −E
[
Ue−(z+m)U

]
for all Re(z) ≥ 0. Further, supRe(z)≥0 |h1(z)| ≤ Ee−mU < ∞. Therefore, h1(z) is analytic

and bounded on {z ∈ C; Re(z) ≥ 0}. Define

h2(z) = (p!)−(z+m) ·
[ Γ(n−1

2 )

Γ(n−1
2 + z +m)

]p
·
Γp(

n−1
2 + z +m)

Γp(
1
2(n− 1))

for Re(z) ≥ 0. By the Carlson uniqueness theorem (see, for example Theorem 2.8.1 on p.

110 from Andrews et al. (1999)), if we know that h2(z) is also bounded and analytic on

{z ∈ C; Re(z) ≥ 0}, since h1(z) = h2(z) for all z = 0, 1, 2, · · · , we obtain that h1(z) = h2(z)

for all Re(z) ≥ 0. This implies our desired conclusion. Thus, we only need to check that

h2(z) is bounded and analytic on {z ∈ C; Re(z) ≥ 0}. To do so, reviewing (5.1), it suffices

to show

h3(z) :=

p∏
i=2

Γ(n−i
2 + z +m)

Γ(n−1
2 + z +m)

is bounded and analytic on {z ∈ C; Re(z) ≥ 0}. Since 2 ≤ n−i
2 + m ≤ n−2

2 + m for all

2 ≤ i ≤ p, the two properties then follow from the fact that h(z) := Γ(α+z)
Γ(β+z) is bounded and
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analytic on {z ∈ C; Re(z) ≥ 0} for all fixed β > α > 0 by Lemma 3.1 from Jiang and Yang

(2013). �

Proof of Theorem 6. By using the subsequence argument as in the first paragraph of

the proof of Theorem 1, we only need to show the theorem when limn→∞ p/n = y ∈ [0, 1].

The case for y ∈ (0, 1] is proved by Jiang and Yang (2013). We will prove the theorem for

the case y = 0 next.

To finish the proof, it suffices to show that

E exp
{ log |R̂n| − µn

σn
s
}
= exp(−µns

σn
) · E[|R̂n|

s
σn ] → es

2/2

as n→ ∞ for all s with |s| ≤ 1, or equivalently,

logE[|R̂n|t] = µnt+
s2

2
+ o(1) (5.32)

as n→ ∞ for all |s| ≤ 1, where t := s
σn
. It is easy to see that

σn ∼ p

n
and t ∼ n

p
s

as n → ∞. In particular, t ≥ −max
{
1, ⌊(n− p)/2⌋ − 2

}
as n is large enough. By Lemma

5.11,

logE[|R̂n|t] = −p log
[Γ(n−1

2 + t)

Γ(n−1
2 )

]
+ log

Γp(
n−1
2 + t)

Γp(
n−1
2 )

if n is sufficiently large. By (5.2), we have

p log
[Γ(n−1

2 + t)

Γ(n−1
2 )

]
= γn(t)−

npt

n− 1
+O

(1
p

)
where

γn(t) = p
[(n− 1

2
+ t

)
log

(n− 1

2
+ t

)
− n− 1

2
log

n− 1

2

]
.

By the fact t ∼ n
p s and Proposition 5.1,

log
Γp(

n−1
2 + t)

Γp(
n−1
2 )

= −
[
2p+ (n− p− 3

2
) log(1− p

n− 1
)
]
t+

σ2nt
2

2
+ γn(t) + o(1)

as n→ ∞. Connecting the above assertions, we arrive at

logE[|R̂n|t] = −
[
(n− p− 3

2
) log(1− p

n− 1
) +

n− 2

n− 1
p
]
t+

σ2nt
2

2
+ o(1)

= µnt+
s2

2
+ o(1)

as n→ ∞. So we get (5.32) and complete the proof. �
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