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Abstract

The asymptotic behavior of product of the partial sums from a sequence of independent and identically
distributed positive random variables have been studied by several papers. In Qi (Statist. Probab. Lett. 62
(2003) 93) the limit distribution for properly normalized products is proved when the underling distribution
is in the domain of attraction of a stable law with exponent in (1,2]. In this note a similar result is obtained
when the underlying distribution is in the domain of attraction of a stable law with exponent 1 and has a
finite first moment.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and main result

Throughout this paper let {X,X,, n=1} be a sequence of independent and identically
distributed positive random variables and define the partial sum S, = Z;.“:l X; for n>1. Set
F(x) = P(X <x) for x=0.

We are interested in asymptotic distribution of product H7:1 S;. The study was initiated by
Arnold and Villasefior (1998) who obtained the limit distribution for the logarithm of the product
H;Z:l S; in case the underlying distribution of X is exponential when they studied the limit
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distribution for sums of records. Later on, Rempata and Wesotowski (2002) proved under the
assumption E(X?)< co that

n 1/ n)
<Hj=l S/> W ERVERS

n!,u”

, (1.1)

where ./ is a standard normal random variable, u = E(X) and y = ¢/u with 6> = Var(X). Very
recently, Qi (2003) extended (1.1) by assuming that the underlying distribution F is in the domain
of attraction of a stable law with exponent ae(1,2].

Let L, denote a stable law with exponent (0, 2]. Then L, is determined, to within type, by a
characteristic function of one of the following forms:

(chl) ¢(f) = exp{—1>/2} (normal case, o = 2);

(ch2) ¢(r) = exp{—|7*(1 — if(sgn t)tan % o} (O<a<lor l<a<2, —1<f<]);

(ch3) ¢(1) = exp{—|el(1 + if(sgn )2/mloglt|} (2 =1, —1<B<1).

See, e.g., Hall (1981), Bingham et al. (1987), or Qi (2003, Theorem 2.1). Recall that an underlying
distribution F of X is said to be in the domain of attraction of a stable law L, if there exists some
constants A4, > 0 and B, € R such that

S, — B,
Lo, (1.2)

n

Since we assume in this paper that X is a positive random variable, the limit L, in (1.2), to
within type, will have a characteristic function of forms (chl), (ch2) or (ch3) with the skewness
parameter ff = 1.

Define the generalized inverse of 1/(1 — F) by

: 1
Ulx) = 1nf{z: 1—717(1)2)(}'
If the first moment of X exists, then set ¢ = E(X) and write
S(x) = E[(X — p’1(X — p/<x) for x>0.
Accordingly, denote the generalized inverse of x?/S(x) by V(x)

: r
V(x) = 1nf{t: %>x}.

Set A, = U(n) if <2, and 4, = V(n) if « = 2. Then one can always take B, = nE(XI(X < A4,))
such that (1.2) holds for some stable law ., for any «€(0,2]. Then from Loeve (1977), the limit
%, in (1.2) has a characteristic function as defined in (chl), (ch2) or (ch3) with f = 1. If ae (1, 2],
one can choose B, = nE(X), then (1.2) holds with a limit . which is of same type as .%,,.

With above choice for 4,, Qi (2003) showed that if «e(1,2]

n M/An
(H/l Sf> 4 el (1.3)

nlu"

where I'(o + 1) = [, x"e ™ dx.
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As mentioned in Qi (2003), an unsolved problem in case ae(0,1] is whether there exist

C)I
normalization constants C,, and D,, such that (H};l S;/ D,,) converges in distribution to some

non-degenerate distribution. This paper is devoted to the study of asymptotic distribution for the
product of partial sums when the underlying distribution is in the domain of attraction of a stable
law with exponent « = 1 and pu = E(X)< 0.

As in Qi (2003), we define 4,, = U(n). But this time we need to set B, = nE(XI(X < A4,)) such
that (1.2) holds since (1.2) does not hold for any limit if one selects B, = nu in case o = 1. From
the proof in Qi (2003) we can reformulate (1.3) as

y

ljl_ S n/Ap -

(%) 4T s o ae(l,2], (1.4)
lt

where u, = E(XI(X<A4,)).
Since X is positive, it is well-known from Loeve (1977) that (1.2) is equivalent to the following
condition

1 — F(x) =Il(x)x™™ for x>0, (1.5)

where /(x) is a slowly varying function at infinity.

Theorem 1. Suppose (1.5) holds with o = 1 and u = E(X)< oo. Then (1.4) holds, i.e.,
n /An
n S\
(H/l ./> iegl’ (1.6)

nlpy

where &1 is a stable distribution having a characteristic function defined in (ch3) with p = 1.

We actually solve a conjecture proposed in Qi (2003). When a€(0, 1) (this implies E(X) = o0)
or o = 1 but E(X) = oo, the asymptotic distribution of the product of sums remains an unsolved
problem. We guess some other probability tools and techniques may be required.

It is worth mentioning that Taylor’s expansion plays an important role in both Qi (2003)
and the present paper. For ae(1,2], since (S; —ju)/ju converges to zero almost surely at a very
fast rate, in Qi (2003) it is able to expand logarithm of the product of the partial sums into a
weighted sum of random variables plus a sum of remainders. It turns out that the sum of the
remainders is negligible. However, in this paper, « = 1, this technique is no longer valid. The new
techniques used in the proof of the paper include partial sum processes and new normalization
constants B, = nE(XI(X < A,)). The proof also splits the logarithm of the product of the partial
sums into two sums. A very delicate process is involved in selecting integers k, so that all
last n — k, terms can be expanded and their sum has a desired limit but the sum of the first
terms is negligible.

2. Proof

First we present two lemmas that will be used in the proof. For the proof of the first
lemma see, e.g., Resnick (1986, Proposition 3.4 and its proof). The second lemma is an
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extension of Lemma 2.3 in Qi (2003) and its proof follows the same lines of the proof of

the latter.
Lemma 1. Assume condition (1.5) holds for some a€(0,2). Then

1
Rn() = A_(S[n-] - (-)nun) = ch(')
in D[0, c0), where {Y,(t), t=0} is a Lévy process.

Lemma 2. Under the conditions of Theorem 1

1 1
Z og(n + /]) 4 e
j:1 Al’l

Now we are ready to prove Theorem 1. Note that

L;l:l S H/An:exp Z Og—
n! =

xS, S bk o n S;
=exps — log—= + lo —+— log— 3,
{An ]Z: o An Ty Ay Z T

=k,+1

where {k,,n>1} is a sequence of integers with 1<k, <n. If the sequence {k,} is selected in such a
way that

ky
A—nloguﬂnao, @2.1)
L i log Y .0 (2.2)
and
n S
K log=L 9 &, 2.3)
A” J=kn+1 JHn

then Theorem 1 is proved.

Since 1 — F is regularly varying, we have P(X >A4,)=1—F(4,)~1/n as n— . By
Chebyshev’s inequality, 4,/n~A,P(X > A,)<E(XI(X > A4,)) =: 6,—0 as n— co. Another fact
we will use is that log u/u, — 0 since w, — u.

By the Kolmogorov’s strong law of large numbers, with probability one, S;/j — p as j— oo from
which we have log S;/ju—0 and (log(1 + 1//))(S; — ju)—0. Therefore, with probability one,

Zlog Z<10g< Jl>>(s —ju)| =0
j=1
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which implies W, —P 0. That is, for every ¢ > 0, P(W,, > ¢)—0 as n— o0. It is easily seen that there
exists a non-increasing sequence of positive numbers ¢,’s, &, —0 such that

P(W,, > g,)—0. (2.4)
Let [x] denote the smallest integer larger than x. Set i, = [4,] and k,, = [4,,/1/maXx(g;,, 0,)]. Then
kn/An~1/+/max(g;,, d,) > o0,
k, max(e,,0,)/ Ay ~ max(ex,, 9,)/+/ max(e;,, 4,)
< V maX(Sknaén)

-0

and

ken/n~ Ay /(ny/max(z,, 5,))
~ A,P(X > A,)/\/max(z;, 5,)
< 0,/+/max(e,, 6,)
< 1/6,—0.
Thus, we have proved

ﬁ—> oo,ﬁﬁo and oy max(ey,, on) max(skn,én)_)

0. 25

- p, 1 (2.5)
From (2.4) we have
P(Wkn > Skn)—>0,

i.e., W,/ek, = Oy(1) (bounded in probability). Hence

kWi,  kner, Wi, LN
An An &k,

0.

This implies (2.2) and
lilo L+ 3))es —jw o (2.6)
— = i — - 0. .
A, 2 g 7 i —JH

It is easy to see that (2.1) follows from (2.5) since log u/u, = log(1 + 0,/w,) ~ u/ 1, ~ On.
We still need to show (2.3). From Lemma 1 we conclude Z, :=supyc,<|R(?)l —d
SUPy<;<1 | Y1(?)|. Notice that

S; Si—J A, i
<L = 1+’,—]“”:1+-—Rn<]ﬁ>.

Tty T T
One can easily show that for |x|<1/2

log(1 + x) = x + d(x)x>, where |d(x)|<2.
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Since maxy, 1<j<n [An/jlt,Ru(G /0| < Ay /knu, Z, -P 0 as n— co, we have for k,; | <j<n

S; A, ' A, N\ 2
log.—’ =—R, <l) + <,._Rn (i>> dj,
JUy  JHy n Uy n

where |dj| = [6(4,/jw, R.(j/n))| are uniformly dominated by 2 on the set {|4,/k,u,Z,|<1/2} which
has a probability tending to 1 as n— oo. In order to show (2.3), it suffices to prove

1 - An ] 213
L5 (22, (4)) 2o 2.7)
Ap = Vbt \1

" A,
Loy e, <Z> 4. (2.8)

J=knt+1 JH

and

(2.7) follows from (2.5) by observing that

L GenO) - A0 5 iy
Ay sl i "\n :u% =l b1 7 "\n n j=Tent %
Let ¢(j) = log(1 + 1/j) — 1/j. Then |c(j)|<1/j>. So we can rewrite the left-hand side of (2.8) as
S ()
Mn il /o
RN 1 NN = g (]
" 2, g1 3) (1) i 30 o)

1 n 1 n .
D I (R (RSB SR O

=k, +1 n j=k,+1
pl& ,
:MAZIOg( )(S —Jta) = AZlog<1+ )(S = Jta)
nen =1 nen =1
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From (2.5) and (2.6) we get

.un Vlj:1
<“1f:1 <1+1)(S )+“1§:25
< —|5 0g - —JjW|+——

‘un An j=1 ] ! nAn j=1 "
k,
ull - 1 . u knOn
<— | log<1+—.)(S-—Ju) +
.un An j=1 ] ! n An
%o
and
TN TN wZ o
Bl<e= D0 eZis— D <=7 50
n j=k,+1 nj—f,+1 J Hy Kn

as n— oo. Finally, it follows from Lemma 2 that I; -»¢ #,. That proves (2.8).
The proof of Theorem 1 is complete.
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