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a b s t r a c t

In this paper we propose a smoothed jackknife empirical likelihood method to construct
confidence intervals for the receiver operating characteristic (ROC) curve. By applying the
standard empirical likelihood method for a mean to the jackknife sample, the empirical
likelihood ratio statistic can be calculated by simply solving a single equation. Therefore,
this procedure is easy to implement. Wilks’ theorem for the empirical likelihood ratio
statistic is proved and a simulation study is conducted to compare the performance of the
proposed method with other methods.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In diagnostic medicine, it is important to assess the accuracy of a diagnostic test in discriminating diseased patients
from non-diseased ones. When the response of a test is continuous, its accuracy is measured by the receiver operating
characteristic (ROC) curve; see, e.g., [1,2]. ROC curves can also be used to compare the diagnostic performance of two or
more laboratory or diagnostic tests [3].
Let F and G be the distribution functions of the diseased and non-diseased populations, respectively. Then the ROC

curve can be written as R(t) = 1 − F(G−(1 − t)) for 0 < t < 1, where G− denotes the inverse of G and is defined by
G−(u) = inf{x : G(x) ≥ u} for u ∈ (0, 1).
Throughout we assume that X1, . . . , Xm are independent and identically distributed (i.i.d.) test responses of m patients

from the diseased population with distribution F and Y1, . . . , Yn are i.i.d. test responses of n patients from the non-diseased
population with distribution G. A simple estimator of R(t) is defined as

Rm,n(t) = 1− Fm(G−n (1− t)), (1)

where Fm and Gn are the empirical distribution functions of F and G given by

Fm(x) =
1
m

m∑
j=1

I(Xj ≤ x), Gn(y) =
1
n

n∑
i=1

I(Yi ≤ y).

For the study of the estimator Rm,n(t) and its smooth version, we refer to [4–9]. For some inference problems related to the
ROC curve see, e.g., [10,11].
Using the fact that
√
m+ n{Rm,n(t)− R(t)}

d
→N(0, σ 2(t)), (2)
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where

σ 2(t) =
(
1+

1
r

)
R(t)(1− R(t))+ (1+ r)t(1− t)

{
F ′(G−(1− t))
G′(G−(1− t))

}2
, (3)

and r := limm,n→∞m/n ∈ (0,∞), one can construct a confidence interval for R(t) via estimating the density functions of
F and G or bootstrap methods. As an alternative way to construct confidence intervals without estimating the asymptotic
variance explicitly, Claeskens et al. [12] proposed an empirical likelihood method based on the smoothing estimators of
the functions F and G via some link variable. Molanes-Lopez, Van Keilegom and Veraverbeke [13] studied the empirical
likelihoodmethod based on empirical estimators. Qin and Zhou [14] employed the empirical likelihoodmethod to construct
confidence intervals for the area under the ROC curve.
The empirical likelihood, introduced in [15,16], is a well-known nonparametric method for constructing confidence re-

gions. Like the bootstrap and the jackknife, the empirical likelihoodmethod does not assume a parametric family of distribu-
tions for the data. One of the advantages of the empirical likelihoodmethod is that it enables the shape of a region, such as the
degree of asymmetry in a confidence interval, to be determined automatically by the sample.We refer to [17] for overviews.
Some recent developments of empirical likelihood methods include inferences for: censored median regression model
[18,19], two-sample problems [20–25], time series models [26–31], longitudinal data and single-index models [32–35]
and Copula [36]. However, all these applications and extensions of empirical likelihood methods work under linear con-
straints. In case of nonlinear functionals such as variance, ROC curves and copulas, a common way is to transform nonlinear
constraints to linear constraints by introducing some link variables as in [12,36]. Unfortunately, thismethod does not always
work and the introduced link variables create more linear constraints, which increases the computational burden. Seeking
a general method to deal with nonlinear functionals becomes important.
Recently, Jing, Yuan and Zhou [37] proposed a so-called jackknife empirical likelihood method for a U-statistic. The

procedure is as follows. For a U-statistic, construct a jackknife sample (see, e.g., [38]) first, and then treat this jackknife
pseudo-sample as a sample of i.i.d. observations and apply the standard empirical likelihood method for the mean of i.i.d.
observations to obtain the empirical likelihood ratio statistic for the U statistic. Hence, the procedure is easy to implement.
In this paper, we study the possibility of extending the jackknife empirical likelihood method in [37] to construct

confidence intervals for the ROC curve so as to avoid adding extra constraints due to the link variable in [12]. It turns out
that we have to work with a smooth version of the empirical estimator of the ROC curve. We organize this paper as follows.
Section 2 gives the detailed methodology and main results. A simulation study is presented in Section 3. All proofs are put
in Section 4.

2. Methodology

Let w be a symmetric density function with support [−1, 1] and put K(x) =
∫ x
−∞

w(y)dy. Define the smooth version of
Rm,n(t) as

R̂m,n(t) = 1−
1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)
,

where h = h(n) > 0 is a bandwidth. In fact, this smooth estimator of R is obtained via replacing Fm in (1) by its smoothed
version and Gn is still the empirical distribution of G. Thus, this smoothed estimator of the ROC curve R is different from the
one in [12]. The reason why we have to work with a smooth version is given in Remark 1 below. Define

R̂m,n,i(t) = 1−
1

m− 1

∑
1≤j≤m,j6=i

K
(
1− t − Gn(Xj)

h

)
, 1 ≤ i ≤ m,

R̂m,n,i(t) = 1−
1
m

m∑
j=1

K
(
1− t − Gn,i−m(Xj)

h

)
, m < i ≤ m+ n,

where

Gn,k(y) =
1
n− 1

∑
1≤i≤n,i6=k

I(Yi ≤ y), k = 1, . . . , n.

The jackknife pseudo-sample is therefore defined as

V̂i(t) = (m+ n)R̂m,n(t)− (m+ n− 1)R̂m,n,i(t), i = 1, . . . ,m+ n.

Next, we form the empirical likelihood at R(t) = θ based on the jackknife pseudo-sample as

Lm,n(t, θ) = sup

{
m+n∏
i=1

pi : p1 > 0, . . . , pm+n > 0,
m+n∑
i=1

pi = 1,
m+n∑
i=1

piV̂i(t) = θ

}
.
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By the standard Lagrange multiplier argument, we obtain that the above maximization is achieved at

pi =
1

(m+ n){1+ λ(V̂i(t)− θ)}
, i = 1, . . . ,m+ n,

where λ = λ(t, θ) satisfies

1
m+ n

m+n∑
i=1

V̂i(t)− θ

1+ λ(V̂i(t)− θ)
= 0,

which gives the log empirical likelihood ratio as

lm,n(t, θ) = −2 log Lm,n(t, θ) = 2
m+n∑
i=1

log{1+ λ(V̂i(t)− θ)}.

In order to show that the above log empirical likelihood ratio converges in distribution to a χ2 limit, one has to show
that the jackknife variance estimator

νm,n(t) =
1

m+ n

m+n∑
i=1

{
V̂i(t)−

1
m+ n

m+n∑
j=1

V̂j(t)

}2
is a consistent estimator of (m+ n)Var(R̂m,n(t)).

Theorem 1. Assume that w is a symmetric density with support [−1, 1] and the first derivative of w is bounded. Further
assume that the second derivative of R(t) is continuous at t0 ∈ (0, 1), and limn→∞m/n = r ∈ (0,∞). If h = h(n) → 0,
nh2/ log n→∞ and nh4 → 0 as n→∞, then

νm,n(t0)
p
→ σ 2(t0) as n→∞.

Remark 1. Although we cannot show that the above jackknife variance estimator based on Rm,n(t) instead of R̂m,n(t) is
inconsistent, our simulation study does confirm this conjecture. This explains why we have to work with a smooth version
of the empirical estimator of the ROC curve.

Theorem 2. Under the conditions of Theorem 1, we have

lm,n(t0, R(t0))
d
→χ2(1) as n→∞.

Based on Theorem 2, a confidence interval with level γ for R(t0) can be constructed as

Iγ (t0,m, n) = {θ : lm,n(t0, θ) ≤ χ21,γ },

where χ21,γ is the γ quantile of χ
2(1).

3. Simulation study

In this section,we compare the coverage accuracy of the proposed jackknife empirical likelihoodmethodwith the normal
approximation method and the empirical likelihood method in [12], where an extra constraint and smooth distribution
estimation for both populations are required.
We consider three cases: (A) F ∼ N(0, 1),G ∼ N(1, 0.5), (B) F ∼ N(0, 1),G ∼ Exp(1) and (C)F ∼ Exp(1),G ∼ Exp(1),

where Exp(1) denotes the standard exponential distribution function. We generate 10,000 random samples from the above
cases with sample sizes m = 50, 100, 200 and n = 50, 100, 200. We use the kernel w(x) = 15

16 (1− t
2)2I(|t| ≤ 1) for both

methods, and we choose h = m−1/3 for the jackknife empirical likelihood method and h1 = m−1/3 and h2 = n−1/3 for the
empirical likelihood method in [12]. Note that Chen, Peng and Zhao [36] pointed out that the above choices of bandwidth
for the method in [12] are valid. For the naive bootstrap method based on Rm,n(t), we employ 1000 bootstrap samples.
We compute the coverage probabilities for t0 = 0.05, 0.10, 0.25 with confidence levels 0.9 and 0.95. From Tables 1–3, we
observe that both the proposed jackknife empirical likelihood method and the empirical likelihood method in [12] perform
much better than the naive bootstrapmethod.When t = 0.05 and 0.10, the proposed jackknife empirical likelihoodmethod
performs best in most cases. Both empirical likelihood methods are comparable in case of t = 0.25. However, the proposed
jackknife empirical likelihood method is less computationally intensive since the empirical likelihood method in [12] has
more constraints in the optimization procedure. Indeed, we employ the ‘‘emplik’’ R package for the proposed jackknife
empirical likelihood method.
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Table 1
Coverage probabilities for the ROC curve R(0.05) are reported for the intervals based on the naive bootstrap method for Rm,n(t) (NBM), the proposed
jackknife empirical likelihood method (JELM) and the empirical likelihood method (ELM) in [12] for levels γ = 0.9, 0.95 and various sample sizes.

(m, n, Case) NBM JELM ELM NBM JELM ELM
γ = 0.9 γ = 0.9 γ = 0.9 γ = 0.95 γ = 0.95 γ = 0.95

(50, 50, A) 0.5383 0.8530 0.6816 0.5510 0.8867 0.7042
(50, 100, A) 0.5545 0.8356 0.6786 0.5692 0.8838 0.7119
(50, 200, A) 0.5324 0.8183 0.6442 0.5424 0.8708 0.6855
(100, 50, A) 0.7517 0.8950 0.8157 0.7667 0.9314 0.8488
(100, 100, A) 0.7858 0.8903 0.8329 0.8015 0.9311 0.8706
(100, 200, A) 0.7763 0.8719 0.8058 0.7880 0.9236 0.8509
(200, 50, A) 0.7331 0.9070 0.8998 0.7489 0.9473 0.9302
(200, 100, A) 0.8006 0.9147 0.9185 0.8133 0.9552 0.9495
(200, 200, A) 0.7992 0.9050 0.9144 0.8102 0.9496 0.9493
(50, 50, B) 0.1631 0.9138 0.9284 0.1645 0.9547 0.9758
(50, 100, B) 0.1431 0.8326 0.9404 0.1439 0.9351 0.9877
(50, 200, B) 0.1040 0.6433 0.9520 0.1044 0.8293 0.9897
(100, 50, B) 0.2456 0.9377 0.9544 0.2498 0.9636 0.9678
(100, 100, B) 0.2490 0.8952 0.9695 0.2522 0.9623 0.9786
(100, 200, B) 0.1962 0.7255 0.9800 0.1970 0.8845 0.9873
(200, 50, B) 0.3531 0.9448 0.9236 0.3611 0.9647 0.9288
(200, 100, B) 0.3699 0.9364 0.9415 0.3781 0.9759 0.9477
(200, 200, B) 0.3211 0.8203 0.9626 0.3248 0.9374 0.9669
(50, 50, C) 0.6505 0.9056 0.8363 0.6727 0.9550 0.8570
(50, 100, C) 0.7041 0.8686 0.8897 0.7262 0.9379 0.9149
(50, 200, C) 0.7010 0.8223 0.8944 0.7187 0.9052 0.9269
(100, 50, C) 0.7359 0.9151 0.8033 0.7572 0.9589 0.8330
(100, 100, C) 0.8208 0.9058 0.8797 0.8424 0.9532 0.9135
(100, 200, C) 0.8433 0.8656 0.9141 0.8601 0.9350 0.9507
(200, 50, C) 0.7518 0.9078 0.7349 0.7916 0.9473 0.8055
(200, 100, C) 0.8244 0.9135 0.8184 0.8681 0.9585 0.8845
(200, 200, C) 0.8562 0.8973 0.8950 0.8940 0.9508 0.9409

Table 2
Coverage probabilities for the ROC curve R(0.1) are reported for intervals based on the naive bootstrap method for Rm,n(t) (NBM), the proposed jackknife
empirical likelihood method (JELM) and the empirical likelihood method (ELM) in [12] for levels γ = 0.9, 0.95 and various sample sizes.

(m, n, Case) NBM JELM ELM NBM JELM ELM
γ = 0.9 γ = 0.9 γ = 0.9 γ = 0.95 γ = 0.95 γ = 0.95

(50, 50, A) 0.7673 0.8685 0.8292 0.7797 0.9001 0.8664
(50, 100, A) 0.7659 0.8601 0.8101 0.7734 0.9013 0.8557
(50, 200, A) 0.7497 0.8469 0.7772 0.7561 0.8928 0.8237
(100, 50, A) 0.7478 0.8997 0.9066 0.7768 0.9364 0.9423
(100, 100, A) 0.7559 0.8991 0.9065 0.7773 0.9412 0.9411
(100, 200, A) 0.7526 0.8961 0.8955 0.7727 0.9396 0.9345
(200, 50, A) 0.8150 0.8910 0.8976 0.8739 0.937 0.9516
(200, 100, A) 0.8347 0.9040 0.9060 0.8936 0.9496 0.9594
(200, 200, A) 0.8369 0.9019 0.9019 0.9032 0.9478 0.9548
(50, 50, B) 0.4936 0.9015 0.5875 0.5121 0.9449 0.6052
(50, 100, B) 0.4539 0.8672 0.6000 0.4661 0.9348 0.6121
(50, 200, B) 0.4429 0.7871 0.6065 0.4508 0.8946 0.6206
(100, 50, B) 0.6660 0.9173 0.7102 0.6809 0.9511 0.7273
(100, 100, B) 0.6670 0.9122 0.7466 0.6758 0.9574 0.7637
(100, 200, B) 0.6615 0.8443 0.7616 0.6690 0.9302 0.7805
(200, 50, B) 0.6190 0.9140 0.7846 0.6401 0.9453 0.8116
(200, 100, B) 0.6191 0.9215 0.8356 0.6353 0.9596 0.8643
(200, 200, B) 0.6195 0.8947 0.8769 0.6319 0.9544 0.9039
(50, 50, C) 0.8103 0.9068 0.8784 0.8339 0.9524 0.9232
(50, 100, C) 0.8257 0.9078 0.9114 0.8540 0.9553 0.9502
(50, 200, C) 0.8472 0.9040 0.9094 0.8731 0.9573 0.9529
(100, 50, C) 0.7946 0.8851 0.8168 0.8521 0.9354 0.8856
(100, 100, C) 0.8360 0.9060 0.8841 0.8900 0.9530 0.9397
(100, 200, C) 0.8531 0.9068 0.9069 0.9033 0.9575 0.9516
(200, 50, C) 0.7717 0.8771 0.7655 0.8342 0.9185 0.8212
(200, 100, C) 0.8026 0.8926 0.8422 0.8668 0.9375 0.8949
(200, 200, C) 0.8274 0.9005 0.8886 0.8880 0.9512 0.9369

Next we examine the interval lengths of the proposed jackknife empirical likelihood method and the naive bootstrap
method based on Rm,n(t) since the computation for the other empirical likelihood interval is quite intensive. Note that
lm,n(t, θ) ≥ 0 is a convex function of θ and lm,n(t, 1

m+n

∑m+n
i=1 V̂i(t)) = 0. So by increasing and decreasing θ from
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Table 3
Coverage probabilities for the ROC curve R(0.25) are reported for intervals based on the naive bootstrap method for Rm,n(t) (NBM), the proposed jackknife
empirical likelihood method (JELM) and the empirical likelihood method (ELM) in [12] for levels γ = 0.9, 0.95 and various sample sizes.

(m, n, Case) NBM JELM ELM NBM JELM ELM
γ = 0.9 γ = 0.9 γ = 0.9 γ = 0.95 γ = 0.95 γ = 0.95

(50, 50, A) 0.8320 0.9047 0.9172 0.8503 0.9417 0.9587
(50, 100, A) 0.8424 0.8984 0.9070 0.8588 0.9398 0.9479
(50, 200, A) 0.8464 0.9001 0.9069 0.8604 0.9402 0.9434
(100, 50, A) 0.8369 0.8878 0.9018 0.8662 0.9407 0.9518
(100, 100, A) 0.8657 0.9013 0.9039 0.8957 0.9481 0.9516
(100, 200, A) 0.8760 0.9041 0.9008 0.9028 0.9512 0.9501
(200, 50, A) 0.8305 0.8820 0.9032 0.8786 0.9348 0.9508
(200, 100, A) 0.8577 0.8963 0.9045 0.9045 0.9453 0.9517
(200, 200, A) 0.8628 0.8980 0.9003 0.9137 0.9505 0.9507
(50, 50, B) 0.6957 0.8895 0.9002 0.7142 0.9354 0.9568
(50, 100, B) 0.7424 0.9022 0.9089 0.7601 0.9473 0.9582
(50, 200, B) 0.7647 0.9087 0.9002 0.7804 0.9509 0.9545
(100, 50, B) 0.7505 0.8739 0.8924 0.7862 0.9285 0.9399
(100, 100, B) 0.8129 0.8982 0.9085 0.8578 0.9473 0.9558
(100, 200, B) 0.8269 0.9056 0.9067 0.8782 0.9512 0.9539
(200, 50, B) 0.7512 0.8526 0.8791 0.8014 0.9057 0.9265
(200, 100, B) 0.8115 0.8794 0.9018 0.8576 0.9287 0.9449
(200, 200, B) 0.8438 0.9007 0.9098 0.8927 0.9465 0.9537
(50, 50, C) 0.8040 0.8878 0.8970 0.8599 0.9368 0.9434
(50, 100, C) 0.8417 0.9006 0.9060 0.8907 0.9465 0.9515
(50, 200, C) 0.8576 0.9083 0.9035 0.9108 0.9553 0.9537
(100, 50, C) 0.8137 0.8705 0.8785 0.8651 0.9260 0.9239
(100, 100, C) 0.8549 0.8915 0.9049 0.9109 0.9462 0.9507
(100, 200, C) 0.8708 0.9019 0.9083 0.9286 0.9507 0.9531
(200, 50, C) 0.7992 0.8638 0.8729 0.8554 0.9154 0.9197
(200, 100, C) 0.8371 0.8837 0.8957 0.8949 0.9339 0.9413
(200, 200, C) 0.8540 0.8916 0.9029 0.9155 0.9414 0.9496

1
m+n

∑m+n
i=1 V̂i(t)with a step 0.001 till lm,n(t, θ) > χ21,γ we can easily obtain the upper and lower endpoints of the jackknife

empirical likelihood interval Iγ (t0,m, n). In Table 4, we report the interval lengths for the jackknife empirical likelihood
method and the naive bootstrap method. We observe that the jackknife empirical likelihood method results in a shorter
interval than the naive bootstrap method for almost all of cases except case C with γ = 0.95.

4. Proofs

We need the following lemmas to prove Theorems 1 and 2.

Lemma 1. Assume conditions in Theorem 1 hold. Then there exists an interval (a, b) ⊂ (0, 1) such that t0 ∈ (a, b) and

√
m+ n{R̂m,n(t)− R(t)}

D
−→

√
1+

1
r
B1(1− R(t))+

√
1+ rR′(t)B2(t) (4)

in D((a, b)), where B1(t) and B2(t) are two independent Brownian bridges.

Proof. Since R′′ is continuous at t0 ∈ (0, 1), there exists a subset (a, b) containing t0 such that R′ and R′′ are bounded in
(a, b). It is known that

√
m{Fm(x)− F(x)}

D
→W1(x) and

√
n{Gn(y)− G(y)}

D
→W2(y) (5)

in D((−∞,∞)), whereW1 andW2 are two independent Wiener processes with zero means and covariances{
EW1(x1)W1(x2) = F(x1 ∧ x2)− F(x1)F(x2)
EW2(y1)W2(y2) = G(y1 ∧ y2)− G(y1)G(y2).

Write

1−
1
m

m∑
j=1

K
(
1− t − G(Xj)

h

)
− R(t) = F(G−(1− t))−

∫
∞

−∞

K
(
1− t − G(x)

h

)
dFm(x)

= F(G−(1− t))−
∫
∞

−∞

Fm(x)w
(
1− t − G(x)

h

)
h−1 dG(x)

= F(G−(1− t))−
∫ 1

−1
Fm(G−(1− t − xh))w(x) dx
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Table 4
Interval lengths are reported for the ROC curve R(t) based on the naive bootstrapmethod for Rm,n(t) (NBM) and the proposed jackknife empirical likelihood
method (JELM) for levels γ = 0.9, 0.95 and various sample sizes.

(m, n, Case) NBM JELM NBM JELM NBM JELM NBM JELM
γ = 0.9 γ = 0.9 γ = 0.95 γ = 0.95 γ = 0.9 γ = 0.9 γ = 0.95 γ = 0.95
t = 0.1 t = 0.1 t = 0.1 t = 0.1 t = 0.25 t = 0.25 t = 0.25 t = 0.25

(50, 50, A) 0.0879 0.0582 0.1031 0.0818 0.1346 0.1128 0.1590 0.1567
(50, 100, A) 0.0746 0.0573 0.0873 0.0779 0.1271 0.1098 0.1500 0.1532
(50, 200, A) 0.0700 0.0579 0.0814 0.0780 0.1205 0.1072 0.1420 0.1532
(100, 50, A) 0.0711 0.0448 0.0844 0.0653 0.1089 0.0923 0.1294 0.1334
(100, 100, A) 0.0623 0.0466 0.0736 0.0646 0.0975 0.0848 0.1158 0.1296
(100, 200, A) 0.0571 0.0447 0.0672 0.0634 0.0910 0.0804 0.1080 0.1285
(200, 50, A) 0.0599 0.0387 0.0710 0.0568 0.0883 0.0776 0.1051 0.1190
(200, 100, A) 0.0495 0.0374 0.0589 0.0539 0.0765 0.0672 0.0908 0.1135
(200, 200, A) 0.0441 0.0344 0.0524 0.0525 0.0681 0.0604 0.0811 0.1102
(50, 50, B) 0.0766 0.0415 0.0948 0.0674 0.1767 0.1284 0.2071 0.1791
(50, 100, B) 0.0540 0.0427 0.0662 0.0624 0.1572 0.1221 0.1851 0.1706
(50, 200, B) 0.0439 0.0449 0.0533 0.0610 0.1436 0.1142 0.1691 0.1682
(100, 50, B) 0.0702 0.0320 0.0855 0.0536 0.1519 0.1134 0.1793 0.1624
(100, 100, B) 0.0495 0.0317 0.0601 0.0482 0.1296 0.1038 0.1534 0.1517
(100, 200, B) 0.0395 0.0335 0.0471 0.0461 0.1124 0.0914 0.1329 0.1463
(200, 50, B) 0.0637 0.0268 0.0772 0.0453 0.1355 0.1035 0.1597 0.1527
(200, 100, B) 0.0444 0.0247 0.0535 0.0393 0.1111 0.0930 0.1316 0.1407
(200, 200, B) 0.0340 0.0255 0.0407 0.0359 0.0912 0.0764 0.1084 0.1320
(50, 50, C) 0.2139 0.1381 0.2519 0.1969 0.2873 0.2363 0.3399 0.3894
(50, 100, C) 0.1804 0.1259 0.2137 0.1903 0.2545 0.2065 0.3018 0.3789
(50, 200, C) 0.1583 0.1132 0.1870 0.1830 0.2290 0.1879 0.2711 0.3665
(100, 50, C) 0.1863 0.1245 0.2210 0.1805 0.2488 0.2137 0.2958 0.3739
(100, 100, C) 0.1480 0.1065 0.1755 0.1670 0.2059 0.1741 0.2448 0.3521
(100, 200, C) 0.1276 0.0916 0.1515 0.1622 0.1793 0.1515 0.2129 0.3439
(200, 50, C) 0.1686 0.1138 0.1982 0.1677 0.2245 0.2011 0.2660 0.3615
(200, 100, C) 0.1294 0.0977 0.1537 0.1569 0.1765 0.1550 0.2101 0.3403
(200, 200, C) 0.1026 0.0776 0.1221 0.1469 0.1453 0.1269 0.1728 0.3246

= F(G−(1− t))− Fm(G−(1− t))−
∫ 1

−1
{F(G−(1− t − xh))− F(G−(1− t))}w(x) dx

−

∫ 1

−1
{Fm(G−(1− t − xh))− F(G−(1− t − xh))− Fm(G−(1− t))+ F(G−(1− t))}w(x) dx (6)

and ∫ 1

−1
{F(G−(1− t − xh))− F(G−(1− t))}w(x) dx = −

∫ 1

−1
R′(t)xhw(x) dx−

1
2

∫ 1

−1
R′′(t∗)(xh)2w(x) dx

= −
1
2
h2
∫ 1

−1
R′′(t∗)x2w(x) dx, (7)

where t∗ is between t and t + xh. If follows from conditions in Lemma 1 and (7) that∫ 1

−1
{F(G−(1− t − xh))− F(G−(1− t))}w(x) dx = O(h2) (8)

uniformly in t ∈ (a, b). Using the conditions on h, (5) and the continuity ofW1, we have∫ 1

−1
{Fm(G−(1− t − xh))− F(G−(1− t − xh))− Fm(G−(1− t))+ F(G−(1− t))}w(x) dx

=

∫ 1

−1
{Fm(G−(1− t − xh))− F(G−(1− t − xh))−m−1/2W1(G−(1− t − xh))}w(x) dx

−

∫ 1

−1
{Fm(G−(1− t))− F(G−(1− t))−m−1/2W1(G−(1− t))}w(x) dx

+

∫ 1

−1
{m−1/2W1(G−(1− t − xh))−m−1/2W1(G−(1− t))}w(x) dx

= op(m−1/2).
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Hence

√
m

{
1−

1
m

m∑
j=1

K
(
1− t − G(Xj)

h

)
− R(t)

}
D
→W1(G−(1− t)) (9)

in D((a, b)).
Write

1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)
−
1
m

m∑
j=1

K
(
1− t − G(Xj)

h

)
=
1
m

m∑
j=1

G(Xj)− Gn(Xj)
h

w

(
1− t − G(Xj)

h

)

+
1
2m

m∑
j=1

(
G(Xj)− Gn(Xj)

h

)2
w′
(
1− t − G(Xj)+ ξn,j

h

)
, (10)

where ξn,j is between 0 and G(Xj)− Gn(Xj). It follows from Theorem A of Silverman [39] that

sup
t∈(a,b)

∣∣∣∣∣ 1mh
m∑
j=1

∣∣∣∣∣w′
(
1− t − G(Xj)

h

) ∣∣∣∣−R′(t) ∫ 1

−1
|w′(x)| dx

∣∣∣∣ = op(1), (11)

where R′(1− x) is the density of G(X1). By (5), (10) and (11), we have

√
n

{
1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)
−
1
m

m∑
j=1

K
(
1− t − G(Xj)

h

)}

= −

∫
∞

−∞

W2(x)h−1w
(
1− t − G(x)

h

)
dF(x)+ Op(n−1/2h−1)

=

∫ 1

−1
W2(G−(1− t − xh))h−1w(x) dF(G−(1− t − hx))+ Op(n−1/2h−1)

= −R′(t)W2(G−(1− t))+ op(1) (12)

uniformly in t ∈ (a, b). Hence the lemma follows from (9) and (12) with B1(1 − R(t)) = W1(G−(1 − t)) and B2(t) =
W2(G−(1− t)). This completes the proof of the lemma. �

Lemma 2. Under conditions of Theorem 1, we have

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(t)− R(t)

}
d
→N(0, σ 2(t))

as n→∞ for t = t0.

Proof. Throughout we assume t = t0. It follows from the definition of V̂i(t) that

1
m+ n

m+n∑
i=1

V̂i(t) =
1

m+ n

{
m+ n−

m+ n
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)

+
m+ n− 1
m

n∑
k=1

m∑
j=1

{
K
(
1− t − Gn,k(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}}
. (13)

Write
n∑
k=1

m∑
j=1

{
K
(
1− t − Gn,k(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}

=

n∑
k=1

m∑
j=1

Gn(Xj)− Gn,k(Xj)
h

w

(
1− t − Gn(Xj)

h

)
+

n∑
k=1

m∑
j=1

1
2

{
Gn(Xj)− Gn,k(Xj)

h

}2
w′
(
1− t − ξn,k,j

h

)

=

m∑
j=1

{
n∑
k=1

Gn(Xj)− Gn,k(Xj)
h

}
w

(
1− t − Gn(Xj)

h

)
+

n∑
k=1

m∑
j=1

1
2

{
Gn(Xj)− Gn,k(Xj)

h

}2
w′
(
1− t − ξn,k,j

h

)

=

n∑
k=1

m∑
j=1

1
2

{
Gn(Xj)− Gn,k(Xj)

h

}2
w′
(
1− t − ξn,k,j

h

)
, (14)
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where ξn,k,j is a random variable between Gn,k(Xj) and Gn(Xj). Since

Gn(Xj)− Gn,k(Xj) =
1
n− 1

{Gn(Xj)− I(Yk ≤ Xj)} = Op

(
1
n− 1

)
uniformly in 1 ≤ k ≤ n and 1 ≤ j ≤ m, we can write

ξn,k,j = Gn(Xj)+ Op

(
1
n− 1

)
= G(Xj)+ Op

(
n−

1
2

)
. (15)

It follows from (14), (15) and (11) that

n∑
k=1

m∑
j=1

{
K
(
1− t − Gn,k(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}
= Op

{
mn

(n− 1)2h

}
. (16)

By (13), (16) and Lemma 1, we have

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(t)− R(t)

}

=
√
m+ n

{
1−

1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)
+ Op

{
(m+ n− 1)n

(m+ n)(n− 1)2h

}
− R(t)

}

=
√
m+ n

{
R̂m,n(t)− R(t)+ Op

{
(m+ n− 1)n

(m+ n)(n− 1)2h

}}
d
→N(0, σ 2(t)),

i.e., Lemma 2 holds. �

Lemma 3. Under conditions of Theorem 1, we have

1
m+ n

m+n∑
i=1

{V̂i(t)− R(t)}2
p
→ σ 2(t)

as n→∞ for t = t0.

Proof. Throughout we assume t = t0. For 1 ≤ i ≤ m, we can write that

V̂i(t) = 1+
n

(m− 1)m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)
−
m+ n− 1
m− 1

K
(
1− t − Gn(Xi)

h

)
and

V̂ 2i (t) =
{
1−

m+ n− 1
m− 1

K
(
1− t − Gn(Xi)

h

)}2
+

{
n

(m− 1)m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)}2

+ 2

{
n

(m− 1)m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)}{
1−

m+ n− 1
m− 1

K
(
1− t − Gn(Xi)

h

)}
,

which imply that

m∑
i=1

V̂ 2i (t) = m−
2(m+ n− 1)
m− 1

m∑
i=1

K
(
1− t − Gn(Xi)

h

)
+
(m+ n− 1)2

(m− 1)2

m∑
i=1

K 2
(
1− t − Gn(Xi)

h

)

+
mn2

(m− 1)2m2

{
m∑
j=1

K
(
1− t − Gn(Xj)

h

)}2

+
2n

(m− 1)m

{
m∑
j=1

K
(
1− t − Gn(Xj)

h

)}{
m−

m+ n− 1
m− 1

m∑
j=1

K
(
1− t − Gn(Xi)

h

)}
. (17)
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Since K 2 is a distribution function, it follows from Lemma 1 that

1
m

m∑
i=1

K 2
(
1− t − Gn(Xi)

h

)
p
→ F(G−(1− t)). (18)

Hence, by (17), (18) and Lemma 1,

1
m+ n

m∑
i=1

V̂ 2i (t)
p
→

r
1+ r

− 2F(G−(1− t))+
(
1+

1
r

)
F(G−(1− t))

+
1

r(1+ r)
F 2(G−(1− t))+

2
1+ r

F(G−(1− t))−
2
r
F 2(G−(1− t))

=
r
1+ r

+
1+ 2r − r2

r(1+ r)
F(G−(1− t))−

1+ 2r
r(1+ r)

F 2(G−(1− t))

=
r + 1
r
R(t)−

1+ 2r
r(1+ r)

R2(t). (19)

Next, form < i ≤ m+ n, we can write that

V̂i(t) = 1−
1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)
+
m+ n− 1
m

m∑
j=1

{
K
(
1− t − Gn,i−m(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}
and

V̂ 2i (t) =

{
1−

1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)}2

+

{
m+ n− 1
m

m∑
j=1

{
K
(
1− t − Gn,i−m(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}}2

+ 2

{
1−

1
m

m∑
j=1

K
(
1− t − Gn(Xj)

h

)}
m+ n− 1
m

m∑
j=1

{
K
(
1− t − Gn,i−m(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}
.

(20)

It follows from (11) that

Ak :=

{
m∑
j=1

{
K
(
1− t − Gn,k(Xj)

h

)
− K

(
1− t − Gn(Xj)

h

)}}2

=

{
m∑
j=1

Gn(Xj)− Gn,k(Xj)
h

w

(
1− t − Gn(Xj)

h

)
+

m∑
j=1

{
Gn(Xj)− Gn,k(Xj)

}2
2h2

w′
(
1− t − ξn,k,j

h

)}2

=

{
m∑
j=1

Gn(Xj)− Gn,k(Xj)
h

w

(
1− t − Gn(Xj)

h

)
+ Op(mn−2h−1)

}2

=

{
m∑
j=1

Gn(Xj)− Gn,k(Xj)
h

w

(
1− t − Gn(Xj)

h

)}2
+ Op(n−1h−1),

which implies that

1
m+ n

n∑
k=1

Ak =
1

m+ n

n∑
k=1

{
m∑
l=1

m∑
j=1

Gn(Xl)− Gn,k(Xl)
h

Gn(Xj)− Gn,k(Xj)
h

× w

(
1− t − Gn(Xl)

h

)
w

(
1− t − Gn(Xj)

h

)}
+ Op(n−1h−1)

=
1

m+ n
n

(n− 1)2h2

m∑
l=1

m∑
j=1

{Gn(Xl ∧ Xj)− Gn(Xl)Gn(Xj)}
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×w

(
1− t − Gn(Xl)

h

)
w

(
1− t − Gn(Xj)

h

)
+ Op(n−1h−1)

=
1

m+ n
n

(n− 1)2h2

m∑
l=1

m∑
j=1

{G(Xl ∧ Xj)− G(Xl)G(Xj)}

×w

(
1− t − G(Xl)

h

)
w

(
1− t − G(Xj)

h

)
{1+ op(1)} + Op(n−1h−1)

p
→

r2

1+ r
{1− t − (1− t)2}{R′(t)}2

=
r2

1+ r
t(1− t){R′(t)}2. (21)

By (20), (21), (16) and Lemma 1, we have

1
m+ n

m+n∑
i=m+1

V̂ 2i (t)
p
→

1
1+ r

R2(t)+ (r + 1)t(1− t){R′(t)}2. (22)

Hence, it follows from (19), (22) and Lemma 2 that

1
m+ n

m+n∑
i=1

{V̂i(t)− R(t)}2 =
1

m+ n

m+n∑
i=1

V̂ 2i (t)+ R
2(t)−

2
m+ n

R(t)
m+n∑
i=1

V̂i(t)

p
→ σ 2(t).

This completes the proof of Lemma 3. �

Proof of Theorem 1. It follows immediately from Lemmas 2 and 3. �

Proof of Theorem 2. Throughout let θ = R(t0). Define g(λ) = 1
m+n

∑m+n
i=1

V̂i(t0)−θ
1+λ(V̂i(t0)−θ)

. It is easy to check that

0 = |g(λ)| =
1

m+ n

∣∣∣∣∣m+n∑
i=1

(V̂i(t0)− θ)− λ
m+n∑
i=1

(V̂i(t0)− θ)2

1+ λ(V̂i(t0)− θ)

∣∣∣∣∣
≥

∣∣∣∣∣ λ

m+ n

m+n∑
i=1

(V̂i(t0)− θ)2

1+ λ(V̂i(t0)− θ)

∣∣∣∣∣−
∣∣∣∣∣ 1
m+ n

m+n∑
i=1

(V̂i(t0)− θ)

∣∣∣∣∣
≥
|λ|Sm+n

1+ |λ|Zm+n
−

∣∣∣∣∣ 1
m+ n

m+n∑
i=1

(V̂i(t0)− θ)

∣∣∣∣∣ ,
where Sm+n = 1

m+n

∑m+n
i=1 (V̂i(t0)−θ)

2 and Zm+n = max1≤i≤m+n |V̂i(t0)−θ |. Using similar arguments in proving Lemma2,we
can show that Zm+n is bounded in probability. Hence, by Lemma 2, Lemma 3 and the fact that Zm+n is bounded in probability,
we have

|λ| = Op
{
(m+ n)−

1
2

}
. (23)

Put γi = λ(V̂i(t0)− θ). Then, we have that

max
1≤i≤m+n

|γi| = op(1). (24)

Using (23), (24) and Taylor expansion, we have

0 = g(λ) =
1

m+ n

m+n∑
i=1

(V̂i(t0)− θ)
(
1− γi +

γ 2i

1+ γi

)

=
1

m+ n

m+n∑
i=1

(V̂i(t0)− θ)− Sm+nλ+
1

m+ n

m+n∑
i=1

(V̂i(t0)− θ)γ 2i
1+ γi

=
1

m+ n

m+n∑
i=1

(V̂i(t0)− θ)− Sm+nλ+ Op

(
1

m+ n

)
,
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which implies that

λ = S−1m+n
1

m+ n

m+n∑
i=1

(V̂i(t0)− θ)+ βn, (25)

where βn = Op( 1
m+n ). Hence, it follows from (23), (25), Lemmas 1 and 2 that

lm,n(t0, θ) = 2
m+n∑
i=1

γi −

m+n∑
i=1

γ 2i + 2
m+n∑
i=1

ηi

= 2(m+ n)λ
1

m+ n

m+n∑
i=1

(V̂i(t0)− θ)− (m+ n)Sm+nλ2 + 2
m+n∑
i=1

ηi

=

(m+ n)
{

1
m+n

m+n∑
i=1
(V̂i(t0)− θ)

}2
Sm+n

− (m+ n)Sm+nβ2n + 2
m+n∑
i=1

ηi

=

(m+ n)
{

1
m+n

m+n∑
i=1
(V̂i(t0)− θ)

}2
Sm+n

+ op(1)

d
→ χ21 ,

i.e., Theorem 2 holds. �
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