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Summary. Multivariate extreme value theory and methods concern the characterization, esti-
mation and extrapolation of the joint tail of the distribution of a d-dimensional random variable.
Existing approaches are based on limiting arguments in which all components of the variable
become large at the same rate. This limit approach is inappropriate when the extreme values of
all the variables are unlikely to occur together or when interest is in regions of the support of the
joint distribution where only a subset of components is extreme. In practice this restricts existing
methods to applications where d is typically 2 or 3. Under an assumption about the asymptotic
form of the joint distribution of a d-dimensional random variable conditional on its having an
extreme component, we develop an entirely new semiparametric approach which overcomes
these existing restrictions and can be applied to problems of any dimension. We demonstrate
the performance of our approach and its advantages over existing methods by using theoret-
ical examples and simulation studies. The approach is used to analyse air pollution data and
reveals complex extremal dependence behaviour that is consistent with scientific understanding
of the process. We find that the dependence structure exhibits marked seasonality, with ex-
tremal dependence between some pollutants being significantly greater than the dependence
at non-extreme levels.
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1. Introduction and background

Multivariate extreme value theory and methods concern the characterization, estimation and
extrapolation of the joint tails of multidimensional distributions. Accurate assessments of the
probabilities of extreme events are sought in a diversity of applications from environmental
impact assessment (Coles and Tawn, 1994; Joe, 1994; de Haan and de Ronde, 1998; Schlather
and Tawn, 2003) to financial risk management (Embrechts et al., 1997; Longin, 2000; Starica,
2000; Poon et al., 2004) and Internet traffic modelling (Maulik et al., 2002; Resnick and Rootzén,
2000). The application that is considered in this paper is environmental. We examine five-
dimensional air quality monitoring data comprising a series of measurements of ground level
ozone (03), nitrogen dioxide (NO»), nitrogen oxide (NO), sulphur dioxide (SO;) and particulate
matter (PMg), in Leeds city centre, UK, during the years 1994-1998 inclusively.

Regulation of air pollutants is undertaken because of their well-established deleterious effects
on human health, vegetation and materials. Government objectives for concentrations of air
pollutants are given in terms of single variables, rather than combinations of variables (Depart-
ment of the Environment, Transport and the Regions, 2000). However, atmospheric chemists are
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increasingly aware of the importance of understanding the dependence between different air pol-
lutants. Recent atmospheric chemistry research (Photochemical Oxidants Review Group, 1997,
Colls, 2002; Housley and Richards, 2001) has highlighted issues concerning extremal depen-
dence between air pollutants. In particular, the Photochemical Oxidants Review Group (1997)
suggested that the dependence between O3 and some other atmospheric pollutants strengthens
as the level of O3 increases. This is of concern since it is known that O3 has synergistic corrosive
effects in combination with other sulphur- and nitrogen-based pollutants. The adverse health
effects of particulate matter are also believed to be exacerbated by the excessive presence of
other gaseous pollutants.

The gases are recorded in parts per billion, and the particulate matter in micrograms per cubic
metre. The data are available from

http://www.blackwellpublishing.com/rss

We compare data from winter (from November to February inclusively) and early summer (from
April to July inclusively).

Fig. 1 shows the daily maxima of the hourly means of the O3 and NO, variables for each of
these seasons. The highest values of O3 are observed in the summer, as O3 is formed by a series of
reactions that are driven by sunlight (Brimblecombe, 2001). The reactions involve hydrocarbons
and NO;; large values of the latter occur with large O3 values as shown Fig. 1. This positive
dependence between O3 and NOj; in summer is not observed during the winter when the sunlight
is weaker. Dependence between the air pollution variables influences the combinations which
can occur when any one of the pollutants is large. In Section 7 we estimate several functionals
of the extreme values of the joint distribution of the air pollution variables. One such functional
is the probability that these variables occur in an extreme set C C R?, an example of such a set
being shown in the summer data plot of Fig. 1(a). The precise specification of this set is discussed
in Section 7. Pairs of (O3, NO;) could occur in the set that is shown in Fig. 1 by being extreme in
a single component, or by being simultaneously (but possibly less) extreme in both components.
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Fig. 1. Daily maxima of O3 and NO, variables during (a) summer and (b) winter periods, 1994-1998
inclusively: the shaded set in (a) indicates an extreme set C which is split into two subsets C; (N) and
Co ()
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The air pollution problem is a typical example of multivariate extreme value problems, sum-
marized as follows. Consider a continuous vector variable X = (X1, ..., X4) with unknown distri-
bution function F(x). From a sample of n independent and identically distributed observations
from F we wish to estimate functionals of the distribution of X when X is extreme in at least
one component. The methods that are developed in this paper allow any such functional to be
considered. However, to simplify the presentation we shall focus much of our discussion on
estimating Pr(X € C) where C is an extreme set such that for all x € C at least one component of
x is extreme. Typically no observations will have occurred in C. The structure of C motivates the
following natural partition of C into d subsets C = Uf: 1 Ci. Here, C; is that part of C for which
X; is the largest component of X, as measured by the quantiles of the marginal distributions.
Specifically, for eachi=1,...,d, let Fx, denote the marginal distribution of X;; then

Ci=CN{xeR?: Fx,(x;)>Fx,(x)); j=1,....d; j#i}, fori=1,...,d.

We assume that subsets of C of the form CN{x e R?: Fx, (x;) = Fx,(x;) for some i # j} can be
ignored; these are null sets provided that on these subsets there are no singular components
in the dependence structure of X. The partition of C into Cy and C, for (O3, NO,) is shown
in Fig. 1; the curved boundary between the sets is due to the inequality of the two marginal
distributions.

With the partition of C defined in this way, C is an extreme set if all x;-values in a non-empty C;
fall in the upper tail of Fy,, i.e., if vx; = infxec,(x;), then Fx,(vx;) iscloseto 1 fori=1,...,d. So

d d
Pr(XeC)=> PrXeC)=> PrXe(Ci|X;> vx,;) Pr(X; >vy,). (1.1)
i=1 i=1
Consider the estimation of Pr(XeC) by using decomposition (1.1). We need to estimate
Pr(X; >vy,) and Pr(X e C;|X; > vy,), the former requiring a marginal extreme value model
and the latter additionally needing an extreme value model for the dependence structure. We
focus on these two terms in turn.

Methods for marginal extremes are now relatively standard; see Davison and Smith (1990),
Smith (1989) and Dekkers et al. (1989). Univariate extreme value theory provides an asymptotic
justification for the generalized Pareto distribution to be an appropriate model for the distribu-
tion of excesses over a suitably chosen high threshold; see Pickands (1975). Thus, we model the
marginal tail of X; fori=1,...,d by

Pr(Xi>x+qu.|X,->uXi)=(1+§ix/ﬁ,-);l/§[ where x > 0. (1.2)

Here uy, is a high threshold for variable X;, 5; and &; are scale and shape parameters respectively
with ; >0 and s = max(s, 0) for any s € R. We require a model for the complete marginal dis-
tribution Fy, of X; foreachi=1,...,d, since to estimate Pr(X € C;|X; > vy,) we need to describe
all X ;-values that can occur with any large X;. We adopt the semiparametric model Fy, for Fy,
of Coles and Tawn (1991, 1994), i.e.

FX_(X):{1~_{1_FXi(uXi)}{l+§i(x_uX,')/ﬁi}-T—l/Ei fOI')C>MXI-, (13)
' Fx, (x) for x<uy;,,

where F x, 1s the empirical distribution of the X;-values. We denote the upper end point of the
distribution by xf7, which is 0o if & >0 and ux, — 3;/&; if & < 0. Model (1.3) provides the basis
for estimating the Pr(X; > vy,) term of decomposition (1.1).

Both the marginal and the dependence structures of X are needed to determine Pr(X € C;| X; >
vx,). We disentangle these two contributions and focus on the dependence modelling by working
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with margins that are assumed known for much of the following. We transform all the univari-
ate marginal distributions to be of standard Gumbel form by using the probability integral
transform, which for our marginal model (1.3) is

Y;=—log[—log{ Fx,(X)}] fori=1,....d
=u(Xi;;, Fx,)
=1;(X;), (14

where ;= (0;,&) are the marginal parameters. This transformation gives Pr(¥;<y)=
exp{—exp(—y)} for each i, so Pr(¥;>y)~ exp(—y) as y— oo, and ¥; has an exponential
upper tail. To clarify which marginal variable we are using, we use X and Y throughout
to denote the variable with its original marginal distributions and with Gumbel margins
respectively.

We now focus on extremal dependence modelling of variables with Gumbel marginal distri-
butions. Modelling dependence for extreme values is more complex than modelling univariate
extreme values and despite there already being various proposals the methodologies are still
evolving. When interest is in the upper extremes of each component of Y, the dependence
structures fall into two categories: asymptotically dependent and asymptotically independent.
Variable Y_; is termed asymptotically dependent on and asymptotically independent of variable
Y; when the limit

lim {Pr(Y_; >y|¥;>y)}
y—00

is non-zero and zero respectively. Here Y_; denotes the vector Y excluding component Y; and
y a vector of y-values. All the existing methods for multivariate extreme values (outlined in
Section 2) are appropriate for estimating Pr(X € C) under asymptotic dependence of the asso-
ciated Y, or for asymptotically independent variables provided that all x € C are large in all
components.

Fig. 2 shows the winter air pollution data transformed, by using transformations (1.4), to
have identical Gumbel marginal distributions. It is clear from Fig. 2 that the extremal depen-
dence between the NO variable and each of the other variables varies from pair to pair,
with asymptotic dependence a feasible assumption only for (NO, NO;) and (NO, PMjy).
Thus the range of sets for which existing methods can be used to estimate Pr(X e C) is re-
stricted.

We present an approach to multivariate extreme values that constitutes a change of direction
from previous extreme value methods. Our modelling strategy is based on an assumption about
the asymptotic form of the conditional distribution of the variable given that it has an extreme
component, i.e. the distribution of Y_;|¥; = y; as y; becomes large. This conditional approach
provides a natural extension of the univariate conditional generalized Pareto distribution model
(1.2) to the multivariate case as Pr(X € C;| X; > vx,) can be expressed as

xFi
Pr(X e Ci|X; > vy,) =/ Pr(XeCi|X;=x)dFx,(x)/{1 — Fx,(vx,))}, (1.5)

in

where the integrand is evaluated by using the distribution of Y_;|Y; = y; after marginal trans-
formation. When vy, > uy, the derivative of Fx,(x)/{1 — Fx,(vx,)} is the generalized Pareto
density function with scale and shape parameters 3; + &;(vy, —ux,) and & respectively.

Our conditional approach applies whether the variables are asymptotically dependent or
asymptotically independent; it can be used to estimate Pr(Xe C) for any extreme set C,
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Fig. 2. Winter air pollution data transformed to have Gumbel margins by using transformations (1.4)

and it is applicable in any number of dimensions. The model that we use for the conditional
distribution is motivated by an asymptotic distributional assumption and is supported by a
range of theoretical examples. The model is semiparametric; parametric regression is used to
estimate the location and scale parameters of the marginals of the joint conditional distribution
and nonparametric methods are used to estimate the multivariate residual structure. Though
our approach lacks a complete asymptotic characterization of the probabilistic structure, such
as those which underpin existing extreme value methods, we show that strong mathematical
and practical advantages are given by our approach in comparison with existing multivariate
extreme value methods.

Existing methods are presented in Section 2. In Section 3 we state the new asymptotic assump-
tion on which our conditional model is based, present some theoretical examples and draw
links between the proposed and current methods. The examples motivate the modelling strat-
egy that is introduced in Section 4. In Section 5 inference for the model is discussed. The
methods are compared by using simulated data in Section 6. In Section 7 we illustrate the
application of the techniques by analysing the extreme values of the air pollution data. Finally,
in Section 8 we give the detailed working for the theoretical examples that are presented in
Section 3.
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2. Existing methods

We present a brief overview of the current methods for variables with Gumbel marginal dis-
tributions only. The extension to variables with arbitrary marginal distributions is obtained by
incorporating marginal transformation (1.4).

Many multivariate extreme value analyses are based on models which assume implicitly
that in some joint tail region each component of Y is either independent of or asymptoti-
cally dependent on the other components. Approaches which rely on these assumptions in-
clude the models for the multivariate extreme value distribution to describe componentwise
maxima of Tawn (1988, 1990), Joe (1994), Capéraa et al. (1997) and Hall and Tajvidi (2000)
and the multivariate threshold methods of Coles and Tawn (1991, 1994), Joe et al. (1992),
de Haan and Resnick (1993), Sinha (1997), de Haan and de Ronde (1998), Draisma (2000) and
Starica (2000). Ledford and Tawn (1996, 1997, 1998) showed that these multivariate threshold
methods are inappropriate for extrapolation of a variable Y with components that are dependent
but asymptotically independent, when estimation is carried out by using a single selected thresh-
old. Ledford and Tawn (1996, 1997) proposed a bivariate threshold model to overcome this
limitation, which has been explored and developed by Bortot and Tawn (1998), Peng (1999),
Coles et al. (1999), Bortot et al. (2000), Heffernan (2000), Draisma et al. (2003) and Ledford and
Tawn (2003).

Behind all these existing approaches is the assumption of multivariate regular variation in
Fréchet margins. For statistical purposes this asymptotic assumption is taken to hold exactly
over a joint tail region. For Gumbel margins, these modelling assumptions combine to give a
joint distributional model with the property

Pr(Yer+ A)=exp(—t/ny)Pr(Ye A), 2.1)

where 7+ A is a componentwise translation of every element of set A by a scalar >0, A is
a set in which every element is large in all its components and 7y, termed the coefficient of
tail dependence, satisfies 0 <ny < 1. When ny =1 the asymptotic theory behind property (2.1)
extends to any set A in which every element is large in at least one of its components.

Ledford and Tawn (1996) identified four classes of extremal dependence. The first class
is that of asymptotically dependent distributions, for which ny =1. The other three classes
comprise distributions with asymptotically independent dependence structures exhibiting
positive extremal dependence (d~!<ny <1), near extremal independence (ny=d~!) and
negative extremal dependence (0 <7y <d~!) for a d-dimensional variable. These three clas-
ses correspond respectively to joint extremes of Y occurring more often than, approximately
as often as or less often than joint extremes if all components of the variable were inde-
pendent.

Relationship (2.1) forms the basis for the estimation of probabilities of extreme multivariate
events for all the existing methods. Specifically, for an extreme set D, which will typically contain
no observations in a large sample, the approach is to choose a constant >0 and to identify a
set A such that D=r+ A and that A is an extreme set in the joint tail that contains sufficient
observations for the empirical estimate of Pr(Y € A) to be reliable. Thus the choice of ¢ is equiv-
alent to selecting a threshold. Estimates of Pr(Y € D) follow from property (2.1). Estimates of
the parameter ny are obtained by exploiting the property that Pr{min(Y) > y} ~exp(—y/ny)
for y — oo. Estimates of Pr(Y € A), or equivalently Pr(Y +¢ € D), are obtained empirically.

Extrapolation based on relationship (2.1) cannot provide estimates of probabilities for sets
D that are not simultaneously extreme in each component. The reason for this is that, for such
D, the empirical estimate of Pr(Y +¢ € D) is likely to be 0 since the translated data Y +7 are
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unlikely to fallin D. For asymptotically independent variables such sets are of most interest. This
weakness of existing methods illustrates the need for a new approach, as it is due to the inade-
quacy of the asymptotic framework of the existing methods rather than a paucity of available
models within this framework.

3. Theoretical motivation

In this section we present a range of theoretical results which motivate our choice of statis-
tical model. In Section 3.1, we make an assumption about the asymptotic form of the con-
ditional distribution and examine the consequences of this assumption. Then, in Section 3.2,
we identify the conditions that must be satisfied by the normalizing functions underlying this
assumption for the limiting representation to hold. In Section 3.3 we discuss some theoretical
examples which suggest that the asymptotic assumption is appropriate for a wide range of dis-
tributions, and that the class of normalizing functions is narrow, whereas the range of limit
distributions is broad. Finally, in Section 3.4, we draw links between the proposed and existing
methods.

3.1. Assumption of a limit representation and its properties

Consider the asymptotic structure of the conditional distributions arising from a d-dimensional
random variable Y = (Y, ..., Y;) with Gumbel marginal distributions. Foreachi=1,...,d, we
examine the conditional distribution Pr(Y_; <y_;|Y; = y;), where here, and throughout, vector
algebra is applied componentwise. To examine the limiting behaviour of these distributions as
yi = oo we require the limiting distribution to be non-degenerate in all margins, so we must
control the growth of y_; according to the dependence of Y_; on Y;.

Specifically we assume that for a given i there are vector normalizing functions aj;(y;) and
bji(3;), both R— R@=D_ which can be chosen such that, for all fixed z;; and for any sequence
of y;-values such that y; — oo,

Jim [Pr{Y—; <ayi(yi) +bii ()| Yi = yi}1= Gyi(zp), 3.1
where all the margins of the limit distribution G|; are non-degenerate. An alternative expres-
sion of this assumption, which has an easier statistical interpretation, is that the standardized
variables

_Y_i—a(n)

= 3.2
| by (i) G2

have the property that
y_ILmOO{Pr(Z\i<Z\i|Yi=)7i)}=G|i(z\i)s (3.3)

where the limit distribution G|; has non-degenerate marginal distributions.

Under assumption (3.1), or equivalently assumption (3.3), we have that, conditionally on
Y; >u;, as u; — oo the variables ¥; —u; and Zj; are independent in the limit with limiting mar-
ginal distributions being exponential and G);(z);) respectively. To see that this result holds, let
yi=u; +y with y >0 fixed; then
fY,‘ (Mi + y)
Pr(Y; >u;)
— Gi(z);) exp(—y), as u; —> 00, 3.4)

Pr(Z) <z Yi—ui=y|Yi>u)=Pr{Y_;<ajj(u; +y)+bju; +y)z;|Yi=u;+y}
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where fy, is the marginal density function of Y;. The final convergence in this derivation is
implied by the exponential tail of the Gumbel variables and the property that the conditional
limit (3.1) holds irrespectively of how y; — oo.

We now consider the marginal and dependence characteristics of G;(z;;). For each j#i, we
define G jj;(z ;) to be the limiting conditional distribution of

Zjji=——
bji(yi)
where a;j;(y;) and bjj;(y;) are the component functions of a);(y;) and bj;(y;) associated with
variable Y;. Thus G jj; is the marginal distribution of G|; associated with variable Y;. If

Giz)=11Gji(z,
J#i

given Y; =y; as y; — 00,

then we say that the elements of Y_; are mutually asymptotically conditionally independent
given Y;.

3.2. Choice of normalization
We now identify the normalizing functions a|;(y;) and bj;(y;) in terms of characteristics of the
conditional distribution of Y_;|Y;, thus enabling these functions to be identified for theoretical
examples. The normalizing functions and limit distribution are not unique in the sense that,
if the normalizing functions aj; (y;) and bj;(y;) give a non-degenerate limit distribution G;(z);),
using the normalizing functions

a; (vi) =a;;(yi) + Abyi (),
b/% (vi) =Bby; ()

for arbitrary vector constants A and B, with B > 0, gives the non-degenerate limit G|;(Bz; +A).
However, following standard arguments such as used in Leadbetter et al. (1983), page 7, this is
the only way that two different limits with no mass at oo can arise, so the class of limit distribu-
tions is unique up to type, and the normalizing functions can be identified up to the constants
A and B in expression (3.5).

For fixed i, the choice of the vector functions can be broken into d — 1 separate condi-
tions based on the limiting behaviour of ¥;|Y; = y;, for each j#1i, since assumption (3.1) speci-
fies that each marginal distribution of G|; must be non-degenerate. Thus we are interested in
the conditional distribution function of Y;|Y; = y; which is denoted by F};(y;|y;). The associated
conditional hazard function % ; is defined as

Filiyjlyi)
hji(yjlyi) I_Fjli()’jb’i) for o0 <y <00,

where f};(y;|y;) is the conditional density function of ¥;|Y; =y;.

(3.5)

Theorem 1. Suppose that the vector random variable Y has an absolutely continuous joint
density. If, for a given i, the vector functions aj;(y;) and bj;(y;) > 0 satisfy the limiting prop-
erty (3.1), or equivalently property (3.3), then the components of these vector functions
corresponding to variable Y, for each j#1i, satisfy, up to type, properties (3.6) and (3.7):

limoo[Fj|i{aj|i(yi)|yi}]= Pjlis (3.6)

Yi—>
where pj; is a constant in the range (0, 1), and
bji(yi) =hj|i{aj|i(yi)|yi}7l- (3.7
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The proof of theorem 1 is given in Appendix A. Owing to the flexibility in the form of nor-
malizing function given by expression (3.5), a simplification of the structure of the normalizing
functions can be achieved, as illustrated by corollary 1.

Corollary 1.1f functions aj; (y;) and b ; (y;) > 0 satisfy the conditions of theorem 1, and there
is a constant s; < oo such that
i {ajli()’i) } -
yi~>oo | bji(yi)

then limit relationship (3.1) holds with aj;(y;,) =0. Furthermore, if b;;(y;) =t kj;:(y;) for
tji >0 any constant independent of y;, and k;j;(y;) any function of y;, then the limit relation-
ship (3.1) holds with b;(y;) replaced by k ; (y;).

3.3. Theoretical examples

We present the normalizing functions aj;(y) and by;(y), given by theorem 1 and corollary 1,
and some properties of the associated non-degenerate limiting conditional distribution G|; for
a range of multivariate distributions with Gumbel marginal distributions. The examples are
selected to provide a coverage of the four classes of extremal dependence that were identified in
Section 2.

As pairwise dependence determines each of the components of the normalizing functions,
we present the results categorized by the pairwise coefficient of tail dependence for (¥;,Y;),
denoted by 7;;, with 7;; = % indicating near extremal independence for the pair. Table 1 shows
two examples from each of the four classes. The special cases of perfect positive and negative
dependence (cases i and viii respectively) are included here to identify upper and lower bounds
on the behaviour of the normalizing functions, although strictly the methods of Section 3.2

Table 1. Examples of multivariate dependence structures classified by extremal
dependence behaviourt

Extremal dependence Mij Normalization Limit distribution G);
structure

ajii(y) bji(y) Gjji ACTE
11 1 y 1 Degenerate NA
1, i 1 y 1 § No
2, iii (1+pij)/2 pl%y 172 Normal No
2,iv 2-a 0 yl=  Weibull Yes
3,v 0.5 0 1 Gumbel Yes
3, vi 0.5 0 1 Gumbel No
4, vii (I +pijp)/2 —log(piziy) y~ 12 Normal No
4, viil 0 —log(y) 1 Degenerate NA

+1, asymptotic dependence; 2, asymptotic independence with positive association;
3, near independence; 4, negative dependence. The dependence structures are i, perfect
positive dependence, ii, multivariate extreme value distribution, iii, multivariate nor-
mal (p;; > 0), iv, inverted multivariate extreme value distribution with symmetric logistic
dependence structure and parameter 0 < < 1, v, independence, vi, multivariate Mor-
genstern, vii, multivariate normal (p;; <0), and viii, perfect negative dependence.
1ACI, asymptotic conditional independence, which is not applicable (NA) if the variable
is degenerate.

§The limiting distribution is complicated and its exact form is given in Section 8.
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do not apply to these two distributions as, for each, the associated conditional distribution
is degenerate. At this stage, interest is only in the structure of the normalizing functions and
the limiting distributions, so discussion of the precise specification of distributions ii-vii is
postponed until Section 8, where additional examples are presented. Furthermore, as the limit
distribution G|; is often complicated, here we identify only the marginal distribution G j; and
state whether or not the margins of G|; are independent.

The examples that are listed in Table 1, and those given in Section 8, all satisfy the asymp-
totic assumption (3.1), have a simple structure for the normalizing functions and give a range
of limiting distributions G|; that are not contained in any simple distributional family. This
finding about G|; is in contrast with the limiting representation for multivariate extreme value
distributions (de Haan and Resnick, 1977; Resnick, 1987) but is a consequence of the lack of
structure that is imposed on G|; by the limiting operation. The normalizing functions are all
special cases of the parametric family

ai(y) =2y + Ia,—0 b, <0} {€i —djilog(M},

(3.8)

by () = yP
where, on the right-hand side, aj;, bj;, ¢; and dj; are vector constants and [ is an indica-
tor function. The vectors of constants have components such that 0<a;; <1, —oo <bj; <1,
—oco<cji<oo and 0<dj; <1 for all j#i. Parametric family (3.8) has different structural
formulations for a);(y) for positively and negatively associated pairs, owing to the asymme-
try of the Gumbel marginal distribution, for which the upper tail is heavier than the lower
tail.

The construction of the limiting operations that give the normalizing functions and limit dis-
tribution does not ensure continuity in these functions or distributions as the parameters of the
original distribution are changed. Two particular examples illustrate this point as the parameters
of the underlying distributions approach values corresponding to independence. A special case
of distribution ii is the bivariate extreme value distribution with logistic dependence structure,
which is asymptotically dependent when the dependence parameter 0 <a <1 (see Section §
for details). When ao=1 the variables are independent. Consequently the normalization that is
required is discontinuous in v at a = 1. However, as o 1 1 the limit distribution G j; puts all of
its mass increasingly close to —oo, indicating that the location normalization is becoming too
powerful. Similarly, the multivariate normal distribution iii gives G j; as normal with variance
Zp%j(l - pl-zj), so as p;; | 0 the limit is degenerate as the scale normalization becomes too strong.
Similar inconsistencies are found for 7;; (see Heffernan (2000)) and for a range of asymptotically
derived probability models.

We obtained the rate of convergence of each margin of the limiting conditional joint distri-
bution, i.e. the order of convergence to 0 of

Pri{Y;—a;i(v)}/bjii(yi) <zjilYi=yil— G jji(zii) (3.9)

as a function of n, where Pr(Y; > y;) =n~! so that n determines how extreme the conditioning
variable is in a manner that is invariant to the marginal distribution. Thus specified, the rate
of convergence depends only on the underlying dependence structure. Expression (3.9) equals
0 for all z;; for distributions i, v and viii in Table 1; the convergence rate is oY) for distri-
butions ii and vi and O{1/log(n)} for distribution iv whereas for distributions iii and vii it is
O[log{log(n)}/log(n)'/?]. These rates are typical of those that are seen in other extreme value
problems.
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3.4. Links with existing methods

To clarify the connections with existing methods, we examine the limiting conditional distri-
bution under the existing framework for multivariate extreme values. Let A = H?Zl (yi,00), for
fixed large values of each y;, i=1,...,d, in expression (2.1). Differentiating expression (2.1)
with respect to y; and dividing by fy, (y; +1) gives that for all >0

Pr(Y_i>y_ i +t|Y;=yi+0)={1 =60 }exp{—t(l —ny)/ny}Pr(Y_i >y _i[Yi=y), (3.10)

where 6(y;, 1) =1 — exp[—exp(—y;){l —exp(—1)}]— 0 as y; - co. Hence, for large y;, to first
order, expression (3.10) is invariant to changes in ¢ when ny =1, so the limit distribution of
Y_; — Y; is non-degenerate for Y; =y; as y; — oo. This result is identical to the structure that
we find under asymptotic dependence between all the components (a;; =1 and b; =0). Despite
strong connections between the approaches, the statistical model that is developed in Section 4
leads to a new estimator of Pr(X € C) when the variables are asymptotically dependent. When
ny < 1, expression (3.10) shows that the normalization Y_; —Y; leads to a degenerate limit
given Y; =y; as y; — 0o, demonstrating the need for more sophisticated normalizations than
those considered previously.

4. Model structure and properties

In Section 4.1 we present a semiparametric dependence model for describing extreme values
in multivariate problems. This model is presented for variables with univariate marginal Gum-
bel distributions. Combined with our marginal model, described in Section 1, this dependence
model gives a complete joint model for the extreme values of the random variable X. Issues
concerning the self-consistency of the various conditional models are discussed in Section 4.2.
Methods for extrapolation for the X-variable under the joint model are described in Section 4.3.
Finally, in Section 4.4, we propose diagnostics to aid model selection.

4.1. Conditional dependence model

The model structure is motivated by the findings in Section 3. Using the same approach as
in other univariate and multivariate extreme value methods, we take an asymptotic assump-
tion which holds under weak conditions to hold exactly provided that the limiting variable is
sufficiently extreme. Here we use the formulation of the limiting conditional distribution (3.1),
and its implied limiting independence property (3.4), to capture the behaviour of variable Y_;
occurring with large Y;. We assume that for each i=1,...,d there is a high threshold uy, for
which we model

Pr{Y_;<a;(y)+bi(y)z;|Yi=yi} =Pr(Z; <z;|Y;=yi)
=Gi(z)), for all y; > uy,,

where Z; is the standardized residual defined by expression (3.2), with distribution function
Gy, and Z;; is independent of ¥; for ¥; > uy,. The extremal dependence behaviour is then char-
acterized by location and scale functions aj;(y;) and bj;(y;) and the distribution function G|;.
First consider the specification of the individual conditional models, i.e. a);(y;), b};(y;) and
G|i(z;) for a given i. We adopt the parametric model (3.8) as it is a single parametric fam-
ily of normalizing functions which is appropriate for the wide range of theoretical examples
that are shown in Table 1 and Section 8. We denote the parameters of a;(y) and bj;(y) by
0\ = (ay;, by;, ¢);,d;;) and adopt the convention that cjj; =d;;; =0 unless a;; =0 and b;j; <0.
We discuss the estimation of €); in Section 5, denoting the estimator of 8; by 6);, and the
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associated estimators of the normalizing functions by a;;(y) and B|i(y). As the limiting opera-
tion (3.1) imposes no specific structure on G);, we adopt a nonparametric model for G|;. We
estimate this distribution by using the empirical distribution of replicates of the random variable
Z|,-, defined by

/= Y_i—a;(y)
b (i)

The theoretical examples suggest that the Z;; are often asymptotically conditionally indepen-
dent, so if supported by diagnostic tests it may be advisable to model the components of Z|i as
being ipdependent, ie. G| i(Z) =114 G jli(z i), where G jii 1s the empirical distribution function
of the Zjji.

Insummary, fori=1,...,d our dependence model is a multivariate semiparametric regression
model of the form

for Yi=y; > uy..

Y_i=a;(y)+bi(yi)Zj; for Y;=y; >uy,, “4.1)

where a);(y;) and b);(y;) are given by the parametric model (3.8), and the distribution of the
standardized residuals is modelled nonparametrically. The parameters of the overall model
are =(0|1,...,0)y). Each regression model applies only above the threshold uy, for which the
dependence structure is viewed to be well described by model (4.1). There is no necessity for the
dependence threshold uy, (on the Gumbel scale) and the marginal threshold u x, (on the original
scale) to agree in the sense that uy, =t;(ux,), where transformation ¢ is given in equation (1.4).

We categorize the dependence structure that is implied by model (4.1) by using four classes
which identify the behaviour of quantiles of the distribution of Y;|Y;=y; as y; — oo. If the
quantiles of the conditional distribution grow at the same rate as y;, i.e. a;; =1 and bj; =0,
the variables (Y;, Y;) are asymptotically dependent; otherwise they are asymptotically indepen-
dent. For asymptotically independent distributions, the conditional quantiles tend to co, a finite
limit or —oo as y; = oo if (¥;, Y;) exhibit positive extremal dependence, extremal near indepen-
dence or negative extremal dependence respectively. Thus the variables exhibit positive extremal
dependence when at least one of 0 <a;; <1 or b;; >0 holds, extremal near independence when
ajii=d;j;=0and bj;; <0, and negative extremal dependence when a; =0,d;; >0 and bj; <O0.

Though the examples of Section 3.3 illustrate that the limit operations on the parameters of
the original distribution and the conditioning variable cannot be interchanged, we do not see
that this poses any problems in practice for model (4.1). The theoretical examples motivate a sub-
class of the general limiting structure imposed by asymptotic assumption (3.1); the family (3.8)
that we have identified varies smoothly over the four classes of dependence. Furthermore, for
statistical applications the underlying distribution is fixed and so the issue of interchanging
limits does not arise in practice.

Treating the d conditional models separately gives the most general version of our model with
parameter 6 an unconstrained vector of length 4d(d — 1), though, for each ordered pair, cj;
and d}); are only non-zero if there is no positive association. Dependence submodels may be of
interest for identifying scientifically relevant structure in the joint distribution or for parsimony.
For example, there are many multivariate distributions whose dependence structure is exchange-
able in some way. The most common form of exchangeability is pairwise, i.e. ¥; depends on Y;
in the same way as Y; depends on Y;. We say that variables ¥; and Y; exhibit weak pairwise
extremal exchangeability if 0;; =0 ;; and strong pairwise extremal exchangeability if in addition
Gj|j =G )i. In Section 8 we show examples of distributions which exhibit each of these forms of
exchangeability.
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4.2. Self-consistency of separate conditional models

Now consider the self-consistency of the d individual models for the conditional distributions
of Y_;|Y; for each i and large values of thresholds (uy,,...,uy,). Problems of this general type
are discussed by Besag (1974) and Arnold ef al. (1999). As all d conditional distributions are
determined by the joint distribution of Y, there are some theoretical constraints on the possible
combinations of values taken by the parameters € and the distributions G|; for i=1,...,d.
However, as the individual models are applied to different subsets of the support of the joint
distribution, the self-consistency is important only on the intersection of these subsets. Gener-
ally the intersections take the form {y: y; > uy, Vi € J} where J is a subset of at least two elements
of {1,...,d}. First consider the case where J = {i, j}; then self-consistency requires that

d d
e Pr(Y;<yjlYi=yi) fr,(yi) = v Pr(Yi <yilYj=yj) fr;(yj) 4.2)
Yj Vi

where y; =a;ji(yi) +bjji(yi)zj;i and y; = a;|;j(y;) + bijj(y)zi|; for yi >uy, and y; > uy,. In gen-
eral condition (4.2) is too complex to impose. However, unless at least one of a;; =1 and
ajjj=1 holds, condition (4.2) becomes null since Pr{min(Y;,Y;) > u|max(¥;,Y;) >u}— 0 as
u—o00. When a;;=1and b;,=0, as min(uyi,uyj) — 00, condition (4.2) imposes that a;; =1
and b;); =0 and, subject to the appropriate convergence of conditional density results, that

d d

d?Gilj(Z) =exp(_1)&Gj|i(_Z)-
Now suppose that J ={1,...,d} and that all the variables are asymptotically dependent. Self-
consistency then requires that, for all i and j, a; ;=1 and b; ; =0 and that

d
&2 Gi(z) = @GU(Z”) 2= exp(z,ii)
where z”) denotes a (d — 1)-vector with element associated with variable k (k # j) being zx; — 2 i
for k#1i and z;; for k=i. Analogous conditions apply when only a subset of the variables is
asymptotically dependent.

Though we have made progress in characterizing the self-consistency properties for the special
case of asymptotic dependence we have no solution for ensuring self-consistency of the condi-
tional distributions more generally. Our general approach is to estimate the d different condi-
tional distributions separately and not to impose further structure in addition to model (4.1).
The first defence of this approach is that the data arise from a valid joint distribution and so
estimates that are based on the data should not depart greatly from self-consistency. Secondly,
we recommend assessing the effect of using different conditionals to estimate probabilities of
events in which more than one variable is extreme. Averaging estimates over the different con-
ditionals reduces any problems of inconsistency, and in essence this is what our partitioning
of C into Cy,...,Cy ensures. Thirdly, in many applications when submodels are fitted, the
6-component of the model is automatically restricted to be self-consistent. Finally, we might
expect that ensuring self-consistency should improve the general performance of the method.
Contrary to this expectation, in Section 6 we illustrate the use of models which are not self-
consistent and show that imposing self-consistency of the 8-parameters substantially reduces
the performance.

4.3. Extrapolation
We generate random samples from the conditional distributions of X|X; > vy, for each i, using
the estimated conditional models. These samples are used to obtain Monte Carlo approxima-
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tions of functionals of the joint tails of the distribution of X. Since we use the estimated model,
the parameters are replaced by their estimates 6 and v» which are obtained by using methods
described in Section 5. We employ the following sampling algorithm.

Step 1: simulate Y; from a Gumbel distribution conditional on its exceeding #; (vy;).

Step 2: sample Z; from (A}u independently of Y;.

Step 3: obtain Y_; = ﬁ‘,‘(Y,‘) +lA)|,‘(Y,')Z‘,‘.

Step 4: transform Y = (Y_;, Y;) to the original scale by using the inverse of transforma-
tion (1.4).

Step 5: the resulting transformed vector X constitutes a simulated value from the conditional
distribution of X|X; > vy;.

For example, we evaluate Pr(X € C;|X; > vx,) by using a Monte Carlo approximation of inte-
gral (1.5) by repeating steps 1-5 and evaluating Pr(X € C;|X; > vy,) as the long run proportion
of the generated sample that falls in C;. When C is not contained entirely in the joint tail region
on which the dependence component of the conditional model is defined, we first partition C
into Cyx and C\C4 where

Ci={xeCixi<t (uy);i=1,...,d}.

By definition of the uy;, the empirical estimator of Pr(X € Cx) will be reliable. In contrast Pr(X e
C\C+) requires model-based estimation, for which we use the conditional model as follows. We
partition C\Cy into sets C,. .., Cyq as in Section 1. Using this construction, vy, > tfl (uy,) for
alli=1,...,d, and the above approximation can be used to evaluate Pr(X € C;|X; > vy,).

4.4. Diagnostics

The examples in Section 3.3 indicate that the rate of convergence of the conditional distribution
of Y_;|Y; =y, as y— o0, to its limiting form can be slow. However, the limiting form of the
conditional distribution is used only to motivate our model structure and we are not interested
in the true limit values of @; and G|;. What is of practical importance is whether the conditional
distribution of the normalized variable Z; is stable over the range of Y;- (or equivalently X;-)
values that is used for estimation and extrapolation.

This requirement suggests that diagnostics for our model structure should be based on assess-
ing the stability of the extrapolations that are achieved when fitting the model above a range
of thresholds. For marginal estimation, we use diagnostics that are based on the mean resid-
ual life plot and the stability in the marginal shape parameter estimates; see Smith (1989) and
Davison and Smith (1990). For dependence estimation, a fundamental modelling assumption
is that Z; is independent of Y; given Y; > uy,, for a high threshold uy,, for each i. By fitting the
conditional model over a range of high thresholds, the stability of the estimates of 8; and the
resulting extrapolations can be assessed. Then, for a selected threshold, independence of Zj;
and Y; is examined. Furthermore, a range of standard tests for independence can be applied
to the observed Z;; to identify whether the variables can be treated as being asymptotically
conditionally independent.

5. Inference

Our model comprises the marginal distributional model (1.3) and the dependence model (4.1).
Both of these models are semiparametric, consisting of components that are specified paramet-
rically and components for which no parametric model is appropriate. Our strategy for inference
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is driven by three features: a lack of parametrically specified joint distributions for each con-
ditional distribution, the absence of practical constraints to impose self-consistency between
different conditional distributions and a need for simplicity. This leads us to use an algorithm
for point estimation which makes simplifying assumptions and a semiparametric bootstrap
algorithm for evaluating uncertainty which does not rely on these assumptions.

Inference for marginal and dependence structures is undertaken stepwise: first the marginal
parameters 1 are estimated and then the dependence parameters € are estimated assuming
that the marginal parameters are known. Stepwise estimation is much simpler than joint esti-
mation of all the parameters and findings in Shi ez al (1992) suggest that the loss of effi-
ciency relative to joint estimation is likely to be small unless the values of &, i=1,...,d, differ
greatly.

Brief details of the marginal estimation step are given in Section 5.1. Following marginal
estimation, the data are transformed to have Gumbel marginals by using transformations (1.4),
with 1 replaced by their estimates ¢). In Section 5.2 we describe why we use Gaussian estimation
for the normalizing function parameters 6); for each separate conditional distribution under the
assumption that there are no constraints between 6|; and 6,; for any i and ;. The fitting of sub-
models requires the joint estimation of all the conditional model parameters €. In Section 5.3 we
discuss an approach for this joint estimation which has similarities to the pseudolikelihood of
Besag (1975). In Section 5.4 we present techniques for evaluating the uncertainty in estimation
for the overall model and the resulting extrapolations. Throughout, we assume that the data are
realizations of independent and identically distributed random variables X, ..., X,.

5.1. Marginal estimation

We estimate the d univariate marginal distributions jointly, ignoring the dependence between
components. Specifically, we assume independence between components of the variable in con-
structing the log-likelihood function

Muy;

d
log{L(¥)}= Zl kZI log{ fx, (xijix) } (5.1
i=1 k=

where f x; 18 the density that is associated with distribution (1.3), ny,. is the number of observa-
tions with ith component exceeding the marginal threshold uy, and the jth component of the
kth such observation is denoted by xj; x: j=1,...,d; k=1,..., iy, If there are no functional
links between the parameters of the various components then maximizing log-likelihood (5.1)
is equivalent to fitting the generalized Pareto distribution to the excesses over the marginal
thresholds separately for each margin. When there are constraints between marginal par-
ameters, jointly maximizing the log-likelihood function (5.1) enables inferential efficiency to
be gained.

5.2. Single conditional

For each i, we wish to estimate 6); under minimal assumptions about Gy;. If we assume that
Z,; has two finite marginal moments, then 6); determines the marginal means and variances of
the conditional variable Y_;|Y; = y; when y; > uy,. Specifically, if the Z; have marginal means
and standard deviations denoted by vectors p; and o; respectively, then the random variables
Y_;|Y; =y, for y>uy,, have vector mean and standard deviation respectively given by

Hi () =a5i(y) + py; bji(y),
oi(y) =0 b;(y),
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which are functions of y, 8); and of the constants A; = (> 0))- Thus (8);, A|;) are the parameters
of a multivariate regression model with non-constant variance and unspecified error distribu-
tion. We exploit the consistency of maximum likelihood estimates of 8); achieved by using a
parametric model for G|; which is liable to be misspecified. Specifically, we maximize the asso-
ciated objective function over the parameter space to produce a consistent and valid point
estimator for @);. For a general discussion of this approach see Hand and Crowder (1996), chap-
ter 7. The parametric model for G|; is chosen for convenience and computational simplicity. We
take the components of Z; to be mutually independent and Gaussian and hence our inference
for 6); is based on Gaussian estimation (Hand and Crowder, 1996; Crowder, 2001). The indepen-
dence simplification appears reasonable as 6; determines only the marginal characteristics of
the conditional distribution. We considered a range of parametric distributions for the marginals
of Z,; and selected the Gaussian distribution for its simplicity, superior performance in a simu-
lation study and links to generalized estimating equations that arise from this choice of model
for G\,‘.
Therefore, the objective function that we use for point estimation of 8|; and \; is

" 1 yiioe = i) |
Qi@ A== > 10g{0’j|i(yi|i,k)}+{yll’kuu].l. — } } (.2)
J#i k=1 2 UJ|z()’z|z,k)

where the notation follows the conventions that are adopted in Section 3 and for log-likeli-
hood (5.1). We maximize Q); jointly with respect to 8); and A|; to obtain our point estimate é\,-,
with A|; being nuisance parameters. To overcome the structural discontinuity in a;;(y), we fit the
dependence model in two stages: first fixing c¢;j; =d;jj; =0; then only estimating c;; and djj; if
&j|i=0 and bj‘,' <0.

5.3. All conditionals

We now consider joint estimation of the conditional model parameters 6. For reasons that are
similar to those discussed in Section 5.2, we falsely assume independence between different
conditional distributions to give the objective function

d
Q0,0 => 010, \i), (5.3)
i=1
where Q);(0);, A is as in expression (5.2) and A= (\1,..., Ajg). For Gaussian error distri-

butions it can be shown that objective function (5.3) is an approximation to the pseudolike-
lihood, which Besag (1975) introduced as an approximation to the joint likelihood function.
The approximation of equation (5.3) to the pseudolikelihood follows from Bayes’s theorem and
the property that the marginal density of Y_; and the conditional density of Y_;|Y; = y; when
yi <uy, influence the shape of the pseudolikelihood negligibly. Further, if the variables are all
mutually asymptotically independent then, for sufficiently large thresholds uy,, each datum will
exceed at most one threshold so the independence assumption underlying the construction of
objective function (5.3) will be satisfied.

5.4. Uncertainty

Uncertainty arises from the estimation of the semiparametric marginal models, the paramet-
ric normalization functions of the conditional dependence structure and the nonparametric
models of the distributions of the standardized residuals. To account for all these sources of
uncertainty, we use standard semiparametric bootstrap methods to evaluate standard errors of
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model parameter estimates and of other estimated parameters such as Pr(X € C) (see Davison
and Hinkley (1997)). Throughout we assume that the marginal and dependence thresholds are
fixed and so the uncertainty that is linked to threshold selection is not accounted for by the
bootstrap methods.

Our bootstrap procedure has three stages: data generation under the fitted model, estima-
tion of model parameters and the derivation of an estimate of any derived parameters linked
to extrapolation. These stages are repeated independently to generate independent bootstrap
estimates. The novel aspect of our algorithm is the data generation. To ensure that the boot-
strap samples that are obtained replicate both the marginal and the dependence features of
the data, we use a two-step sampling algorithm for data generation. A nonparametric boot-
strap is employed first, ensuring the preservation of the dependence structure; then a paramet-
ric step is carried out so that uncertainty in the estimation of the parametric models for the
marginal tails can be assessed. The precise procedure is as follows. The original data are first
transformed to have Gumbel margins, using the marginal model (1.3) which is estimated by
using these original data. A nonparametric bootstrap sample is then obtained by sampling with
replacement from the transformed data. We then change the marginal values of this bootstrap
sample, ensuring that the marginal distributions are all Gumbel and preserving the associ-
ations between the ranked points in each component. Specifically, for each i, i=1,...,d, we
replace the ordered sample of component ¥; with an ordered sample of the same size from the
standard Gumbel distribution. The resulting sample is then transformed back to the original
margins by using the marginal model that was estimated from the original data. The data that
are generated by using this approach have univariate marginal distributions with upper tails
simulated from the fitted generalized Pareto model and dependence structure entirely consis-
tent with the data as determined by the associations between the ranks of the components of
the variables.

6. Simulation study

Throughout this section we use simulated data with known Gumbel margins to illustrate the
application of the methods proposed. In Section 6.1 we present a detailed analysis of a single
data set to highlight inference and extrapolation issues. Section 6.2 reports results of simulation
studies comparing the performance of the existing and conditional methods for bivariate and
multivariate replicated data sets. To allow a comparison with existing methods, we consider only
positively dependent variables and hence work with the submodel aj;(y) =aj;y with 0 <a;; <1.
We focus on return level estimation. Specifically, when the multivariate set C is described by a
single parameter v say, i.e. C = C(v), then the return level v, for an event with probability p is
defined implicitly by

Pr{YeC(v,)}=p. 6.1)

We assess the performance of an estimator v, of v, by using the relative error (3, —vp)/v,.

6.1. Simulated case-study

We analyse the simulated data set of 5000 points shown in Fig. 3. The underlying distribution
is the bivariate extreme value distribution with asymmetric logistic dependence structure;
see Section 8.1 and Tawn (1988, 1990) for details. The parameters of this distribution are
91,{1} =1- 91,{1’2} =0.1, 92,{2} =1- 02’{1’2} =0.75 and O[{l’z} 202, so the hmltlng param-
eters for the conditional distributions are ay;; =ajj2 =1 and by} =b1p =0. The simulated data
have a complicated structure as, for large Y1, variable Y> behaves as though it were asymptotically
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Fig. 3. Observations from the bivariate extreme value distribution with asymmetric logistic dependence
structure (e) and pseudosamples (o) generated under the asymmetric model above a threshold (}, ------- )

(z?zl1 =0.97, é1|2 =0.11, b,y =0.40 and b1|2= 0.78) and sets C; ()

dependent on Y| but, for large Y», Y| arises from a mixture distribution with one component
that is independent of Y> and the other asymptotically dependent on Y». As the normalization
stabilizes the growth of the asymptotically dependent component only, the limiting distribution
of Y1|Y> has substantial mass at —oo, corresponding to the independent component of the mix-
ture distribution. At finite levels the independent points are likely to contaminate the parameter
estimates of any asymptotically motivated model. Although the limiting values for the nor-
malization parameters are symmetric, the clear asymmetry in the data suggests that we should
compare two models: one with weak pairwise exchangeability (as)1 =a1)2 and by =b1)2) and
the other relaxing this assumption to allow for any form of asymmetry. Both models are fitted
by using objective function (5.3) and thresholds corresponding to the 0.9 marginal quantiles.

Diagnostic procedures that are outlined in Section 4.4 aid model selection. Fig. 4 shows scat-
terplots of residuals 22“ for large Y; for each of the models proposed. Fig. 4(a) shows that
the estimated distribution of 22\1 has a trend in mean value with Y; for the weak pairwise
exchangeable model, whereas this trend is much diminished in Fig. 4(b), which shows residuals
from the fitted asymmetric conditional model. Equivalent plots for Z 112 (not shown) indicate
approximate independence of these residuals and Y, for both models.

Fig. 3 shows the pseudosamples that are obtained by using the fitted asymmetric condi-
tional model with Fig. 3(a) and Fig. 3(b) showing the samples that are obtained conditioning
on Y and Y, respectively, and revealing the different forms of the conditional distributions.
For set C(v) = (v, 00)?, Fig. 3 shows C; and C». Empirical estimates of Pr(Y € C;|Y; > v) are
obtained as the proportion of the respective pseudosamples falling in these sets; Pr(Y € C) is
then estimated by using decomposition (1.1). We investigated the effect of inconsistencies of
the conditional models for Y|¥; and Y;|Y> on the estimation of Pr(Y € C) by comparing
approaches using pseudosamples generated under the following models: Y|Y; only, Y;|Y; only
and the intermediate approach based on decomposition (1.1). Despite the very different forms
of the two conditional distributions, the differences between the three estimates are small relative
to the uncertainties in estimation.
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Fig.4. Diagnostic plots for data from the bivariate extreme value distribution with asymmetric logistic depen-
dence structure—scatterplots of residuals Z,,; against the conditioning variable Y;, after transforming Y; to
uniform margins: (a) residuals from fitting the lWeakly pairwise exchangeable model; (b) residuals from fitting
the asymmetric conditional model

6.2. Multivariate examples
We consider the following four distributions, all with standard Gumbel margins:

(a) a multivariate extreme value distribution with symmetric logistic dependence structure
(8.4) and parameter a=0.5 (distribution A);

(b) abivariate extreme value distribution with asymmetric logistic dependence structure (8.5)
with parameters given in Section 6.1 (distribution B);

(¢) an inverted multivariate extreme value distribution with symmetric logistic dependence
structure (8.4) with parameter a, for which 7);; for any pair of variables is 27 (distribu-
tion C);

(d) a bivariate normal distribution with correlation coefficient p; ;, for which 7; ;= (1 + p;;)/2
(distribution D).

Section 8 shows the theoretical derivation of extremal properties of these distributions. Distribu-
tions A and B are asymptotically dependent whereas distributions C and D are asymptotically
independent. We select the parameters of distributions C and D so that 1; ; =0.75 for all bivariate
pairs. For each distribution we simulated 200 replicate data sets each of size 5000. We applied
a range of existing and conditional methods, selecting thresholds so that 10% of each data set
was used for estimation by each method. We compare the performance of the methods for a
range of forms of extreme event. Preliminary studies showed that the relative errors varied little
with p and so we show results for p=10"%,107%, 103 only.

6.2.1. Simultaneously extreme bivariate events

Table 2 shows the median, 2.5 and 97.5 percentiles of the estimated sampling distribution of
the relative errors of v, when C(v) = (v, 00)2. First consider distributions A and B for which the
existing method based on property (2.1) with gy = 1 is asymptotically the correct form of model.
The existing method with 7y = | has small relative errors centred on zero for distribution A, but
for distribution B the method overestimates by a small but significant amount. The conditional
method and the existing method with estimated ny are unbiased but have variable relative errors
for distribution A. For distribution B the conditional model with weak pairwise exchangeability
significantly underestimates whereas the existing method with ny estimated and the asymmet-
ric conditional model are equally variable and unbiased. For the asymptotically independent
distributions C and D, the estimators perform differently from one another but similarly over
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Table 2. Median (and 2.5 and 97.5 percentiles) of the estimated sampling distribution of relative errors of
vp for simultaneously extreme bivariate eventst

Distribution Method Medians (and 2.5 and 97.5 percentiles) (x 100) for the
following values of p:
p=10"* p=10"° p=10""8
A Existing, ny = 1 ~0.1 (~1.0,0.8) ~0.1(=0.7,0.5) ~0.0 (—0.5,0.4)
Existing, 7y —0.8 (—15.0,0.6) —0.8 (—=16.0,0.4) —0.6 (—17.0,0.3)
Conditional (weak —1.4 (—4.0,0.8) —1.6 (—4.1,0.5) —1.6 (—5.0,0.4)
pairwise exchangeability)
B Existing, ny =1 4.6 (3.7,5.6) 3.0(2.4,3.6) 2.1(1.7,2.5)
Existing, 7y —1.0 (—14.0,5.3) —2.9 (-17.0,3.4) —3.9 (-19.0,2.4)
Conditional (weak —15.0 (—21.0,-8.8)  —14.0(-21.0,—7.4)  —12.0 (-19.0, —6.3)
pairwise exchangeability)
Conditional (asymmetry) —4.0 (-12.0,4.2) —5.7 (—=15.0,0.5) —6.1 (-17.0,0.0)
C Existing, ny =1 23.0 (22.0,24.0) 26.0 (26.0,28.0) 29.0 (28.0,29.0)
Existing, 7y —0.6 (—16.0, 14.0) —0.1 (-18.0,17.0) 0.2 (—18.0, 18.0)
Conditional (weak —0.6 (—8.6,5.3) 0.6 (—13.0,8.2) 0.8 (-18.0,9.8)
pairwise exchangeability)
D Existing, ny =1 28.0 (27.0,29.0) 31.0 (30.0, 32.0) 32.0 (32.0,33.0)

Existing, 7y
Conditional (weak

—1.9 (-15.0,14.0)
—0.6 (—=10.0,7.3)

~1.9 (~17.0, 16.0)
—0.1 (=15.0,9.2)

—2.2(-18.0,17.0)
—0.1 (-25.0,12.0)

pairwise exchangeability)

1The four distributions are listed in Section 6.2. The true return levels are, for distribution A, v, =8.6, 13.0, 17.9,
for distribution B, vp = 7.8, 12 4, 17 0, for distribution C, v, =6.5, 9.7, 13.2, and, for distribution D vy, =6.9,
10.2, 13.8, for p=10"%,107°, 10_ respectively. Four methods of estimation are used: the existing method with
ny =1 and with ny estlmdted and the conditional method with weak pairwise exchangeability and asymmetry.

distributions. The existing method with ny = 1 grossly overestimates. The other two methods are
unbiased with the conditional approach generally having less variability. In Section 3.3 we noted
a discontinuity in the normalizing parameters as independence is approached. We extended the
above simulation study to assess the performance of the methods as these discontinuities are
approached. For distributions A and C, as « 1 1, all methods perform similarly to the behaviour
shown in Table 2 with a small bias observed for the ny =1 approach, and both of the other
two methods being unbiased with similar variances. In summary, these results suggest that the
general performance of the conditional method is good but that, when asymmetry is present,
the diagnostic procedures of Section 6.1 are vital for model selection.

6.2.2.  Non-simultaneously extreme bivariate events

Now consider estimating quantiles of the distribution of Y,|Y] >r for a given r, i.e. for a
given g we estimate v satisfying Pr(Y, <v|Y| >r)=¢q. Equivalently, we wish to estimate v
where C(v) = (r,00) x (—o0,v), and Pr(Y; >r) = p/q where p and q are given. Table 3 shows
summary characteristics of the sampling distribution of the relative error of the conditional
method for combinations of p and ¢. For p=10"* and ¢=0.2,0.5,0.8 the respective true
values of r=7.6,8.5,9.0, and the corresponding values for v are 6.7, 8.8 and 10.5 for distribu-
tion A, 6.2, 7.8 and 9.8 for distribution B, 2.5, 4.4 and 6.7 for distribution C, and 2.1, 3.6 and
5.7 for distribution D. This illustrates that if ¢ <1 and the variables are asymptotically inde-
pendent the existing methods are inappropriate for estimating v as all elements of C(v) are not
simultaneously extreme in each component. For each distribution, the estimators based on the
conditional approach have a larger variance than in Table 2, with the variability increasing as
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Table 3. Median (and 2.5 and 97.5 percentiles) of the estimated sampling distribution of relative errors of
vp for non-simultaneously extreme bivariate eventst

Distribution (method) q Medians (and 2.5 and 97.5 percentiles) (x 100) for the
following values of p:

p=10"* p=10""° p=10""8
A (weak pairwise exchangeability) 0.2 =3.1(-13,2.7 —4.7 (-15,1.6) —5.1 (-16,1.0)
0.5 -2.0(-9.4,1.2) —2.5(-11,0.8) —2.6 (—12,0.5)
0.8 —0.8 (—6.7,3.8) —0.9 (-7.8,3.5) -1.0(=9.2,2.9)
B (asymmetry) 0.2 —15(-36,0.7) —17 (—43,-1.1) —16 (—47,-2.0)
0.5 —11(=25,-0.9) —12 (=29,-1.9) —12(=32,-2.2)
0.8 —8.4 (—19,-0.3) -9.1 (=21,-1.6) —9.2 (=23, -1.6)
C (weak pairwise exchangeability) 0.2 6.7 (—17,35) 16 (—18, 58) 25 (—19,81)
0.5 3.1 (-15,23) 7.9 (—17,36) 13 (—19,51)
0.8 0.5 (~18,22) 2.6 (=21,32) 5.5 (=20, 42)
D (weak pairwise exchangeability) 0.2 —4.4(-37,22) 8.5 (—34,45) 17 (—32, 60)
0.5 —1.5(=22,22) 4.4 (-23,35) 6.3 (=27,44)
0.8 1.3 (=25,27) ~0.7 (=27,33) 0.2 (=29, 41)

1The four distributions are listed in Section 6.2. The conditional method is used with weak pairwise exchange-
ability or asymmetry.

q is decreased. Only for long-range extrapolations for distribution B is there a significant bias,
but even this is small. The relative errors are much the smallest for distribution A and grow as
we extrapolate for distributions C and D.

6.2.3.  Multivariate events

To illustrate the performance of the conditional method in higher dimensional problems, we
consider the estimation of v when C(v) ={y e R’: El.szl yi > v} for distributions A and C. For
such sets, values of all the variables are equally influential and the set comprises regions of both
simultaneous and non-simultaneous extreme values of the components. Distribution A exhibits
asymptotic dependence without being asymptotically conditionally independent, whereas distri-
bution C is asymptotically independent and asymptotically conditionally independent. Because
of the symmetry of both dependence structures, in each case we fitted a model with a; =a and
bjji=>bforalliand j. The limit values of (a, b) for distributions A and C are (1, 0) and (0, 0.585)
respectively. We examined the observed components of the standardized residuals Zj; for each
Y; > uy, to see whether asymptotic conditional independence was a reasonable assumption. Our
findings agreed with the limiting properties, so we proceed to estimate v, assuming asymptotic
conditional independence for distribution C only. For distribution A we find that the median
(and 2.5 and 97.5 percentiles) (x100) of the estimated sampling distribution of relative errors
of v, are 4.4 (1.7,7.6) and 1.8 (—4.5,6.8) for p= 1074 and p= 10-° respectively. The same
quantities for distribution C are 0.1 (—6.6,4.9) and —0.1 (—10.0, 7.4). The estimates are close
to the true values with increasing variability in relative error for longer-range extrapolation.

7. Air quality monitoring application

We now analyse the extremes of the five-dimensional air pollutant variable that was presented
in Section 1. The primary aim of this analysis is to study the underlying extremal dependence
structure of the variables. By identifying this structure we can assess whether the relationships
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between the extreme values of these variables conform with scientific understanding of the pro-
duction of and interaction between the pollutants and the climatic factor represented by season.
We measure the extremal dependence by estimating the individual model parameters and by
examining functionals of extremes of the joint distribution.

First we select the data to be analysed. The pollutants exhibit regular seasonal variation, which
we account for by focusing separately on two periods: winter (from November to February inclu-
sively) and early summer (from April to July inclusively) and treating the joint distribution of
the pollutants as stationary in each period. This proposal is supported by empirical evidence
and by knowledge of the seasonal behaviour of the variable (Photochemical Oxidants Review
Group, 1997). The measurements follow a diurnal cycle and exhibit marked short-term depen-
dence. By focusing on componentwise daily maxima of hourly means we remove this short-term
non-stationarity and substantially reduce temporal dependence. The residual serial dependence
is due, among other things, to short-term persistence of local atmospheric pressure systems.
We do not attempt to take this temporal dependence into account in this analysis. The data set
contains some large values on or around November 5th each year (fireworks night), which were
removed for the subsequent analysis. An exploratory analysis also revealed six data points with
excessive PM g-values (in excess of 200 ;g m—>) during April 1997 and three winter points with
unusually large values of some functionals of (NO;, SO,, PM1g). We performed the modelling
and inference stages of the following analysis including and excluding these large points, to
assess the sensitivity to their presence. The estimated dependence structures were not affected
by the removal of these outliers; however, marginal estimates were more physically self-consis-
tent when the points were left out. We report the analysis that was undertaken with the outliers
excluded; these outliers are omitted from the data plots in Figs 1 and 2.

We fit the marginal model (1.3), for each component and for each season. Table 4 shows
the resulting values of the threshold uy,, the threshold non-exceedance probability F x; (ux,),
the estimated generalized Pareto distribution parameters /3; and &;, and the estimated marginal
0.99 quantiles £;(0.99) = Fy, X; (() 99) for each component and each season. The values of x;(0.99)
highlight differences in the margmal distributions of separate components within each season

Table 4. Summary of generalized Pareto models fitted to the marginal distributions of the air pollution datat

Season Parameter Results for the following pollutants.
03 NOy NO SO, PMo

Summer ux; 43.0 66.1 43.0 22.0 46.0

Fx, (ux;) 0.9 0.7 0.7 0.85 0.7

B; 15.8(3.1) 9.1(1.0) 32.2(3.5) 42.9 (7.0) 22.8 (2.5)

& —0.29 (0.14) 0.01 (0.08) 0.02 (0.07) 0.08 (0.12) 0.02 (0.08)

%i(0.99) 70 (2) 75 (3) 180 (10) 152 (16) 127 (8)
Winter ux; 28.0 151.6 49.0 23.0 53.0

FX (ux;) 0.7 0.7 0.7 0.7 0.7

B; 6.2(0.7) 9.3(0.9) 117.4 (13.1) 19.7(2.4) 37.54.2)

¢ —0.37(0.06)  —0.03(0.08)  —0.09 (0.08) 0.11(0.09)  —0.20 (0.07)

%i(0.99) 40 (1) 80 (3) 494 (30) 104 (10) 145 (6)

{Thresholds used for marginal modelling are denoted uy;; the associated non-exceedance probabilities are
Fx, (ux;); estimated scale ﬂ, and shape ¢; parameters; estimated 0.99 quantiles x;(0.99). Bootstrap-based stand-
ard errors are given in parentheses.
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and of the same component over seasons, with O3 and NO exhibiting the largest statistically
significant variation over seasons. Though & differ over components, the stability of the
&i-values for each component over season suggests that seasonality primarily affects the variance
of the components rather than the shape of their distributions.

Let us now consider the dependence model, applied to the data after transformation to Gum-
bel margins by using transformation (1.4). We model each season separately, initially consid-
ering the most general model consisting of a set of five conditional models with no constraints
between the different conditional distributions, so @ consists of 80 unconstrained dependence
parameters.

The first modelling choice to be made is that of the dependence threshold to be used to fit
the conditional model (4.1). For simplicity we restrict the search for the dependence thresholds
to values of uy, =u for all i. Of the diagnostics that are discussed in Section 4.4, we found that
those assessing the stability of the -values and the independence tests were the most revealing
in this application. A dependence threshold u such that Pr(¥; <u)=0.7 was supported by the
diagnostics, although there appeared to be limited sensitivity to this choice. The resulting (a;, IA)\ i)
values, and the sampling distributions of pairs (aj;, b ;i) for all i # j, are shown for the summer
and winter seasons in Fig. 5. In particular, the pairwise sampling distributions are shown by
the convex hull of 100 bootstrap realizations from the sampling distribution of 6. Plots of this
type were used to assess the stability of @ to the choice of threshold. Significant shifts in the
region that is encompassed by the convex hull indicate sensitivity of parameter estimates to the
choice of threshold. An appropriate threshold should have the property that raising the thresh-
old higher does not result in any significant shifts once the increased variability of estimates
made by using higher thresholds is accounted for. The minimum such appropriate threshold is
selected for efficiency purposes.

Having decided on a dependence threshold, we consider possible simplifications to the esti-
mated dependence structure. From Fig. 5 and plots of the data with Gumbel marginals (Fig. 2),
it is clear that there are significant differences in levels of extremal dependence between different
pairs of variables. Fig. 5 shows that, for each season, there are pairs of variables for which the
bivariate sampling distributions of (d;;, 131-‘ ;) and (4 j‘i,fa ;1) differ significantly, as the convex
hulls do not intersect. For example, Fig. 5 shows that in summer (PM g, O3) and (SO,, NO) and
in winter (SO>, NO;) and (SO;, NO) do not exhibit weak pairwise exchangeability. This finding
indicates that a global weakly pairwise exchangeable dependence structure is inappropriate for
these data, a conclusion which is supported in the winter period by a complete lack of stability
in 6 over all dependence threshold choices for the global weakly pairwise exchangeable model.
Though for some pairs of pollutants there is no evidence to reject weak pairwise exchangeabil-
ity, in the absence of more detailed knowledge about the process we do not attempt to identify
subsets of pairs for which we may assume a simplified pairwise dependence model. Finally,
we consider whether the Z; are independent for any i, i.e. whether we can assume asymptotic
conditional independence between the margins of the residual distribution G|;. Scatterplots
of pairs of components of Z; for each i confirm that this assumption is inappropriate. Test-
ing for asymptotic conditional independence between pairs of variables revealed that, for the
summer data, SO; and O3 are asymptotically conditionally independent given any other vari-
able, although these two variables are not unconditionally independent. The same conclusion
can be drawn for winter NO; and O3 levels.

Fig. 5 also shows substantial differences between the dependence parameter estimates that are
obtained for the summer and winter data sets. All pairs which have O3 as one component exhibit
stronger dependence in the summer period than in the winter period, whereas for other pairs
the dependence is either of similar strength or weaker in summer than in winter. The strongest
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Fig. 5. Comparison of dependence parameter estimates ( ) for ( NO2, 03), (b) (NO, Os3), (c)
(SOy, Og). (d) (PMyo, O3), (€) (NO, NOy), (f) (SO,, NOy), PPlvfm, Noz ) (50, NO), (i) (PMyq, NO)
and (j) (PM4q, SO,), using a dependence threshold equal to the 70% margmal quantile: for / and ; in the
same order as the variables in the descriptor for each pa[t of the figure, bootstrap convex hulls were used
for (2 , summer; , winter) and for (& i /I/)( ------- , summer; ------- , winter) (associated
pomt gstlnlfates S, summer w, winter)

dependence between any pair occurs in the winter between all the pairs of the triple (NO, NO,,
PM;g), with reasonable evidence that these variables are asymptotically dependent. No other
pairs of variables exhibit asymptotic dependence in either season.

For non-positively associated variables, estimates of (¢ jj;, d ;) (not shown) reveal the degree of
dependence. In the summer, the only such conditional distribution is that of NO given extreme
SO,, although with the conditioning reversed these variables are clearly positively dependent.
In winter, SO, and PM g are both negatively dependent on high O3 values, whereas NO; and
NO appear to be independent of O3 when O3 is extreme. Conversely, in winter O3 is negatively
associated with extreme NO»,, NO and SO». Negative dependence is also identified for all winter
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Fig. 5 (continued)

variables given that SO, is extreme, with the exception of PM ¢ which appears to be independent
of extreme SO,.

These findings are consistent with the current understanding of urban pollution patterns.
In winter, air pollution episodes typically occur when cold, stable weather conditions trap
pollutants, allowing levels to build. Since the majority of such pollution derives from vehicle
emissions, winter episodes consist of simultaneously elevated levels of nitrogen and sulphur
compounds and particulate matter. Conversely, since the production of excessive O3 needs
strong sunlight, O3 levels generally remain at relatively low levels during the winter months
regardless of the presence of other pollutants. In the absence of strong sunlight, O3 levels are
negatively associated with high presences of nitrogen compounds as O3 reacts destructively with
NO. The stronger dependence that is observed between O3z and the other variables during the
summer supports the existing understanding of the photochemical processes that produce exces-
sive O3 levels during summer smog. Temperature inversions and low winds that accompany high
pressure systems trap vehicle emissions, which are then exposed to long hours of sunshine. Thus
high levels of O3 accompany elevated levels of the other pollutants (Photochemical Oxidants
Review Group, 1997; Colls, 2002; Housley and Richards, 2001).

To illustrate the implications of both the different levels of dependence between the pairs
and the different marginal distributions, in Fig. 6 we show pseudosamples, on the measured
scale, from the conditional distribution of the remaining variables given that NO exceeds a
high threshold. On each pairwise plot the curve corresponds to equal marginal quantiles. The
near asymptotic dependence of both NO; and PM1g on NO is clearly seen by the grouping of
simulated points around this curve. The NO; points are more scattered than the PM( points
for large NO values as i)j‘l' are positive and negative respectively. Similarly, O3 is seen to be
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Fig. 6. Simulated winter air pollution points conditional on the NO component exceeding Vx;, the 0.99 mar-
ginal quantile of this variable: |, threshold vy, (points below and above this threshold are the original data and
data simulated under the fitted model respéctively); +, points that do not fall in the set C5(23); o, points that
fall in the set €5(23); O, 10 points with the largest values of E?=1y/: ———, equal marginal quantiles

negatively dependent on NO whereas SO is dependent but asymptotically independent of NO.
The effect of the negative b jli for SO2|NO is the increasing concentration of this conditional
distribution for larger NO values.

We now focus on estimating a range of functionals of the joint tails of X. Coles and Tawn
(1994) discussed several benefits of the multivariate approach (the joint probability method)
over the univariate approach (the structure variable method). We see the major advantage of
the former being the self-consistency of the resulting estimates of any such functionals; this
is particularly important here where we illustrate a range of functionals for which no single
structure variable approach could have been used.
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Table 5. Empirical and model-based estimates of conditional expectations of the air pollution
variables given values of NO in excess of a range of quantiles of that variablet

X; Season E(X ), empirical E{X;|X;>x;(0.95)} E{X;|X;>xi(0.99)},
model based

Empirical Model based

0; Winter 20.0 (0.5) 8.8 (1.4) 10.3 (1.1) 8.3(1.2)
Summer 32.0(0.4) 35.9 (3.0 34.4 (2.4) 39.6 (4.3)
NO,  Winter 44.2(0.5) 67.2 (2.5) 65.1(2.2) 75.4 (4.4)
Summer 37.6 (0.5) 57.5(2.6) 54.6 (2.4) 62.2(4.3)
NO  Winter 135.5 (4.4) 454.0 (13.0)  431.5(23.2) 569.9 (45.2)
Summer 55.2(1.5) 161.2(72)  157.6(8.2) 213.5(17.5)
SO,  Winter 21.0 (0.9) 38.4(3.7) 35.6 (4.0) 44.6 (6.7)
Summer 17.4 (1.2) 36.6(11.3)  36.9(5.4) 48.5(11.8)
PM;, Winter 48.4(1.2) 105.8(52)  105.0 (4.7) 132.3 (8.2)
Summer 41.1(1.0) 72.9 (5.2) 66.3 (4.5) 83.7(7.9)

tStandard errors are given in parentheses. Variable X; is NO throughout.

We first turn to the estimation of the conditional expectation of each component given that
NO exceeds a particular level. These estimates reflect both the marginal and the dependence
features of the air pollution variables. Fig. 6 shows pseudosamples from the conditional distri-
bution of each variable given that NO exceeds its 0.99 marginal quantile. Table 5 shows esti-
mated expectations for each variable conditional on the NO level exceeding various thresholds.
When we condition on NO exceeding its 0.95 quantile, empirical estimates of this functional
are sufficiently reliable to be compared with the model-based estimates and these are seen to be
consistent. Conditional expectations of each variable increase as we move to higher quantiles
of NO, with the exception of winter O3, the only variable to exhibit negative association with
large NO values.

We now concentrate on the estimation of return levels of linear combinations of variables on
the Gumbel marginal scale. This choice of functional is made to emphasize the effect of depen-
dence on extreme combinations. We focus on subvectors of Y of size m=2,...,d, indexed
by M c{l,...,d} with associated multidimensional sets C" (v) ={y € R" : E;c pmy;i > v} and
we report estimated return levels v, as defined in equation (6.1). This choice of set allows an
exploration of extremal dependence in parts of the space in which not all the variables are simul-
taneously extreme. To gain insight about combinations of the pollutants that fall in the set C> (v)
for large v, in Fig. 6 we highlight the simulated points with NO exceeding its 0.99 quantile that
fall in C°(23) and indicate which of these have the largest values of Ele y;. Simulated points in
C>(23) tend not to have particularly large values of O3 but do occur with moderate SO, values
and extreme values of NO; and PM . The strong dependence between (NO, NO», PM () leads
to the largest values in C(23) occurring when any one of these variables is extreme.

Fig. 7 shows empirical and model-based return level estimates for C" (v) for M corresponding
to (O3, NO») and (NO;, SO;, PM|g). Return levels calculated under independence and perfect
dependence are also marked. For the pair (O3, NO,) the C2(11) set is shown after transforma-
tion to the original margins in Fig. 1. High levels of O3 and NO; are associated with summer
photochemical smog. Empirical return level estimates show that stronger dependence between
these variables during the summer leads to elevated return levels. Model-based return levels agree
closely with the empirical values and show that this seasonal difference is statistically significant
as the confidence intervals for the return levels are separated. The estimated return levels for
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Fig. 7. Return level estimates for the set C"(v), for M corresponding to (a) (O3, NO,) and (b) (NO,, SO,
PMyo): , point estimates for summer; ====--- , point estimates for winter variables; [, pointwise 95%

confidence intervals (which overlap in (b)); o, empirical points for summer; x, empirical points for winter;
, return levels calculated under perfect dependence (upper) and exact independence (lower)

the winter (O3, NO») lie significantly below the independence curve, highlighting the negative
dependence between these variables during the winter. Elevated levels of all three components
of (NO,, SO,, PM ) are associated with winter urban air pollution episodes and correspond-
ingly we see larger return levels in winter, indicating stronger dependence between these three
variables in this season, although this effect is not significant as the confidence intervals overlap.
Both Fig. 7(a) and Fig. 7(b) show excellent agreement between the model-based return level
estimates and the empirical estimates, illustrating the good fit of our dependence model.

8. Theoretical examples

We now derive the limiting conditional characteristics that were identified in Section 3 for a
range of theoretical examples including those summarized in Table 1. Where possible, results
are given for a d-dimensional random variable Y, and in a few special cases for bivariate Y only.

First we give the precise form of the multivariate extreme value distribution which plays a
key role in the examples that are given in this section. A d-dimensional random variable Y with
standard Gumbel margins has a multivariate extreme value distribution if its joint distribution
function can be expressed as (Pickands, 1981)

Pr(Y<y)=exp[— V@ {exp(y)}] (8.1)

where V(@ termed the exponent measure, is given by

-1
VO (y)=d /S d max (w;y; ) dHD (w), (8.2)

BRI VAN

where H'@ is the distribution function of an arbitrary random variable on the (d — 1)-dimensional
unit simplex

d-1
Sd_l={w=(w1,...,1/vd_1): > 1/vj<1,wj>0:j=l,...,d—1}
j=1

satisfying the marginal moment constraint

/ wj dH(‘D(w):cf1 foreach j=1,...,d, (8.3)
d—1
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and wy=1—(w;+... +wg_1). We refer to a multivariate extreme distribution as having mass
on the boundary if H¥ places mass on the boundary of S;_;. We denote by m jii the mass
on the boundary of S;_1 for which w;=0 and w; >0 and let M;={j:m ; >0;j#i} and
M;={1,...,d}\(M;U{i}). The density of H? on the interior of S,_; is denoted by 2 when
it exists. Some parametric examples of V(@ are given now.

8.1. Multivariate exchangeable logistic distribution
Gumbel (1960) introduced the multivariate exchangeable logistic distribution with

d «
WWh(;gw), (8:4)
j=

for any d >2 and 0 < a < 1. Independence is given by =1 and perfect positive dependence in
the limit as o« — 0. There is no mass on the boundary of S;_1 for0<a < 1.

8.2. Multivariate asymmetric logistic distribution
The multivariate asymmetric logistic dependence structure given by Tawn (1990) has

9 K 1/(‘«1{ QK
va=Z{Z(”> }, (8.5)
Kes \jek \ Vj
where K is an index variable over the power set S of {1,...,d}, 0<ag <1 for all K € S and

0<0;x<lforj=1,...,d. Further conditionson §; x arethat0; x =0if j& K orif Ilyeg Ok x =
0 and that Y gcg 0 ¢ =1 for all j. Similarly, for identifiability, ax =1 when |K|=1. If, for any
K, there exists j € K with §; ¢ >0 then there is positive association between the elements of Y,
where Y is the subvector of Y made up of the variables that are indexed by the elements of
set K. For this example m j; = X g ¢ 5\ g 0,k Where S® denotes the subclass of S, all of whose
members contain i.

8.3. Bivariate discrete measure
Ledford and Tawn (1998) defined the distribution for which H®, satisfying constraint (8.3),
places m atoms of mass Aq, ..., A\, at points wy,...,w, on the interior of S;:

m
H® (w) = SN I(w=wy),
i=1
where 1 is the indicator function. For such H®,
1 2
VA (y)=— (1 -2 X Wi)\i> +— 2 (-w)X,
Y1 iwp <w* Y2 i <w*

where w* =y /(y1 + y2). There is no mass on the boundary of Sj.

8.4. Multivariate extreme value distribution
For Pr(Y <y) given by equation (8.1), the conditional distribution function of Y_;|¥; = y; is

Pr(Y_; <y_i|¥;=y) = —exp[— V@ {exp(y) }]V.? {exp(y) } exp{2y; +exp(—yi)},

where V\? (y) is the derivative of V@ (y) with respect to y;. If H@ places any mass on the subset
of S4_1 for which w;w; >0 then 7;;=1; otherwise 7;; = % If m j;; =0 there is a unique nor-
malization but if 0 <m j; <1 there are two normalizations that give non-degenerate G j;(z ;).
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Let Z;; =Y; —aj);y;; then there are non-degenerate limits for a;; =0 if mj; >0 and aj; =1
irrespective of m jj;, with the combined limit being

G jji(zj) =m jilexp{—exp(—z ;) }"“=" + I(a;; =1) Slirglo(—‘/;@ [exp{z(0, i) }lzy;=s:ki.j)

for —oo < z;j; < oo and where z(0,7) = (z1);, . - -, Zi—1}i» 0, Zi1is - - - » Za)i)- Thus G jj; has mass 1 —
mjji at zj; =00 if aj; =0 or mass mj; at z;; = —oo if a;; =1. This may appear to contradict
the uniqueness properties, up to type, of the normalization and limit law that was discussed
in Section 3.2. However, only one of these non-degenerate limits has no mass at oo, so we are
interested in only one of these limits. When m j; =0 for all j#1i, the limiting joint conditional
distribution of Zj; is

Gi(zi) = —V\Pexp{z(0,)}].

We illustrate these limit properties with the three examples above. For the exchangeable logistic
distribution, normalization Z;; = Y_; — y; gives

a—1
Zit
Gile) = {1 + X exp(~1) }
J#i a
For the asymmetric logistic distribution, m ;; is given above and
. ag—1
lim (—V@[exp{z(0, i )= Y/ 0K exp =10} L 4 glox pLIok.
s—><>o( ) [ p{ ( )}]’Zk\,'zsikyél,j) KeS(X"):ﬁSU) J.K 1Y ax i,K i,K

For the bivariate discrete measure dependence structure, setting Z; =Y_; — y; yields

1-2 > New, ifi=1,
wkgwj‘i
G =42 s n(l=wp), ifi=2,
wr <w’

Jli

where w¥, =1/{1+exp(z;;;)} wheni=1and w¥; =1/{1+exp(—z;;;)} wheni=2.

8.5. Inverted multivariate extreme value distribution

Ledford and Tawn (1997) examined the inverted bivariate extreme value distribution, which we
extend here to the multivariate case. For V@ defined in equation (8.2), the survivor function of
this multivariate distribution is given by

Pr(Y >y) =exp{-V@(~1/log[l —exp{—exp(-y)}D}.

For this distribution 7;;=1/lim,_o{ V@ (y)|
with Y;, then, as y; — oo,

Vimy = Loy =sVk ;éi’j}. Assuming that the Y; grow

Pr(Y_; >y_i|¥;=y)~—exp{yi — V@ (y )}V 5y

Further simplification is not possible without more information about the shape of H@ around
w; =0. We first consider the bivariate case where all the mass of H® is in the interior of S;
and the measure density satisfies 1@ (w;) ~s;w} as w; — 0 and wp — 1 for 0<s; and —1 <1
for i=1,2. The transformation Z;; =Y;/y; " where bji=(ti +1)/(t; +2) gives the following
limiting survivor function of variable Z j;:
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ti+2
- Siz,/‘i
Gjizji) = eXp{ LI DGED }
l l

Thus the limiting distribution of Z ; is Weibull.

We now consider the logistic ex%mples. When V@ is of exchangeable logistic form, 7; =27
Using normalization Z;; =Y_;/y; ", where b jli =1—a for all j#i, gives the limiting survivor
function of the variable Z,;:

G\l(zh)—nexp( azif™); (8.6)

j i

hence the Z;; are asymptotically conditionally independent Weibull variables. Although not in
the multivariate extreme class of distributions, the inverted multivariate Crowder distribution
(Crowder, 1989) has the same 7);; as the inverted multivariate extreme value distribution with
exchangeable logistic dependence structure and the same values of a; and bj; with C_}”(z”) asin
equation (8.6).

When V@ is of asymmetric logistic form, 7;; = I/ers(Gl/QK —I—HI/QK)C“K Let Zj;i = //yb i
then b; = I(j € M;)(1 — ")) gives non-degenerate G jj;(z,;) where a(l/) = max(ag:KeSPN
SU). Let K be the set of {K : K € SV N SY & ag =a')}. Under this normalization, the joint
survivor function for the Z; is
l/a( ij)

Gi(zi) = [1 exp(— a(’/)A,J )

JeEM;

xexp( X [ 3 {8k(—logll —explexp(—z)pD}x| ™),

KeS\CO - jeKNM;
where A;; =Yg xin0i k(0. k/0;, 0V @ Thus the variables in set M ; are asymptotically condi-
tionally independent whereas the variables in M; are not. Variables in set M; are asymptotically
conditionally independent of those in set M;.

8.6. Multivariate normal distribution

Let V be a d-dimensional random variable, distributed as a standard multivariate normal ran-
dom variable, with correlation matrix . Let Y represent V after transformation to Gumbel
marginal distributions, via marginal transformations:

Y = —log[—log{®(V)}], (8.7

where @ is the standard normal distribution function. The pairwise coefficient of tail dependence
for this distribution is 7;; = (1 + p;;)/2. We use Mill’s ratio to approximate transformation (8.7)
for large positive (or negative) components v and y of v and y to give

o d V29 —{log(y) +log(dm)}/2(2y) /2 for large positive y, (8.8)
—2exp(—y/2) +exp(y/2){log(dm) — y}//2 for large negative y, ’

and

[ log(v) +log(2m) /2 + /2 for large positive v,

e { —log{log(2m)/2+ v2/2+ log(—v) } for large negative v. ®.9)
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The normalization that is used to give a non-degenerate limit for Zj; is
1/2
(Yj_pjzjyi)/yj/ for p;; >0,
Jli = -1/2
{¥;+log(p? v}/ for pyj <0.

To determine the limiting distribution of Z|; we use the property that the event Zj; <z;|Y; =
y; for large y; can be approximated by the event V_; <v_;|V; =v; for large v; where v; =
@fl[exp{—exp(—yi)}] and v_; has elements v;; which using expressions (8.8) and (8.9) are
found to satisfy

vjii ~ pijvi+2iil pij| T /2.

The conditional distribution of V_;|V; =v; is (d — 1)-dimensional multivariate normal with
mean vector p_,;v; and covariance matrix X_; — pIi p_;, where p_; is the ith column of ¥ with
ith element omitted and X _; is ¥ with ith row and ith column omitted. Hence it follows that
the Z; are jointly (d — 1)-dimensional multivariate normal with mean 0 and covariance matrix
S(X_; —pL.p_,)S, where S is the diagonal matrix with diagonal /2|p_; |-,

8.7. Multivariate Morgenstern distribution
The bivariate Morgenstern distribution is stated in Joe (1997), page 149. A multivariate exten-
sion of this distribution is given by

d d
Pr(Y <y) = [] exp{—exp(—=y)}(1+ o [] [1 —exp{—exp(=y)}],
j=1 j=1
for —1 <a < 1. Independence is given by a =0. Negative and positive dependence are respec-
tively given by a < 0 and « > 0. Perfect positive or negative dependence is not attainable under
this model. For this distribution, 7;; = % Taking Z;; = Y_; gives

Gi(z;)) = [ exp{—exp(—z;;i) }(1 —a [] [1 —exp{—exp(—z;ji) }]),
JF# JF#
so Zj; is distributed as a (d — 1)-dimensional Morgenstern random variable with the sign of
parameter « reversed. For positively and negatively dependent Y, the Zj; are respectively nega-
tively and positively dependent. For d > 3 the marginal distributions of the Z;; are Gumbel and
all margins of dimension less than d — 1 are mutually independent. In contrast, for d =2, G j;;
is a mixture of Gumbel distributions.
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Appendix A: Proof of theorem 1
Non-degeneracy of each marginal distribution of the limiting conditional distribution (3.1) requires that

F_/\;{aju(}’[) +b_/|i(y[)2j\1|)’1} — Gji(zji) as y; — 00, (A.1)
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where Gj; is the jth marginal distribution of G|;. Putting z;; =0 in equation (A.1) gives the required
condition for a;(y;). The limit relationship (A.1) holds for all z;;;, because Y has an absolutely continuous
density, so the limit relationship continues to hold when differentiated with respect to z;;. Dividing the
resulting limit relationship by 1 — F);; gives

Fiidagi ) +bji(yozilyi} N 951 (210
1= FpdapG)+bzlyiy  1— Gz’

bji(yi) (A2)

where

d
9ji(zji) = ac.f\i(z./\i)-

Putting z;; =0 in equation (A.2) we see that up to proportionality
bji(yi)= hj\i{ajli(yi)|yi}71’
which gives the required result up to type.
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Discussion on the paper by Heffernan and Tawn

Richard L. Smith (University of North Carolina, Chapel Hill)
The original formulation of multivariate extreme value theory was
Xitseo s X} —b, Xids-rrs Xoa¥ — by
(Pr{ma"{ u ot ey, 22K Xoa) "<de=G<xl,.‘.,xd>, (1)

Anl And

lim

n—oo

where (X;1,...,X:4),i=1,2,..., are independent identically distributed d-dimensional random vectors,
apls- -, ayg and by, ..., b, are normalizing constants and G is a non-degenerate d-dimensional distribu-
tion function.

I do not know who first proposed this definition, but it emerged in several papers in the 1950s, during
what might be called the golden age of asymptotic distributions in probability. As such, it seems to have
been motivated more by considerations of mathematical elegance than by messy practical problems such
as controlling air pollution. In retrospect, it seems surprising that this original formulation survived so
long.



