Graph labelings and multipartite decompositions

Muhammad Ali Khan

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

A decomposition of a graph G is a set \mathcal{H} of subgraphs of G whose edge sets partition the edge set of G. If $\mathcal{H} = \{H\}$, we say that G has an H-decomposition. If all sets in \mathcal{H} are bipartite (r-partite) we say that \mathcal{H} is a bipartite (r-partite) decomposition of G. The minimum biclique cover $[3]$ is a well-studied graph decomposition problem that asks for a minimum set of bicliques required to decompose a given graph. More recently the minimum bipartite graph cover problem has been introduced $[2]$. Thus the question, how many bipartite subgraphs are required to decompose a given graph, is very relevant.

Graph labelings have been frequently used to study decompositions. For instance the classical result by Rosa $[1, 4]$ states that if a graph G with q edges allows a rosy labeling, then it decomposes K_{2q+1}, and if G allows an α-labeling, then it decomposes K_{2pq+1} for every $p > 0$. In this paper we use a different type of vertex labeling to study bipartite decompositions and prove that

Theorem 1 Let k be any positive integer. If a graph G can be decomposed into k bipartite graphs then it is 2^k-colorable. Conversely, if G is 2^k-colorable then it can be decomposed into k or less bipartite graphs.

We then investigate r-partite decompositions for positive integer $r > 2$ and generalize Theorem 1.

Theorem 2 Let k and r be any positive integers. If a graph G can be decomposed into k r-partite graphs then it is r^k-colorable. Conversely, if G is r^k-colorable then it can be decomposed into k or less r-partite graphs.

Several important consequences of Theorem 1 and Theorem 2 are also discussed.

Keywords: Graph decomposition, minimum biclique cover, bipartite cover, multipartite decomposition, graph coloring.
References

malikhan@kfupm.edu.sa