On vertex antimagicness of disjoint union of graphs

Kiki Ariyanti Sugeng

University of Indonesia, Indonesia

(Joint work with A. Martin Baca, B. Bong N. Herawati, C. Mirka Miller, D. Denny R. Silaban)

Let $G = (V,E)$ be a graph of order n and size e. An (a,d)-vertex-antimagic total labeling is a bijection α from $V(G) \cup E(G)$ onto the set of consecutive integers $\{1, 2, \ldots, n + e\}$, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d. The vertex-weight of a vertex x is the sum of values $\alpha(xy)$ assigned to all edges xy incident to the vertex together with the value assigned to x itself. A graph which admits a (super) (a,d)-VAT labeling is said to be (super) (a,d)-VAT.

Baca et al. in [2] introduced this labeling as a natural extension of the vertex-magic total labeling (VAT labeling for $d = 0$) defined by MacDougall et al. [3] (see also [6]). Basic properties of (a,d)-VAT labelings are investigated in [2]. In [4], it is shown how to construct super (a,d)-VAT labelings for certain families of graphs, including complete graphs, complete bipartite graphs, cycles, paths and generalized Petersen graphs.

Ali et al. [1] studied properties of super (a,d)-VAT labelings and examined their existence for disjoint union of t copies of a regular graph. The idea of copies of graphs can be generalized to disjoint union of graphs. In this talk we discuss the vertex-antimagicness of disjoint union (does not have to be isomorphic) of regular graphs, especially for the case $d = 1$. The talk is based on several results that have been published, see [5] and new results in progress.

Keywords: (a,d)-vertex-antimagic total labeling, disconnected graphs.

References

kiki@ui.ac.id